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Magnetized liner inertial fusion relies on three stages to reach
fusion relevant conditions.

Be liner
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S.A. Slutz et. al., PoP (2010)



1.4 Secondary neutron yield and spectra are sensitive to BR and
indicate a path toward measurement.
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15 We cannot directly measure neutron spectra, but we can
observe the Time-of-Flight (ToF).

Neutron source

ScIntlilator Microchannelplate

\ Light guide and
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Photomultiplier tube

Fixed detector distance allows a change of variabls E —> NToF
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6 1 Experiment analysis for BR is now much closer to "push button"

Stage requiring minimal human
input with low impact on results

Obtain secondary neutron signals

Select Signal and background ROls

Provide DT and DD yields with
uncertainty as well as nToF

Machine learning and Bayesian inference with no human input

Cropped Secondary nToF Data Automated Data Featurization Procedure
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I7 To extract range of parameters consistent with observations we
perform Bayesian posterior inference.

Stage requiring minimal human
input with low impact on results

Obtain secondary neutron signals

Select Signal and background ROls

Provide DT and DD yields with
uncertainty as well as nToF

Machine learning and Bayesian inference with no human input
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18 Bayes theorem allows us to easily incorporate multiple datasets
to pin down model parameters with uncertainty.

Let A represent model parameters and represent observed data we want to
model

Likelihood: probability distribution for data
under our model. E.g. measurement gaussian
distributed about mean or obeys Poisson
distribution

\
P (B IA)P (A)

P (A I B) = 
P(B)

/

Posterior: probability
distribution for model
parameters taking into
account observations. This
is typically what we want.

Prior: probability distribution
for model parameters before
incorporating data. Can
encode physics constraints,
ignorance, etc.

Evidence: probability
distribution for data.
Typically unknown, but also
typically unimportant.



9 I Our Bayesian model incorporates models for most sources of
uncertainty.
. Uncertainty in forward model due to use of surrogate

Y(e) = 57>nn(6) + N(O, ZOOS)

°Uncertainty in observed values (DD yield, DT yield, quantile features)

. 9 Quant = (51> Quant) + N(O , COVU 1 Quant) .> Y Quand)

. Statistical uncertainty between model and data

51> Quant = Y(e) + N(O, Eudniakg)

. Not included:

- Possible systematic uncertainty from model (would need to assess performance of different models)

Doesn't contain uncertainty in NN parameters (in principle possible, but not likely to be dominant source)

Background model assumption

. Additional testing of normal error models should be performed

. Testing of assumption of uncorrelated model-observation error needs testing



19 The basic outline of the Bayesian inference problem highlights
3 key ingredients.

•Forward model

• Dimensionality of likelihood and efficient sampling

Work in reduced dimensional feature space for efficient sampling

• Data preprocessing (both experiment and simulation)

• nToF instead of spectra

• Experiment is exhibits significant noise, need robustly extracted features
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" The physics model is treated with a neural network surrogate

Stage requiring minimal human
input with low impact on results

Obtain secondary neutron signals

Select Signal and background ROls

Provide DT and DD yields with
uncertainty as well as nToF

Machine learning and Bayesian inference with no human input
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20 Surrogates allow incorporation of otherwise computationally
unfeasible models into a Bayesian analysis.

•Single yield and spectra calculation takes 0(1min-lhr)

•Bayesian inference requires potentially 10's-100's of thousands of forward model
evaluations

°Solution is to surrogate the calculation using a machine learning model to reduce
forward model time to 0(ps-ms)
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A.

Offline (code dev/traini

-Low offline low online: The problem is very easy, or
you neglected/forgot to include the hard part

-Low offline high online: quick dev and little or no
training but long running simulation

-High offline high online: The problem is very hard,
and you are probably doing something inefficiently

-High offline low online: front load effort by training
surrogate that runs fast. Pays off when

(AIL 
tFP  .

— 1 NTT. 
NDNEp



13  All machine learning methods may be boiled down to a few key
components with which you will be familiar.

Training Data

l Observations 

L 
Learnable Parameters

L Model

/AtL 
Feedback

Gradient Descent on Loss
Function or Update Rule

Rule for Feedback

• Given a rule for using observation/predictions for feedback, we can update params

. For regression/classification can define loss functions (e.g. MSE)

. Update parameters by gradient descent to minimize loss

1
Ntrain a Lm

ne = olo! — n  
Lm =  y (yi - f (x °

i=1 

i, dm) )2 m,i
w 6,

m.,1 .1 anola
Ntrain Il ""m,1

•Will not go into detail, but can construct many reasonable loss functions

. Should be bounded below (hence typically chosen to be non-negative)

. Sometimes couched in statistical framework (see Bayesian stuff later)



1.4 An —600 parameter neural network was trained on — l 5k LHC
sampled simulations regularized by inverse network.*

.5.

Standard
Normal Scaled

Model
Parameters

-10 4 -h 4L.,

Hidden layer has parameters WL (a matrix) and bL (a vector),
as well as a non-linear activation function f

xL = f(vilh.-1+ b) x

Estimate of corresponding
Standard Normal Scaled
quantile features, DD
Yield, and DT/DD: y

W and b found by minimizing square error between ground truth and prediction:

1 
Ntrain

L =   true 
— 

pred
9 WlYt Ynn b))2 

ntrue pred pred TAT ).) 2

train 
t unn qnn fi "inv fi binv ))

i=1

*This has been shown to produce better behaved forward models (see e.g. R. Anirudh et al. , PNAS 117, 9741-9746 (2019).)



15 Out-of-sample (OOS) validation shows we aren't overfitting and
provides 00S error estimates for the model fit.

Validation error - Training error
indicating not overfitting

100

lo-,  
lo°

— validation mean square error

— training mean square error

10' 102 103
Gradient descent iteration

Estimate OOS covariance from
performance on data not seen
during training (- 2k validation
and -14k training )

3

2

-1

—2

—2 —1 o 1
predicted

Used in Bayesian
likelihood function



16 To minimize impact of human input, an automated data
featurization is applied to signal

Stage requiring minimal human
input with low impact on results

Obtain secondary neutron signals

Select Signal and background ROls

Provide DT and DD yields with
uncertainty as well as nToF

Machine learning and Bayesian inference with no human input
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17 Experimental data exhibit significant noise which should be
captured in uncertainty of features extracted.
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18 I We can now perform Bayesian inference on model parametersgiven observations

Stage requiring minimal human
input with low impact on results

Obtain secondary neutron signals

Select Signal and background ROls

Provide DT and DD yields with
uncertainty as well as nToF

Machine learning and Bayesian inference with no human input
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ry utilizing a Markov Chain Monte Carlo (MCMC) sampling, we19

can obtain parameter distributions consistent with observed data.
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20 Experiments show trend consistent with Nernst effect.
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21

Closing remarks
•DL enabled Bayesian inference of BR for MagLIF shots

•Want to develop a database of BR for MagLIF shots to mine for trends

() Already see interesting physics consistent with Nernst effect

• Plans to investigate

() Fill density (already early indications?)

() 3D nature of plasma

() Instabilities

() Mix 0.8

() Impact of uncertainty

() Scaling aspects of Nernst effect
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16 I ToF is measured, so we convert model spectra to NToF.
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21 Surrogate should be designed with an eye towards reduced
dimensional representation

• For efficient Markov Chain Monte Carlo (method to sample from P(A 1B))

Access to analytic gradients (e.g. neural networks)

Low dimensional

- work in a compressed "latent space"

»Critical idea: small number of features descriptive for the specified task
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found shape descriptors to be reliably extracted from noisy data, but in
principle many choices are possible, and I tried several different features.



22 I Surrogate should be designed with an eye towards application
to real data.
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° Significant digitization noise
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*Wish to do feature extraction in a fashion
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1, I We can gain some additional intuition for constraining
parameters from measurements.
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2, I Sanity check calculations using posterior distribution show good
agreement with data
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I Sanity check calculations using posterior distribution show good
agreement with data
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