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Introduction
3 i Code v&V- Efforts simultaneously with Code Development

O Advanced Technology Disruption Mitigation (ATDM) program aims at developing performant application codes for next
generation hardware while also supporting a vigorous V&V effort

o EM plasma Grand Challenge Lab Directed R&D (GCLDRD) which aims is to improve modeling/simulation for Z power flow
has a component focused on reproducible Science which includes V&V and Code Comparison Infrastructure (CCI)

EMPIRE Verification Topics to be Discussed in this Presentation
O Boundary condition and time integration verification of EMPIRE-PIC using a Cold Diode problem

O Space charge limited (SCL) and general inflow boundary conditions and EM/fluid coupling verification in EMPIRE-Fluid using
a Warm Diode problem

Verification and Validation

O Code verification — Determination that mathematical description of the physical model is solved correctly (usually
involves comparing to known solutions)

0 Often involves simplifications in order to obtain an exact or analytic solution

o Solution verification — Determination that the numerical solutions are converging under refinement (to a highly
refined reference solution, or a nearby solution)

o Solution validation — Determine if the right model is being solved

0 Direct comparison of the numerical simulation solution data to experimental data



Empire-PIC Verification of a
Cold Diode



5 1 Cold Diode Problem (w. T. Pointon)

1D electrostatic system, 0 x d, with applied voltage V
O Inject cold beam of particles with charge q and mass m at x = 0, with kinetic energy Wand current density J

O BCs on the electrostatic potential: 0(0) = 0, 0(d) = V
O qV < 0 for net acceleration across the gap

Equilibrium solution published long ago: George Jaffe, Phys. Rev., 65, 91 (1944)

O Space-charge-limited current:
1/2

jmax = ° [1 d-(1 q n 13
4 T47

O J m„ reduces to Child-Langmuir current for V —> 0

, where Jo — 196 co

. Jrnax = 2J0 for cold beam injected into a grounded box (V = 0)

r 2q 
1/2
(W 1 0312

m , d2

For J < Jmax, exact analytic profiles for O(x), electric field E(x), and particle velocity v(x)

Very clean verification problem for an electrostatic PIC code

Caveat for verification: must use a timestep that is an exact integer divisor of the particle transit time

. Otherwise, equilibrium PIC solution has a slight gap with no particles near x = d

Governing equations: charge conservation, energy conservation, Poisson's equation

Physical parameters: 0(0) = 0, 0(d) = 14 d, W, J

Computational parameters: transit time, simulation time, particle count, timestep, mesh resolution



6 1 Cold diode verification problem (w.T.Pointon)
Formal verification of EMPIRE-PIC using Jaffe's
solution for the cold diode

Electrostatic field solver with uniform and random
particle emission tested

Leapfrog and Velocity-Verlet time integrators
tested

Outcomes from verification study:
o Convergence rates for E-field exposed an issue at
boundaries - which was corrected by development
team, resulting in expected order of accuracy

o Convergence rates for velocity showed Leapfrog
time integration scheme requires an error correction
for staggered velocity/particle solutions in order
achieve expected rates accuracy

o Velocity-Verlet time integration scheme, which
alleviates the need for a correction, was
implemented, tested and verified

o Velocity-Verlet time integration scheme velocity
boundary conditions were implemented, tested and
verified
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7 1 Cold diode verification problem (w.T.Pointon)
Formal verification of EMPIRE-PIC using Jaffe's
solution for the cold diode

Electrostatic field solver with uniform and random
particle emission tested

Leapfrog and Velocity-Verlet time integrators
tested

Outcomes from verification study:
o Convergence rates for E-field exposed an issue at
boundaries - which was corrected by development
team, resulting in expected order of accuracy

o Convergence rates for velocity showed Leapfrog
time integration scheme requires an error correction
for staggered velocity/particle solutions in order
achieve expected rates accuracy

o Velocity-Verlet time integration scheme, which
alleviates the need for a correction, was
implemented, tested and verified

o Velocity-Verlet time integration scheme velocity
boundary conditions were implemented, tested and
verified
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8 1 Cold diode error norm convergence (w. T. Pointon)
o L1, L2 and Lo„ spatial error norms of potential, electric field and
particle velocity all converge at the expected rate (r., 12)

o For the cold diode problem with conditions studied:
electrostatic field solver, BCs and time integration algorithms
were verified to expected order of accuracy
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Empire-Fluid Verification of a
Warm Diode



1 EMPIRE-Fluid Warm Diode Verification

Similar to the cold diode:
o One dimensional

o Non-zero electron streaming velocity

o Physical parameters: IF, J 0, d,

o Computational parameters: simulation time, timestep, mesh resolution

Unlike the cold diode:
O Temperature, internal energy and pressure and equation of state

o Additional physical parameters: E 0, Teo, adiabatic index, equation of state assumption

o MF numerical formulation solves the conservation equations which includes total energy

o Do not use discrete particles

An analysis different than cold diode analysis is necessary to verify multi-fluid (IF) plasma physics codes
O Include pressure gradient terms

o Include equation of state

o Solving Maxwell's equations instead of using electrostatic assumption



Euler/Poisson Steady State Analysis (N.D. Hamlin)

Steady Euler/Poisson system provides a quasi-analytic solution for the warm diode

Assume adiabatic equation of state: Pe

System is transformed to IVP
o solved for ve(x) and dve/dx(x) -> Pe, ne, Te, Ex

O In limit as Te -> 0 and the pressure gradient term is neglected the Euler/Poisson solution recovers the cold diode
solutions of Jaffe, (1944) and Rokhlenko and Lebowitz, (2013)

O Solved using Mathematica

o This solution method is similar to MF, solved with EM instead of ES, and both prescribing EO at the inflow BC

O Initialization:
(v co, Eo ,T, Jo, d)
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Comparing Cold and Warm Diode Analyses
12 I Nx=25

3

0

Analytical and quasi-analytical models
• Jaffe Cold Diode, 1944: (Jaffe)

o Rokhlenko and Lebowitz Cold Diode, 2013:
(RL13)

• Euler/Poisson IVP, adiabatic eos: (gradP)
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Fluid Model of Warm Diode
13 Fluid Model has additional parameters

• Background temperature

• adiabatic index

• Electric field offset E0 instead of

Voltage

E

-2. E

WI

• -6. [

E

E+00

E+00

E+00

E+00

E +00

E+01
0 0.2 0.4 0.6

x/d

1.0E+00

9.5E-01

0 • 9.0E-01

8.5E-01

.121
Wi 8.0E-01

o
z

7.5E-01

7.0E-01
0

■ Numerical details:
• Two fluids: electrons and positrons
• Current neutralization using heavy

positrons

• IMEX time integration

• Implicit CG electromagnetics

• Explicit DG fluids

• Supersonic inflow fluid BCs

• Conducting wall EM-field BCs

• Fluid ICs are uniform,

• Initial charge density is zero
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Multi-Fluid Code Verification:Warm Diode Behavior

Solution for warm diode deviates from cold diode as temperature increases
0 Relatively small deviation from cold behavior for Te=leV and 10eV

0 Empire-Fluid MF code tracks exact solution of electric field, number density and velocity for all three
temperatures
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Multi-Fluid Code Verification:Warm Diode Behavior
Force ratio is the ratio of EM to pressure forces

o EM forces dominate at low temperature (cold diode behavior)

O As temperature increases pressure force becomes important (warm diode behavior)

Study of Euler/Poisson system showed solutions not sensitive to adiabatic index for range [1, 1.1]

For this initial study adiabatic index = 1.01 to approach isothermal conditions and minimize
pressure gradient effects

These results for temperature range [1eV, 100 eV] show that the MF solution track temperature
dependence of the analytic solution
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Multi-Fluid CodeVerification: Relative Cell Based Error for
Te I eV

Relative error profiles for the electric field, electron number density and velocity

o Monotonic reduction in error under mesh refinement for all three quantities
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Multi-Fluid Code Verification: Warm Diode (Cell averaged)
17 Consistent convergence rates for all three temperatures:

° Electric field, number density and velocity converge at
expected rate
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Summary
Cold diode verification (SAND2O19-9384)

O Analytic solution was developed based on Jaffe (1944)

o This is a very good choice for verifying a PIC code

o Expected orders of accuracy were observed

O Several boundary condition issues were exposed and remedied

o New Velocity-Verlet time integration scheme was verified

Warm diode

o A quasi-analytic solution to the Euler/Poisson system including pressure gradient effects has been
developed

o EMPIRE-Fluid solutions compare reasonably well with the quasi-analytic solutions capturing both structure
and temperature sensitivity

o Several code issues have been exposed and addressed

O Expected rates of convergence based on cell integrated/averaged quantities has been demonstrated

Next Steps

O Continue improving diagnostics in EMPIRE-Fluid

o Develop an automated version for faster turn-around

o Drive this problem to more realistic temperatures and adiabatic index

o Develop relativistic versions of the diode for verification in EMPIRE-PIC and -Fluid
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Consistent convergence rates for all three temperatures:

o Electric field converges at expected rate

o Electron number density and velocity convergence stalls
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Multi-Fluid Code Verification: Relative Error from Interpolated
analytic Table Te= I eV

Relative error profiles for the electric field, electron number density and velocity
Non-monotonic behavior for the electric field

o Errors are converging to a different solution

error .
(xj)— fh I 

El
ec
tr
on
 n
u
m
b
e
r
 d
en

si
ty

 r
el
at
iv
 

1E-02

E-0

1E

1E-07  
0

f(x) is the interpolated table value at the hex centroid

h>i is the hex centered average value

Nx_5
N _
Nx=2O
Nx=4O
Nx=80
Nx=160

0.2 OA 0.6 0.8

x/d

1 E



E
x
 N
or
ma
li
ze
d 
L1
 E
rr
or
 N
o
r
m
s
 

Multi-Fluid Code Verification: Warm Diode (Interpolated table
values norms)

Consistent convergence rates for all three temperatures:

° Electric field converges at expected rate

0 Electron number density and velocity converge at expected rates
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