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Introduction

Code V&V Efforts simultaneously with Code Development

> Advanced Technology Disruption Mitigation (ATDM) program aims at developing performant application codes for next
generation hardware while also supporting a vigorous V&V effort

o EM plasma Grand Challenge Lab Directed R&D (GCLDRD) which aims is to improve modeling/simulation for Z power flow
has a component focused on reproducible Science which includes V&V and Code Comparison Infrastructure (CCI)

EMPIRE Verification Topics to be Discussed in this Presentation
> Boundary condition and time integration verification of EMPIRE-PIC using a Cold Diode problem

° Space charge limited (SCL) and general inflow boundary conditions and EM/fluid coupling vetification in EMPIRE-Fluid using
a Warm Diode problem

Verification and Validation

> Code verification — Determination that mathematical description of the physical model 1s solved correctly (usually
involves comparing to known solutions)

> Often involves simplifications in order to obtain an exact or analytic solution

° Solution verification — Determination that the numerical solutions are converging under refinement (to a highly
refined reference solution, or a nearby solution)

° Solution validation — Determine if the right model is being solved

° Direct comparison of the numerical simulation solution data to experimental data




Empire-PIC Verification of a
Cold Diode




Cold Diode Problem (w.T. Pointon) ,.I

5
1D electrostatic system, 0 = x = 4, with applied voltage 1 I

> Inject cold beam of particles with charge g and mass 7 at x = 0, with kinetic energy W and current density |
> BCs on the electrostatic potential: ¢0) = 0, ¢(d) = 17

o gl” <0 for net acceleration across the gap

Equilibrium solution published long ago: George Jatfe, Phys. Rev., 65, 91 (1944) oI Cold Biade Model
old Diode Mode

J v 112 7? ) 1/2 (W/ )3/2
o Space-charge-limited current:  Juu = 40{1 {1_7) } , where J,=%¢, (_qj : —

V0=0

o ] . treduces to Child-Langmuir current for W — 0

1l

° Joa = 2], for cold beam injected into a grounded box (I = 0)

For J <]J,..., €xact analytic profiles for @(x), electric field E(x), and particle velocity v(x)
Very clean verification problem for an electrostatic PIC code

Caveat for verification: must use a timestep that 1s an exact integer divisor of the particle transit time

o Otherwise, equilibrium PIC solution has a slight gap with no particles near x = 4

Governing equations: charee conservation. enerov conservation. Poisson's equation
geq 3 y 5

Physical patameters: @0) =0, ¢(d) =1/, d, W, |

Computational parameters: transit time, simulation time, particle count, timestep, mesh resolution



|Co|d diode verification problem (.t pointon)

Formal verification of EMPIRE-PIC using Jaffe's
solution for the cold diode

Electrostatic field solver with uniform and random
particle emission tested

Leapfrog and Velocity-Verlet time integrators
tested

Outcomes from verification study:

o Convergence rates for E-field exposed an issue at
boundaries — which was corrected by development
team, resulting in expected order of accuracy

o Convergence rates for velocity showed Leaptrog
time integration scheme requires an error correction
for staggered velocity/particle solutions in order
achieve expected rates accuracy

o Velocity-Verlet time integration scheme, which
alleviates the need for a correction, was
implemented, tested and verified

o Velocity-Verlet time integration scheme velocity
boundary conditions were implemented, tested and
verified

Potential Error Norms

Mesh L1 Lg Lm
800 | 1.04e-04 | 1.16e-04 | 1.66e-04
400 | 3.95e-04 | 4.41e-04 | 6.30e-04
200 | 1.55e-03 | 1.73e-03 | 2.48e-03
100 | 6.02e-03 | 6.77e-03 | 9.83e-03

E-field Error Norms

Mesh le Lg Lm
800 1.76e-01 | 1.95e-01 | 2.78e-01
400 6.95e-01 | 7.70e-01 | 1.11e400
200 | 2.76e+00 | 3.06e+00 | 4.49e+00
100 | 1.09e+01 | 1.21e+01 | 1.79e+01

Electron Velocity Particle (Verlet) Error Norms

Mesh Ll Lg Lm
800 | 3.08e+00 | 3.34e4-00 | 4.74e+400
400 | 1.15e+01 | 1.26e4+01 | 1.82e401
200 | 4.51e+01 | 4.97e+01 | 7.17e+01
100 | 1.79e+02 | 1.97e402 | 2.83e+02

E-field (V/m)

Velocity (m/s)

Potential (V)
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|Co|d diode verification problem (.t pointon)

Formal verification of EMPIRE-PIC using Jaffe's
solution for the cold diode

Electrostatic field solver with uniform and random
particle emission tested

Leapfrog and Velocity-Verlet time integrators
tested

Outcomes from verification study:

o Convergence rates for E-field exposed an issue at
boundaries — which was corrected by development
team, resulting in expected order of accuracy

o Convergence rates for velocity showed Leaptrog
time integration scheme requires an error correction
for staggered velocity/particle solutions in order
achieve expected rates accuracy

o Velocity-Verlet time integration scheme, which
alleviates the need for a correction, was
implemented, tested and verified

o Velocity-Verlet time integration scheme velocity
boundary conditions were implemented, tested and
verified

Potential Error Norms

Mesh L] LQ Lm
800 | 1.04e-04 | 1.16e-04 | 1.66e-04
400 | 3.95e-04 | 4.41e-04 | 6.30e-04
200 | 1.55e-03 | 1.73e-03 | 2.48e-03
100 | 6.02e-03 | 6.77e-03 | 9.83e-03

E-field Error Norms

Mesh L] Lg Lm
800 1.76e-01 | 1.95e-01 | 2.78e-01
400 6.95e-01 | 7.70e-01 | 1.11e400
200 | 2.76e+00 | 3.06e+00 | 4.49e+00
100 | 1.09e+01 | 1.21e+01 | 1.79e+01

Electron Velocity Particle (Verlet) Error Norms

Mesh Ll L2 Lm
800 | 3.08e+400 | 3.34e+400 | 4.74e+00
400 | 1.15e401 | 1.26e4+01 | 1.82e+01
200 | 4.51e+01 | 4.97e+01 | 7.17e+01
100 | 1.79e+02 | 1.97e+02 | 2.83e+02

Potential error (V)

E-field error (V/m})

Particle velogity error (m/s)




Cold diode error norm convergence (w.T.Pointon) = ——— s |

800 ——
8 24985 | o S
100 —— I
o L1, L.2 and L, spatial error norms of potential, electric field and = PPN
particle velocity all converge at the expected rate (p~2) £ s
o For the cold diode problem with conditions studied: =
electrostatic field solver, BCs and time integration algorithms s |
were verified to expected order of accuracy = . w .,
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Potential Error Norm Convergence Rates E-field Error Norm Convergence Rates Velocity Error Norm Convergence Rates
Meshpair | L1 | L2 | Leo Mesh pair | L1 | Lo | Ly Mesh pair | L1 | Ly | Ly
800400 | 1.02 | 1.92 | 1.93 800-400 | 1.98 | 1.98 | 1.99 800-400 | 1.90 | 1.92 | 1.04
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Empire-Fluid Verification of a
Warm Diode




EMPIRE-Fluid Warm Diode Verification
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Similar to the cold diode:
> One dimensional
> Non-zero electron streaming velocity
° Physical parameters: W, J, 4,

o Computational parameters: sizulation time, timestep, mesh resolution

Unlike the cold diode:

° Temperature, internal energy and pressure and equation of state
o Additional physical parameters: E, 1), adiabatic index, equation of state assumption
> MF numerical formulation solves the conservation equations which includes total energy

> Do not use discrete particles

An analysis different than cold diode analysis is necessary to verify multi-fluid (MF) plasma physics codes
° Include pressure gradient terms
° Include equation of state

° Solving Maxwell's equations instead of using electrostatic assumption




Euler/Poisson Steady State Analysis (N.D. Hamiin)

1 Steady Euler/Poisson system provides a quasi-analytic solution for the warm diode

Assume adiabatic equation of state: P, = An.

System is transformed to IVP
o solved for ve(x) and dve/dx(x) -> Pe, ne, Te, Ex

In limit as Te -> 0 and the pressure gradient term is neglected the Euler/Poisson solution recovers the cold diode

solutions of Jaffe, (1944) and Rokhlenko and Lebowitz, (2013)

Solved using Mathematica

(o]

O

(e}

This solution method is similar to ME, solved with EM instead of ES, and both prescribing EO at the inflow BC

Todtlali . (veO7E07 I', Teo, Jo, d)
nitialization: ( Pv%"eg ) Ao
Me | Vep —

o

= ek
Ve dx =
Euler/Poisson System IVP System Recover Pe, ne, Te, Ex
v = +/kBTew/m
8’06 6(]5 8Pe mo v — T2 of—1 i 521}6‘ Ten 1{3 e()/ e
MeNeVe—7m— = MNe€z— — e|Ve ™ 2 VTeoVe0 |\ T || Ha2 P, = An,
Ox Or Oz e , i ) Jyr
az(ﬁ n.e L ‘1 L T2 ol 1 dve _ e = (me’”’l’go)(e”e@/ 0)
T« B A N S ANZY T ne = Jo/(eve)
0[‘ Tae - Pe/(kB * ne)
P, = An, e To2 o5t do,
g e o e €
Jo = neev. = constant B = e \e vl




E (V/m)
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Analytical and quasi-analytical models

o Jaffe Cold Diode, 1944: (Jaffe)

o Rokhlenko and Lebowitz Cold Diode, 2013:

(RL13)

o Euler/Poisson IVP, adiabatic eos: (gradP)
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Comparing Cold and Warm Diode Analyses
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Normalized Electric field

Fluid Model of Warm Diode

134 Fluid Model has additional parameters
* Background temperature
= adiabatic index
* Electric field offset E, instead of
Voltage
Two Fluid Warm Diode Model
—©
) —
m—
E— @
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Numerical details:

Two fluids: electrons and positrons

Current neutralization using heavy
positrons

IMEX time integration
Implicit CG electromagnetics
Explicit DG fluids

Supersonic inflow fluid BCs
Conducting wall EM-field BCs
Fluid ICs are uniform,

Initial charge density is zero

One example:

° d=0.01 (m)

> V1 ~100 (V) -> E0~-1821.2 (V/m)

o J=JO = 93.35807793 (A/m"2)
o W =1.60217662e-17 (eV)

° T0=1,10, 100 (eV)

o gamma=1.01

° Mach=14, 4.4, 1.4

o EM-Field ICs: B=0, E=-¢*10%x/¢ps0 + EO
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E/EO

| Multi-Fluid Code Verification: VWarm Diode Behavior

Solution for warm diode deviates from cold diode as temperature increases
° Relatively small deviation from cold behavior for Te=1eV and 10eV

o Empire-Fluid MF code tracks exact solution of electric field, number density and velocity for all three

temperatures
-1 T T T U 1 T T 1.6 " ¢
Empire,Tez1eV —— Empire,Tez1leV —— Empire,Tez1leV ——
3 Empire,Te=10eV —«— Empire,Te=10eV —— Empire,Te=10eV —»—
= r Empire,Te=100eV —s— ] 0.95 Empire,Te=100eV —=— - Empire,Tex100eV —=—
exact,Te=1eV - exact,Te=1eV 1.5 + exact,Te=1teV — .
-3 F A exact,Te=10eV —— exact,Te=10eV —— exaci,Tex10eV —
\ exact,Te=100eV —— 09 Ny exact,Te=100eV —— exact,Te=100eV ——
-4 1.4
0.85
o “ < Q
£ os} s 13}
& >
-6 - =
0.75
7t 1.2
0.7
_8 L.
11
9l 0.65 |
_10 0.‘6 i i i i 1 e ) ‘
0 0 0.2 0.4 0.6 0.8 1 0 0.2 04 0.6 0.8 1

x/d x/d x/d
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Force Ratio (-qe*ne*E/dPdx)

Multi-Fluid Code Verification: VWarm Diode Behavior

> EM forces dominate at low temperature (cold diode behavior)

° As temperature increases pressure force becomes important (warm diode behavior)

Study of Euler/Poisson system showed solutions not sensitive to adiabatic index for range [1, 1.1]

For this initial study adiabatic index = 1.01 to approach isothermal conditions and minimize

These results for temperature range [1eV, 100 eV] show that the MF solution track temperature

E/EO

\Em;;im;l‘emw\? —
Empire, Te=10eV —«»—

Empire,Te=100eV —s=— °

exact,Te=1eV

exact,Te=10eV -
exact, Tex100eV -

Force ratio 1s the ratio of EM to pressure forces
pressure gradient effects
dependence of the analytic solution
1000 T T
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o 0.998 |
=
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Ex relative cell error

Multi-Fluid Code Verification: Relative Cell Based Error for
16 Te=leV

Relative error profiles for the electric field, electron number density and velocity

> Monotonic reduction in error under mesh refinement for all three quantities

h : :
errorfiel — | <f(@) >i = <f" > <f{x)>,is the hex centered integrated table value
k4
| < f(=) >i] <f ’>. is the hex centered simulation value
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Multi-Fluid Code Verification: Warm Diode (Cell averaged) |

17 Consistent convergence rates for all three temperatures:

o Hlectric field, number density and velocity converge at

expected rate

1.1 norm definition:

° 1802 Te=leV ——
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8
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Nx E_L1_slope | n_L1_slope | ux_L1_slope
5-10 2.014e+00 1.986e+00 1.993e+00
10-20 2.011e+00 1.993e+00 1.998e+00
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1E-06 . .
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Nx

Nx E_L1_slope | n_L1_slope | ux_L1_slope
5-10 2.015e+00 1.995e+00 | 1.980e+00
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20-40 2.009e+00 2.002e+00 [ 1.996e+00
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Summary

Cold diode verification (SAND2019-9384)
° Analytic solution was developed based on Jaffe (1944)

19

° 'This 1s a very good choice for verifying a PIC code

(o]

Expected orders of accuracy were observed

o

Several boundary condition 1ssues were exposed and remedied

> New Velocity-Verlet time integration scheme was verified

Warm diode

o A quasi-analytic solution to the Euler/Poisson system including pressure gradient effects has been

developed

o EMPIRE-Fluid solutions compare reasonably well with the quasi-analytic solutions capturing both structure
and temperature sensitivity

o Several code issues have been exposed and addressed

> HExpected rates of convergence based on cell integrated/averaged quantities has been demonstrated

Next Steps
> Continue improving diagnostics in EMPIRE-Fluid
> Develop an automated version for faster turn-around
° Drive this problem to more realistic temperatures and adiabatic index

> Develop relativistic versions of the diode for verification in EMPIRE-PIC and -Fluid




Thank you!

f_—i_—_-_h

Are there any questions?



Backup Slides
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Ex Normalized L1 Error Norms

1E-01

1E-02

1E-03

Multi-Fluid Code Verification: Warm Diode (Internal norms)

Consistent convergence rates for all three temperatures:

o Hlectric field converges at expected rate

° Electron number density and velocity convergence stalls
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80-160 1.000e+00 2.001e+00 2.000e+00
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Ex relative error

1E-02

1E-03 |

1E-04 |

Multi-Fluid Code Verification: Relative Error from Interpolated

analytic Table Te=leV

Relative error profiles for the electric field, electron number density and velocity

> Non-monotonic behavior for the electric field

o Hrrors are converging to a different solution
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f(x;) is the interpolated table value at the hex centroid
<f ’>. is the hex centered average value
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Ex Normalized L1 Error Norms

Multi-Fluid Code Verification: Warm Diode (Interpolated table

values norms)

Consistent convergence rates for all three temperatures:

o Hlectric field converges at expected rate

° Flectron number density and velocity converge at expected rates
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