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Planetary Interiors are Extreme
Environments
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Models for large planets rely on EOS extrapolations
In-situ observations remain a challenge

2



C. Synestia
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New & accurate EOS models will advance planetary
science and help answer big questions
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Density Functional Theory
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Density Functional Theory
"Nature" DFT

Fully interacting system Non-interacting system
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Time

Molecular Dynamics
: jctk
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Thermodynamic quantities like E, P,
T directly accessible without
assuming material response
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Computational Approach

Simplest EOS with a critical point:

13(p,T) = a(T) ± b(T)p + c(T)p2 ± d(T)p3

At the critical point: AP
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Movie
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Critical point estimation
C.P. condition:
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Critical point estimation
C.P. condition:
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Critical point estimation
C.P. condition:
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Critical point estimation
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Maxwell construction
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Coexistence curve
Renormalization Group result:
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Summary
• DFT-MD spans <16x expanded & 5000-8000 K
• Direct observation of incongruent vaporization
• Critical point estimated from EOS

• Small finite size effect

• RG-coexistence phase boundaries
• Large finite size effect
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The Many Body Problem
Electronic many-body Hamiltonian (fixed nuclei):
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