This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

SAND2020- 7945C

Liquid-vapor coexistence
& critical point of Mg2SiO4
from ab=initio simulations

Joshua P Townsend
High Energy Density Physics fheory

Sandia National Laboratories, Albuguerque, NM

Sandia =, U.S. DEPARTMENT OF IR ) @ %
@ ENERGY VS
I.aborato I’IES //I/\Izonal Nuc#SecurltyAdmlnlstratlon

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology &
Engineering Solutions of Sandia, LLC, @ wholly owned subsidiary of Honeywell International’inc., forthe U.S.
Department of Energy’s National Nuclear Security Administration under contract DE-NAO003525. SAND2020-XXXXX



Planetary Interiors are Extreme
Environments
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Models for large planets rely on EOS extrapolations
In-situ observations remain a challenge
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Outlook

A tour of the Mg2SiO4 phase diagram:
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Stewart et al., 2019

New & accurate EOS models will advance planetary
science and help answer big questions
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Density Functional Theory
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Exchange-correlation
functional not exact!

Work presented
today uses "PBE"



Density Functional Theory

“Nature” DFT
Fully interacting system Non-interacting system
Hard Easy
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Molecular Dynamics
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Computational Approach

Simplest EOS with a critical point:
P(p,T) = a(T) +b(T)p + c(T)p* +d(T)p’
At the critical point: |*
OP 52 P

(%), (7)),
Critical isotherm , 1 = Tc
MD calculations: AL,
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Changes
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Movie
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Speciation
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Critical point estimation

C.P. condition: 56 atoms
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Critical point estimation

C.P. condition: 112 atoms
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Critical point estimation

C.P. condition: 224 atoms
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Critical point estimation
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Maxwell construction

10

s /m(P(p’)—P) dp’ =0 /

Pressure [kbar]

90 02 04 06 08 10 12 14 16
Density [g/cm?]

15



Coexistence curve

Renormalization Group result:

Py = Pe — 1 (ClatB + ng5+A) + Cox Expansion, %
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Summary

DFT-MD spans <16x expanded & 5000-8000 K
Direct observation of incongruent vaporization

Critical point estimated from EOS
e Small finite size effect

RG-coexistence phase boundaries
 Large finite size effect
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The Many Body Problem

Electronic many-body Hamiltonian (fixed nuclei):
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Assume simplest many-body wave function:

¢1(r1) Q1(r2) - ¢1(PN§

¢2(r1)  @2(re) -+ da(rn
U({r}) = det : . :




