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> | Magnetized liner inertial fusion relies on three stages to reach
fusion relevant conditions.

imploded by ~20 MA

Be liner A
6-8 mm
Gaseous
D, fuel »
0.7 mg/cc 100ns y
Magnetization Preheat Implosion Stagnation
> Suppress radial _ - Increase fuel - PdV work to o Several keV
thermal conduction adiabat to limit heat fuel temperatures
losses required - Amplify B-field - Several kT B-
convergence through flux field to trap
> lonize fuel to compression charged fusion
lock in B-field products

S.A. Slutz et. al., PoP (2010)




u | Secondary neutron yield and spectra are sensitive to BR and
indicate a path toward measurement.
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s | We cannot directly measure neutron spectra, but we can
observe the Time-of-Flight (ToF).

Neutron source

Scintillator Microchannelplate

Photomultiplier tube

Light guide and
transition piece !

\ }
f

Fixed detector distance allows a change of variabls E —» NToF

Computed secondary neutron spectrum Computed NTOF

— = 0.03

©

_g 0.06 g

© _ T 0.02

E 0.04 > £

5 3

S0, 0:02 e

Jo *c"c
0.00 0.00

10.0 12,5 15.0 17.5 20.0 -20 0 20 40
Energy (MeV)

time (ns)



6 ‘ Experiment analysis for BR is now much closer to “push button”

Stage requiring minimal human
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» | To extract range of parameters consistent with observations we
perform Bayesian posterior inference.

Stage requiring minimal human

) . . Machine learning and Bayesian inference with no human input
input with low impact on results S y P

Physics Surrogate Network

Posterior Model

Bayesian Posterior Samples Prior on T




= | Bayes theorem allows us to easily incorporate multiple datasets
to pin down model parameters with uncertainty.

Let A represent model parameters and B represent observed data we want to
model

Likelihood: probability distribution for data
under our model. E.g. measurement gaussian
distributed about mean or obeys Poisson

distribution Prior: probability distribution
for model parameters before
incorporating data. Can
P(B|A)P(A) _encode physics constraints,
P(A|B) = ignorance, etc.

P(B)

/ Evidence: probability

) o distribution for data.
Posterior: probability Typically unknown, but also

parameters taking into

account observations. This
is typically what we want.



9

Our Bayesian model incorporates models for most sources of
uncertainty.

° Uncertainty in forward model due to use of surrogate

y(0) = Ynn(8) + N(0,2Zp05)

° Uncertainty in observed values (DD yield, DT yield, quantile features)

ﬁQuant = (ﬁQuant) + N(O, COUD_’)Quant: ﬁQuantD

> Statistical uncertainty between model and data

- 5 di
Youant = y(6) + N(0, Zu;ﬁcg)

> Not included:
- Possible systematic uncertainty from model (would need to assess performance of different models)
- Doesn’t contain uncertainty in NN parameters (in principle possible, but not likely to be dominant source)
- Background model assumption

° Additional testing of normal error models should be performed

> Testing of assumption of uncorrelated model-observation error needs testing



» | The basic outline of the Bayesian inference problem highlights

3 key ingredients.

e Forward model
* Dimensionality of likelihood and efficient sampling

> Work in reduced dimensional feature space for efficient sampling
*Data preprocessing (both experiment and simulation)

> nToF instead of spectra

> Experiment is exhibits significant noise, need robustly extracted features

P(B|A) - ||B — B*(A)|

If Dim(A) large P(A|B) requires careful sampling

If Dim(B) large P(B|A) can have numeric issues (e.g. product of small numbers)
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" ‘ The physics model is treated with a neural network surrogate

Stage requiring minimal human

) . . Machine learning and Bayesian inference with no human input
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» | Surrogates allow incorporation of otherwise computationally
unfeasible models into a Bayesian analysis.

«Single yield and spectra calculation takes O(1min-1hr)

*Bayesian inference requires potentially 10’s-100’s of thousands of forward model
evaluations

° Solution is to surrogate the calculation using a machine learning model to reduce

torward model time to O(us-ms)

-~
-Low offline low online: The problem is very easy, or

you neglected/forgot to include the hard part

-Low offline high online: quick dev and little or no
training but long running simulation

-High offline high online: The problem is very hard,
and you are probably doing something inefficiently

-High offline low online: front load effort by training
surrogate that runs fast. Pays off when

Online (running) time

tvmr

= 1_ Nre
NBNE:I:'p

Offline (code dev




s | All machine learning methods may be boiled down to a few key

components with which you will be familiar.

Training Data Learnable Parameters
Observations Model Predict/Act
Feedback

Gradient Descent on Loss
Function or Update Rule
Rule for Feedback

 Given a rule for using observation/predictions for feedback, we can update params
> For regression/classification can define loss functions (e.g. MSE)
> Update parameters by gradient descent to minimize loss

1 Ntrain R " Qnew _ Qold aLm
Ly = N Cye — (o, 8) ) mi = Umi —1 ggold
train = m,i

*Will not go into detail, but can construct many reasonable loss functions
° Should be bounded below (hence typically chosen to be non-negative)
> Sometimes couched in statistical framework (see Bayesian stuff later)

S



w | An ~600 parameter neural network was trained on ~15k LHC
sampled simulations regularized by inverse network.”
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Hidden layer has parameters W, (a matrix) and b, (a vector),
as well as a non-linear activation function f

Standard Estimate of corresponding
tanl Sar e £ 04 Standard Normal Scaled
NorrT':AEL decia e quantile features, DD
- " Yield, and DT/DD:
Parameters X, =f(Wxy_1 +b) > X e g

0

W and b found by minimizing square error between ground truth and prediction:
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*This has been shown to produce better behaved forward models (see e.g. R. Anirudh et al., PNAS 117, 9741-9746 (2019).)



s | Out-of-sample (OQOS) validation shows we aren’t overfitting and
provides OOS error estimates for the model fit.

Validation error ~ Training error
indicating not overfitting

—— validation mean square error
—— training mean square error 2

10°

actual

Loss

=3 -2 =1 0 i 2 3

T'E o 107 P predicted

Gradient descent iteration

Estimate OOS covariance from
performance on data not seen
during training (~ 2k validation
and ~14k training )

Used in Bayesian
likelihood function




« | To minimize impact of human input, an automated data
featurization is applied to signal
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» | Experimental data exhibit significant noise which should be
captured in uncertainty of features extracted.

Step 2: crop and select

Step 1: collect data
background ROI

from experiment
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s | We can now perform Bayesian inference on model parameters
given observations

Stage requiring minimal human

) . . Machine learning and Bayesian inference with no human input
input with low impact on results S y P

Physics Surrogate Network
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» |By utilizing a Markov Chain Monte Carlo (MCMC) sampling, we
can obtain parameter distributions consistent with observed data.

log(pR) log(BR)

Tion

log(AR)

F mix




“ |Experiments

BR(MGcm)

0.8

0.6

0.4

0.2

show trend consistent with Nernst effect.

=== LASNEX w/ Nernst 60 psi
LASNEX No Nernst 60 psi
‘\ —-= LASNEX w/ Nernst 90 psi
\|\ + Experiment 60 psi
+ Experiment 90 psi

Increasing preheat
reduces BR

Caveat: General trend of declining BR vs preheat
is extremely robust. Precise BR shows some
sensitivity e.g. to featurization/surrogate

» architecture choices. May be observing density
effect here which is exciting, but additional
experimental data points and more detailed
study of model selection should be carried out.
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’ ‘ Closing remarks
*DL enabled Bayesian inference of BR for MagLIF shots
*Want to develop a database of BR for MagLLIF shots to mine for trends
> Already see interesting physics consistent with Nernst effect
e Plans to investigate
° Fill density (already early indications?)

°3D nature of plasma
=== LASNEX w/ Nernst 60 psi
o Instabilittes R e LASNEX No Nernst 60 psi
. —-= LASNEX w/ Nernst 90 psi
° Mix 0.8 + Experiment 60 psi
: + Experiment 90 psi
° Impact of uncertainty
°Scaling aspects of Nernst effect
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ToF is measured, so we convert model spectra to NToF.
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Surrogate should be designed with an eye towards reduced
dimensional representation

21

For efficient Markov Chain Monte Carlo (method to sample from P(A | B))
> Access to analytic gradients (e.g. neural networks)
° Low dimensional

- work in a compressed “latent space”
»Critical idea: small number of features descriptive for the specified task

Signals Small number of features”
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principle many choices are possible, and | tried several different features.



» | Surrogate should be designed with an eye towards application
to real data.

z3143 demonstrates the typical data quality
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* NToF exhibit
> Significant digitization noise
> Approximately linear background in region-of-interest
*Wish to do feature extraction in a fashion
> that is robust to noise and background (statistical moments have issues)
> has a meaningful characterization of uncertainty
> Quantile features of the N'ToF signal were found to be a good featurization




» | We can gain some additional intuition for constraining
parameters from measurements.
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» | Sanity check calculations using posterior distribution show good
agreement with data
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Sanity check calculations using posterior distribution show good

agreement with data
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