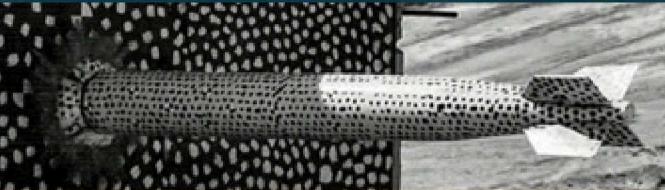


Verification of Plasma Physics Codes



T. M. Smith, K. Beckwith, N. D. Hamlin, N. Roberds

11th Workshop on Fundamental Science and Pulsed Power (ZFS) and User Meeting
August 3rd, 2020, Sandia National Laboratories, Albuquerque, NM, USA

Outline

2

Introduction

Cold diode Verification Study with Empire-PIC

Warm diode Verification Study with Empire-Fluid

Summary

Thanks to Sean Miller for helpful discussions

Introduction

3

Code V&V Efforts simultaneously with Code Development

- Advanced Technology Disruption Mitigation (ATDM) program aims at developing performant application codes for next generation hardware while also supporting a vigorous V&V effort
- EM plasma Grand Challenge Lab Directed R&D (GCLDRD) which aims is to improve modeling/simulation for Z power flow has a component focused on reproducible Science which includes V&V and Code Comparison Infrastructure (CCI)

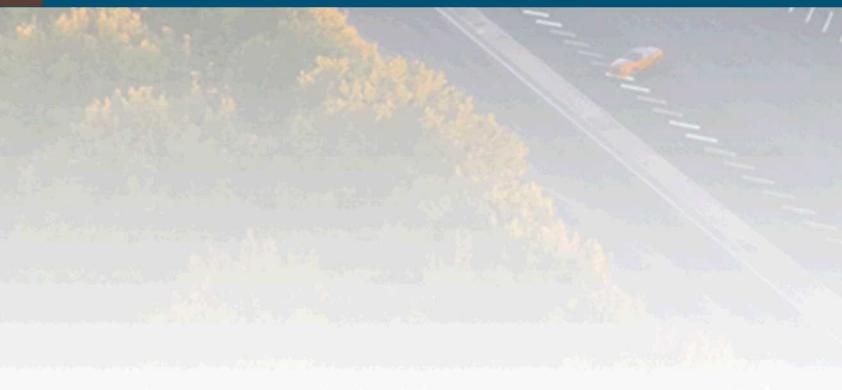
EMPIRE Verification Topics to be Discussed in this Presentation

- Boundary condition and time integration verification of EMPIRE-PIC using a Cold Diode problem
- Space charge limited (SCL) and general inflow boundary conditions and EM/fluid coupling verification in EMPIRE-Fluid using a Warm Diode problem

Verification and Validation

- Code verification – Determination that mathematical description of the physical model is solved correctly (usually involves comparing to known solutions)
 - Often involves simplifications in order to obtain an exact or analytic solution
- Solution verification – Determination that the numerical solutions are converging under refinement (to a highly refined reference solution, or a nearby solution)
- Solution validation – Determine if the right model is being solved
 - Direct comparison of the numerical simulation solution data to experimental data

Empire-PIC Verification of a Cold Diode



Cold Diode Problem (w. T. Pointon)

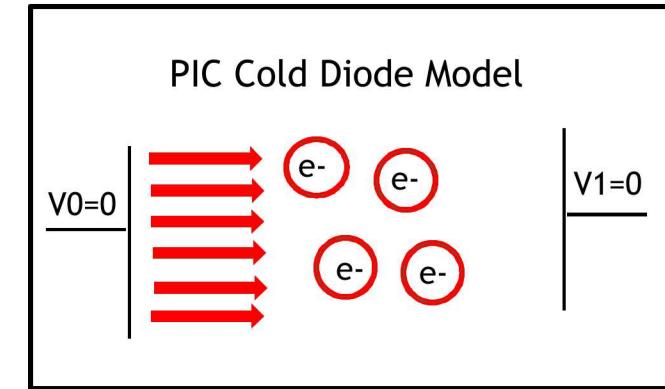
5

1D electrostatic system, $0 \leq x \leq d$, with applied voltage V

- Inject cold beam of particles with charge q and mass m at $x = 0$, with kinetic energy W and current density J
- BCs on the electrostatic potential: $\phi(0) = 0$, $\phi(d) = V$
- $qV < 0$ for net acceleration across the gap

Equilibrium solution published long ago: George Jaffe, Phys. Rev., 65, 91 (1944)

- Space-charge-limited current: $J_{\max} = \frac{J_0}{4} \left[1 + \left(1 - \frac{qV}{W} \right)^{1/2} \right]^3$, where $J_0 = \frac{16}{9} \epsilon_0 \left(\frac{2q}{m} \right)^{1/2} \frac{(W/q)^{3/2}}{d^2}$
- J_{\max} reduces to Child-Langmuir current for $W \rightarrow 0$
- $J_{\max} = 2J_0$ for cold beam injected into a grounded box ($V = 0$)



For $J < J_{\max}$, exact analytic profiles for $\phi(x)$, electric field $E(x)$, and particle velocity $v(x)$

Very clean verification problem for an electrostatic PIC code

Caveat for verification: must use a timestep that is an exact integer divisor of the particle transit time

- Otherwise, equilibrium PIC solution has a slight gap with no particles near $x = d$

Governing equations: charge conservation, energy conservation, Poisson's equation

Physical parameters: $\phi(0) = 0$, $\phi(d) = V$, d , W , J

Computational parameters: transit time, simulation time, particle count, timestep, mesh resolution

Cold diode verification problem (w. T. Pointon)

Formal verification of EMPIRE-PIC using Jaffe's solution for the cold diode

Electrostatic field solver with uniform and random particle emission tested

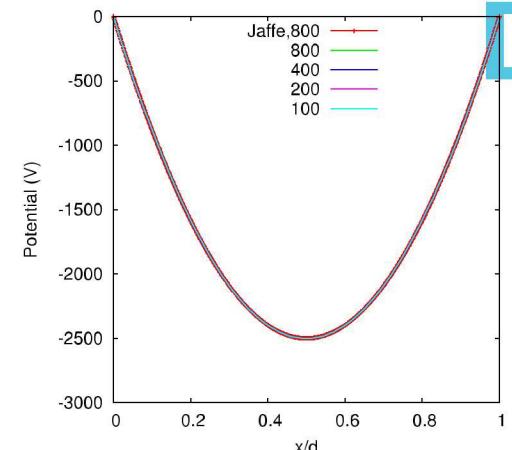
Leapfrog and Velocity-Verlet time integrators tested

Outcomes from verification study:

- Convergence rates for E-field exposed an issue at boundaries – which was corrected by development team, resulting in expected order of accuracy
- Convergence rates for velocity showed Leapfrog time integration scheme requires an error correction for staggered velocity/particle solutions in order to achieve expected rates accuracy
- Velocity-Verlet time integration scheme, which alleviates the need for a correction, was implemented, tested and verified
- Velocity-Verlet time integration scheme velocity boundary conditions were implemented, tested and verified

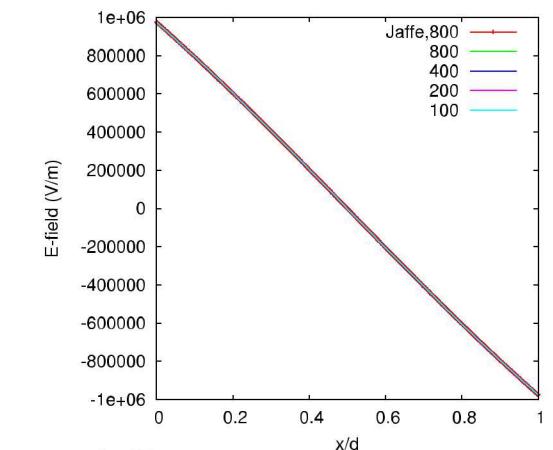
Potential Error Norms

Mesh	L_1	L_2	L_∞
800	1.04e-04	1.16e-04	1.66e-04
400	3.95e-04	4.41e-04	6.30e-04
200	1.55e-03	1.73e-03	2.48e-03
100	6.02e-03	6.77e-03	9.83e-03



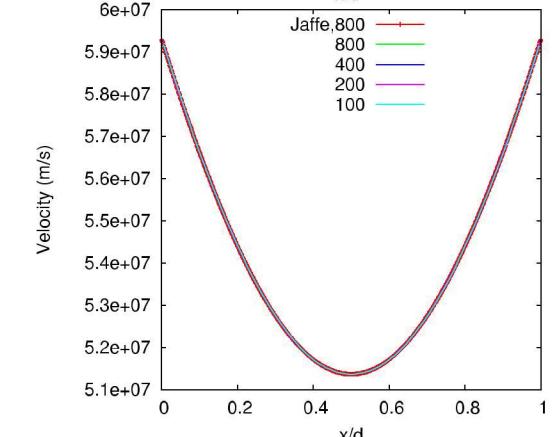
E-field Error Norms

Mesh	L_1	L_2	L_∞
800	1.76e-01	1.95e-01	2.78e-01
400	6.95e-01	7.70e-01	1.11e+00
200	2.76e+00	3.06e+00	4.49e+00
100	1.09e+01	1.21e+01	1.79e+01



Electron Velocity Particle (Verlet) Error Norms

Mesh	L_1	L_2	L_∞
800	3.08e+00	3.34e+00	4.74e+00
400	1.15e+01	1.26e+01	1.82e+01
200	4.51e+01	4.97e+01	7.17e+01
100	1.79e+02	1.97e+02	2.83e+02



Cold diode verification problem (w. T. Pointon)

Formal verification of EMPIRE-PIC using Jaffe's solution for the cold diode

Electrostatic field solver with uniform and random particle emission tested

Leapfrog and Velocity-Verlet time integrators tested

Outcomes from verification study:

- Convergence rates for E-field exposed an issue at boundaries – which was corrected by development team, resulting in expected order of accuracy
- Convergence rates for velocity showed Leapfrog time integration scheme requires an error correction for staggered velocity/particle solutions in order to achieve expected rates accuracy
- Velocity-Verlet time integration scheme, which alleviates the need for a correction, was implemented, tested and verified
- Velocity-Verlet time integration scheme velocity boundary conditions were implemented, tested and verified

Potential Error Norms

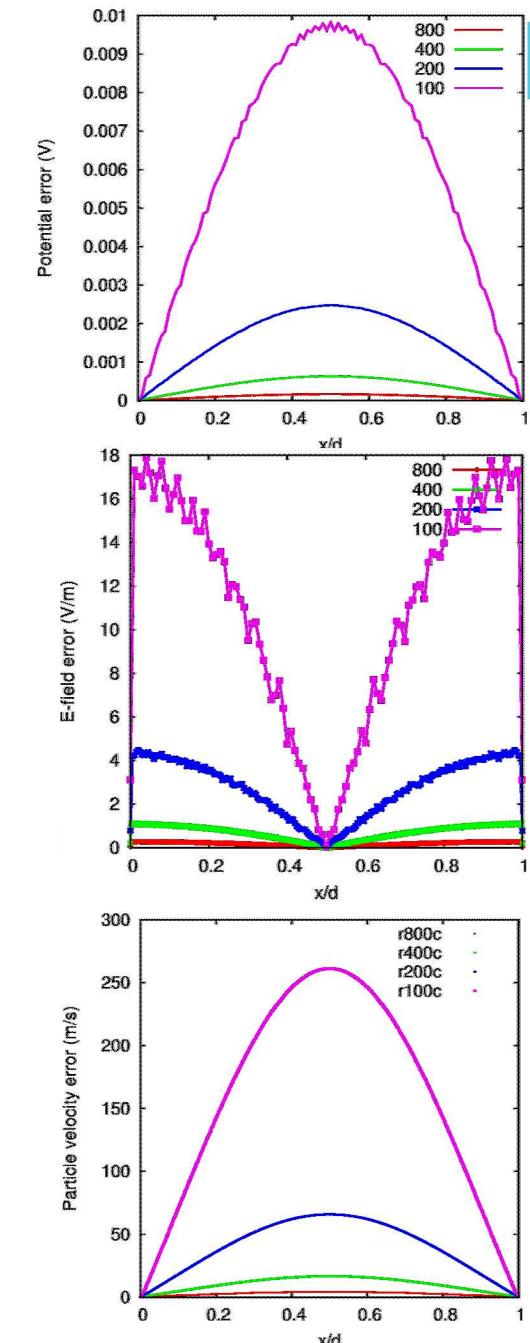
Mesh	L_1	L_2	L_∞
800	1.04e-04	1.16e-04	1.66e-04
400	3.95e-04	4.41e-04	6.30e-04
200	1.55e-03	1.73e-03	2.48e-03
100	6.02e-03	6.77e-03	9.83e-03

E-field Error Norms

Mesh	L_1	L_2	L_∞
800	1.76e-01	1.95e-01	2.78e-01
400	6.95e-01	7.70e-01	1.11e+00
200	2.76e+00	3.06e+00	4.49e+00
100	1.09e+01	1.21e+01	1.79e+01

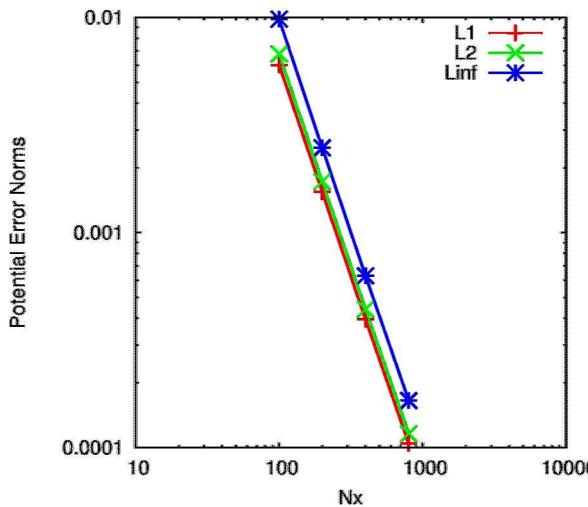
Electron Velocity Particle (Verlet) Error Norms

Mesh	L_1	L_2	L_∞
800	3.08e+00	3.34e+00	4.74e+00
400	1.15e+01	1.26e+01	1.82e+01
200	4.51e+01	4.97e+01	7.17e+01
100	1.79e+02	1.97e+02	2.83e+02

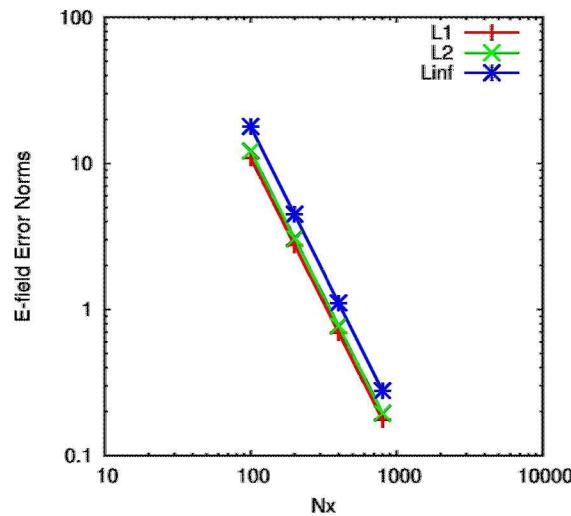


Cold diode error norm convergence (w. T. Pointon)

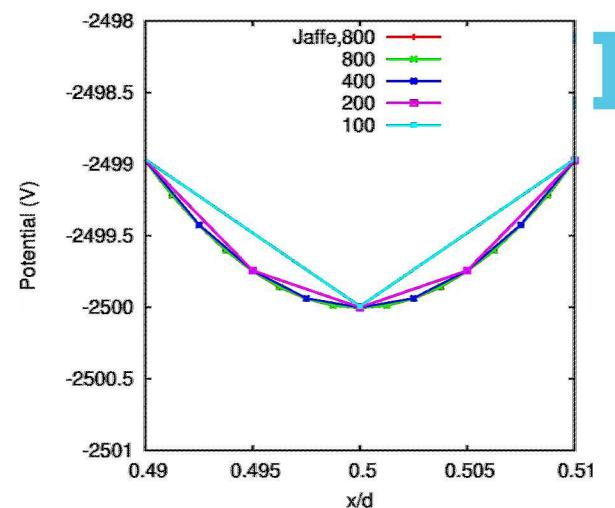
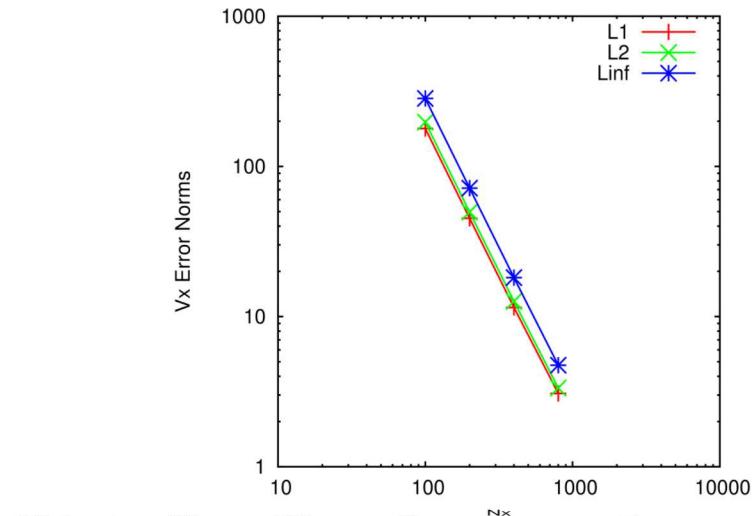
- L1, L2 and L_∞ spatial error norms of potential, electric field and particle velocity all converge at the expected rate ($p \approx 2$)
- For the cold diode problem with conditions studied: electrostatic field solver, BCs and time integration algorithms were verified to expected order of accuracy



Potential Error Norm Convergence Rates



E-field Error Norm Convergence Rates



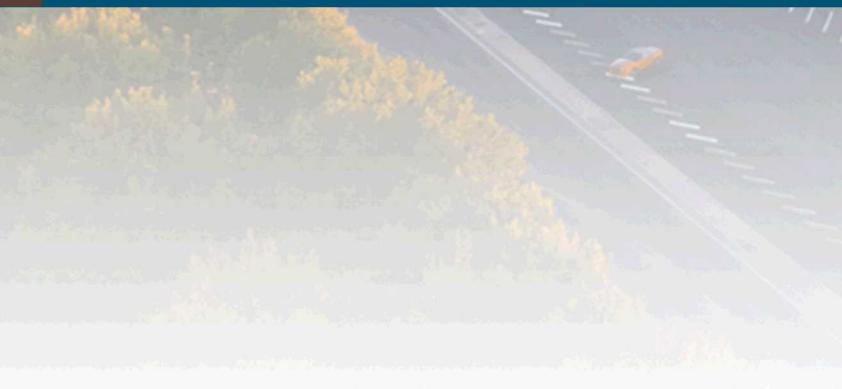
Velocity Error Norm Convergence Rates

Mesh pair	L_1	L_2	L_∞
800-400	1.92	1.92	1.93
400-200	1.97	1.97	1.98
200-100	1.96	1.97	1.99

Mesh pair	L_1	L_2	L_∞
800-400	1.98	1.98	1.99
400-200	1.99	1.99	2.02
200-100	1.98	1.99	2.00

Mesh pair	L_1	L_2	L_∞
800-400	1.90	1.92	1.94
400-200	1.97	1.98	1.98
200-100	1.99	1.99	1.98

Empire-Fluid Verification of a Warm Diode



EMPIRE-Fluid Warm Diode Verification

10

Similar to the cold diode:

- One dimensional
- Non-zero electron streaming velocity
- Physical parameters: W, J_0, d ,
- Computational parameters: *simulation time, timestep, mesh resolution*

Unlike the cold diode:

- Temperature, internal energy and pressure and equation of state
- Additional physical parameters: E_0, T_{e0} , *adiabatic index, equation of state assumption*
- MF numerical formulation solves the conservation equations which includes total energy
- Do not use discrete particles

An analysis different than cold diode analysis is necessary to verify multi-fluid (MF) plasma physics codes

- Include pressure gradient terms
- Include equation of state
- Solving Maxwell's equations instead of using electrostatic assumption

Euler/Poisson Steady State Analysis (N.D. Hamlin)

11

Steady Euler/Poisson system provides a quasi-analytic solution for the warm diode

Assume adiabatic equation of state: $P_e = A n_e^\Gamma$

System is transformed to IVP

- solved for $v_e(x)$ and $d v_e / dx(x) \rightarrow P_e, n_e, T_e, E_x$
- In limit as $T_e \rightarrow 0$ and the pressure gradient term is neglected the Euler/Poisson solution recovers the cold diode solutions of Jaffe, (1944) and Rokhlenko and Lebowitz, (2013)
- Solved using Mathematica
- This solution method is similar to MF, solved with EM instead of ES, and both prescribing E_0 at the inflow BC
- Initialization: $(v_{e0}, E_0, \Gamma, T_{e0}, J_0, d)$
$$m_e \left(v_{e0} - \frac{\Gamma v_{T_{e0}}^2}{v_{e0}} \right) \frac{dv_{e0}}{dx} = e E_0$$

Euler/Poisson System	IVP System	Recover P_e, n_e, T_e, E_x
$m_e n_e v_e \frac{\partial v_e}{\partial x} = n_e e \frac{\partial \phi}{\partial x} - \frac{\partial P_e}{\partial x}$	$m_e \left[v_e - \Gamma v_{T_{e0}}^2 v_{e0}^{\Gamma-1} \left(\frac{1}{v_e^\Gamma} \right) \right] \frac{\partial^2 v_e}{\partial x^2}$	$v_{T_{e0}} = \sqrt{k_B T_{e0} / m_e}$
$\frac{\partial^2 \phi}{\partial x^2} = \frac{n_e e}{\epsilon_0}$	$+ m_e \left[1 + \Gamma v_{T_{e0}}^2 v_{e0}^{\Gamma-1} \left(\frac{1}{v_e^{\Gamma+1}} \right) \right] \left(\frac{dv_e}{dx} \right)^2 = \frac{e J_0}{\epsilon_0 v_e}$	$P_e = A n_e^\Gamma$
$P_e = A n_e^\Gamma$		$A = (m_e v_{T_{e0}}^2) (e v_{e0} / J_0)^{\Gamma-1}$
$J_0 = n_e e v_e = \text{constant}$		$n_e = J_0 / (e v_e)$
		$T_e = P_e / (k_B * n_e)$
		$E(x) = \frac{m_e}{e} \left(v_e - \frac{\Gamma v_{T_{e0}}^2 v_{e0}^{\Gamma-1}}{v_e^\Gamma} \right) \frac{dv_e}{dx}$

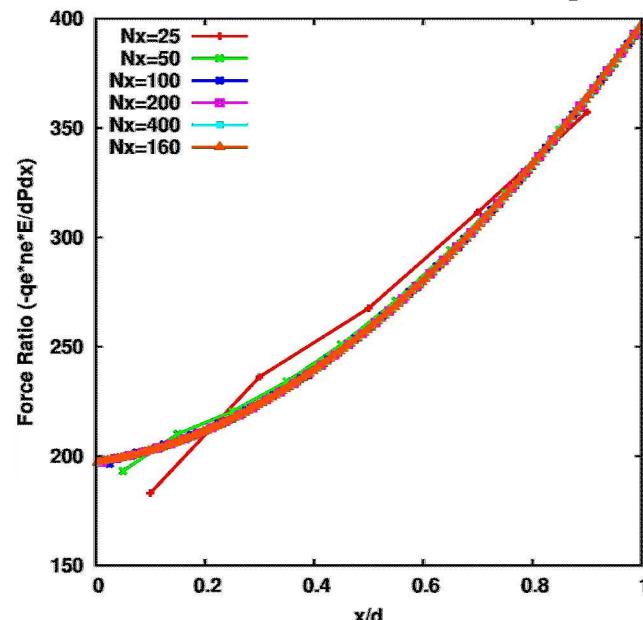
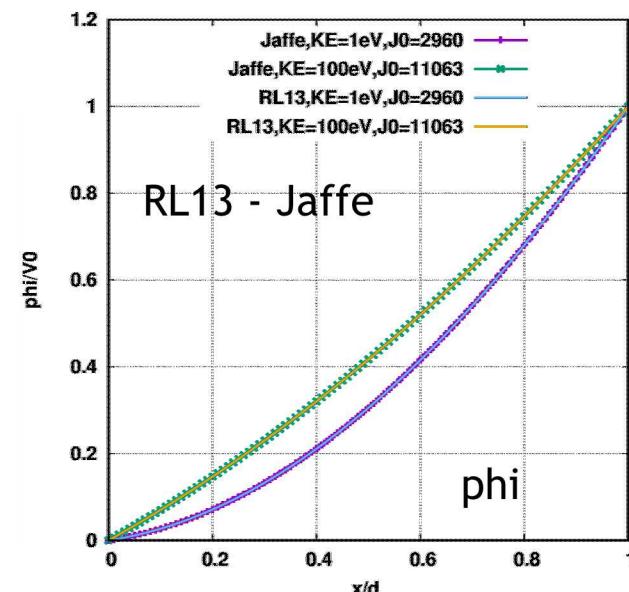
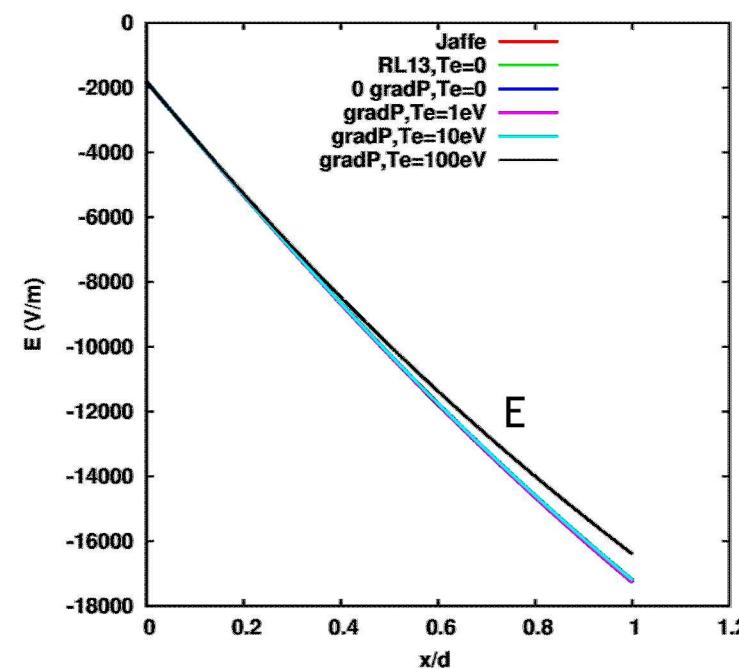
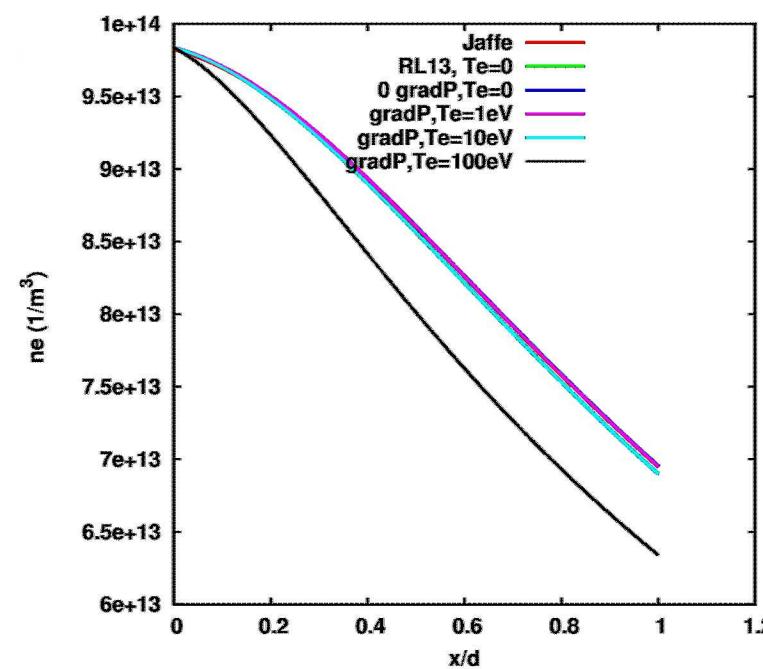
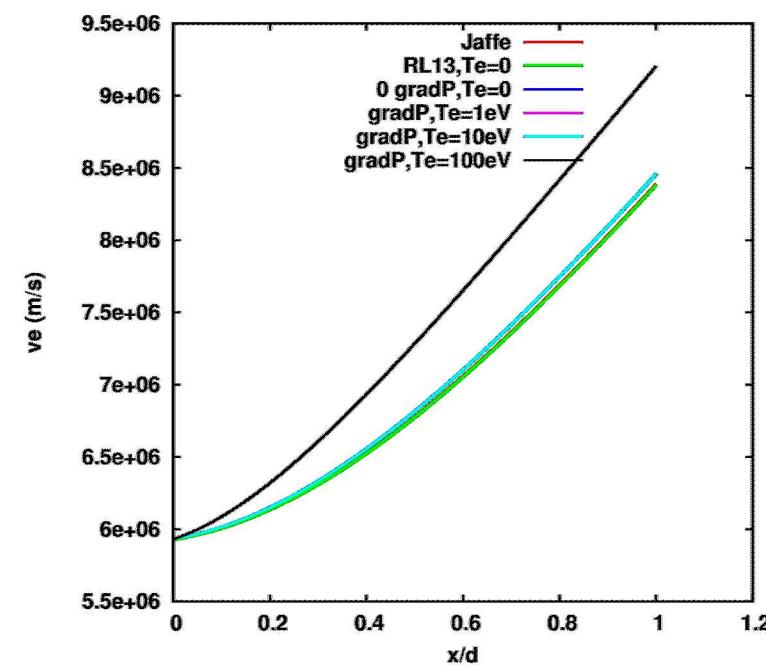
$$+ m_e \left[1 + \Gamma v_{T_{e0}}^2 v_{e0}^{\Gamma-1} \left(\frac{1}{v_e^{\Gamma+1}} \right) \right] \left(\frac{dv_e}{dx} \right)^2 = \frac{e J_0}{\epsilon_0 v_e}$$

Comparing Cold and Warm Diode Analyses

12

Analytical and quasi-analytical models

- Jaffe Cold Diode, 1944: (Jaffe)
- Rokhlenko and Lebowitz Cold Diode, 2013: (RL13)
- Euler/Poisson IVP, adiabatic eos: (gradP)

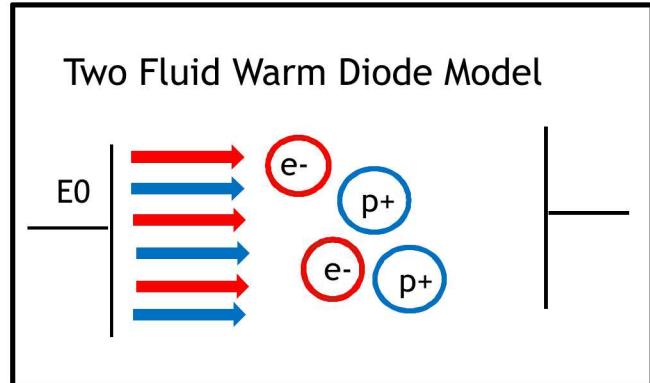


Fluid Model of Warm Diode

13

Fluid Model has additional parameters

- Background temperature
- adiabatic index
- Electric field offset E_0 instead of Voltage

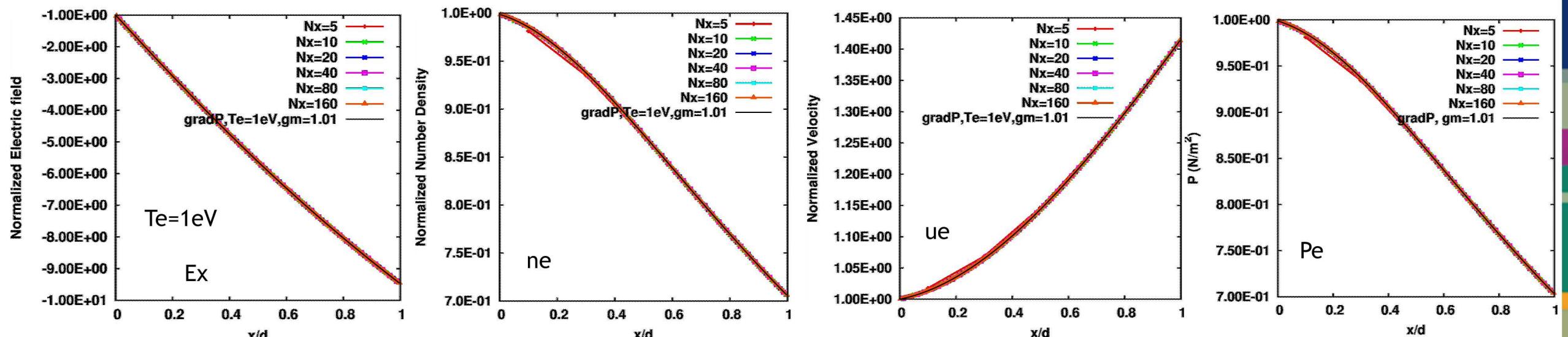


Numerical details:

- Two fluids: electrons and positrons
- Current neutralization using heavy positrons
- IMEX time integration
- Implicit CG electromagnetics
- Explicit DG fluids
- Supersonic inflow fluid BCs
- Conducting wall EM-field BCs
- Fluid ICs are uniform,
- Initial charge density is zero

One example:

- $d=0.01$ (m)
- $V_1 \sim 100$ (V) $\rightarrow E_0 \sim -1821.2$ (V/m)
- $J=J_0 = 93.35807793$ (A/m²)
- $W = 1.60217662e-17$ (eV)
- $T_0 = 1, 10, 100$ (eV)
- $\gamma=1.01$
- $\text{Mach}=14, 4.4, 1.4$
- EM-Field ICs: $B=0, E=-e^*n_0*x/\epsilon_0 + E_0$

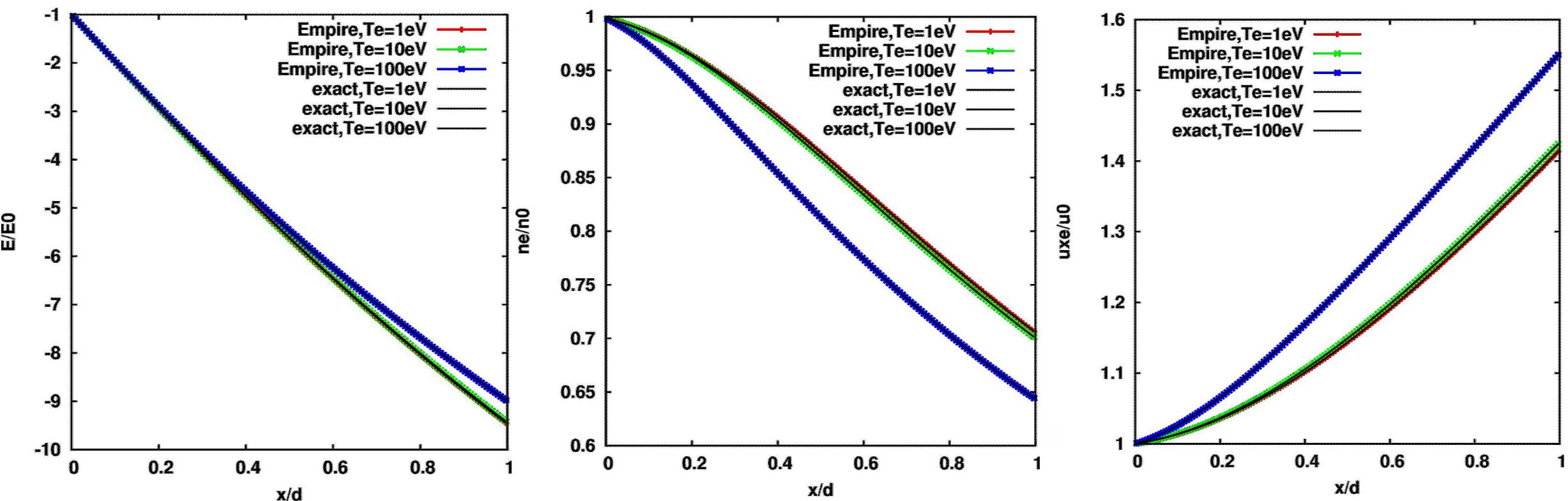


Multi-Fluid Code Verification: Warm Diode Behavior

14

Solution for warm diode deviates from cold diode as temperature increases

- Relatively small deviation from cold behavior for $T_e = 1\text{eV}$ and 10eV
- Empire-Fluid MF code tracks exact solution of electric field, number density and velocity for all three temperatures



Multi-Fluid Code Verification: Warm Diode Behavior

15

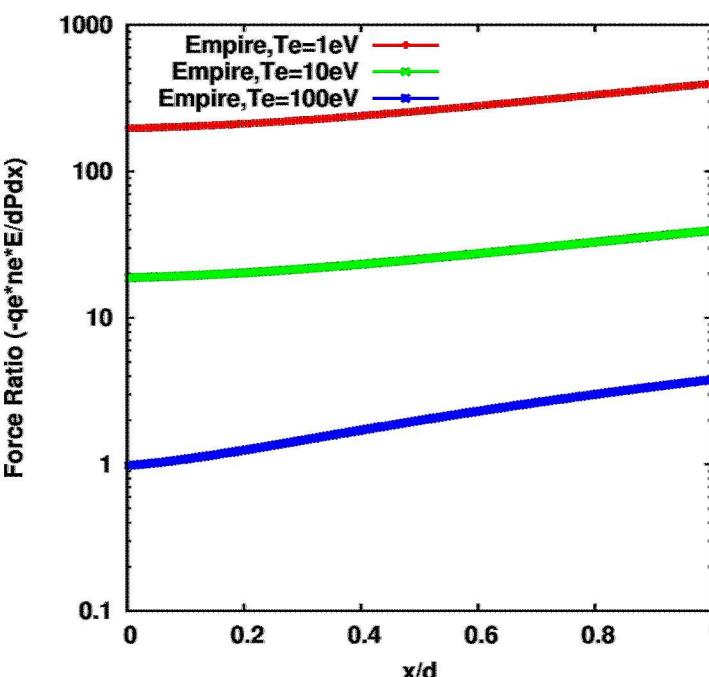
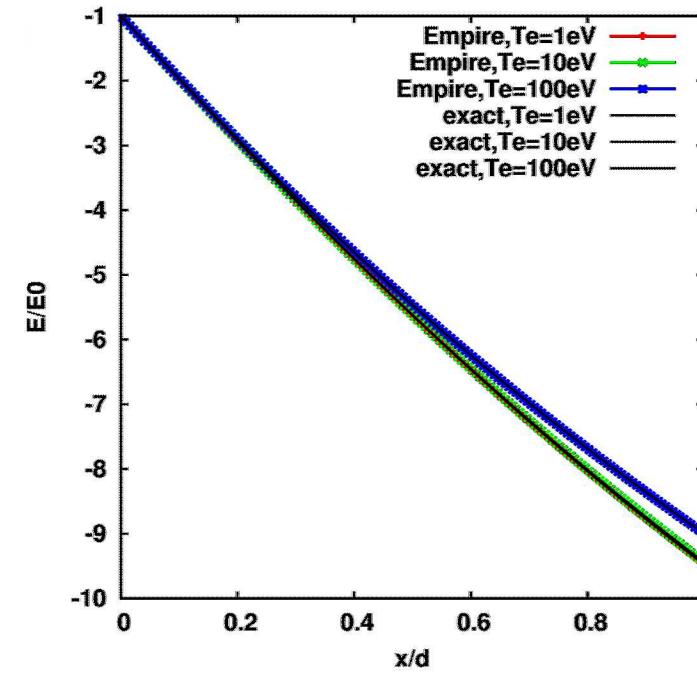
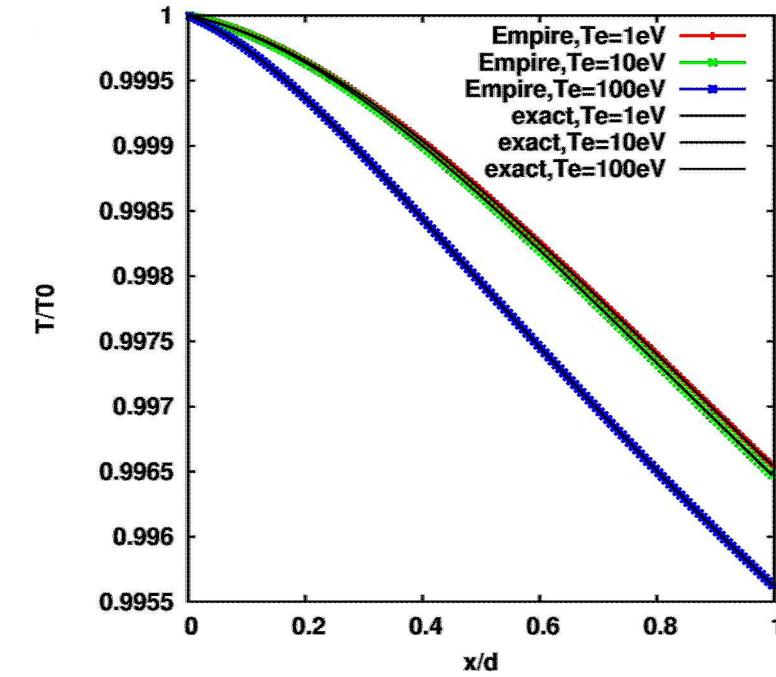
Force ratio is the ratio of EM to pressure forces

- EM forces dominate at low temperature (cold diode behavior)
- As temperature increases pressure force becomes important (warm diode behavior)

Study of Euler/Poisson system showed solutions not sensitive to adiabatic index for range [1, 1.1]

For this initial study adiabatic index = 1.01 to approach isothermal conditions and minimize pressure gradient effects

These results for temperature range [1eV, 100 eV] show that the MF solution track temperature dependence of the analytic solution



Multi-Fluid Code Verification: Relative Cell Based Error for $T_e = 1 \text{ eV}$

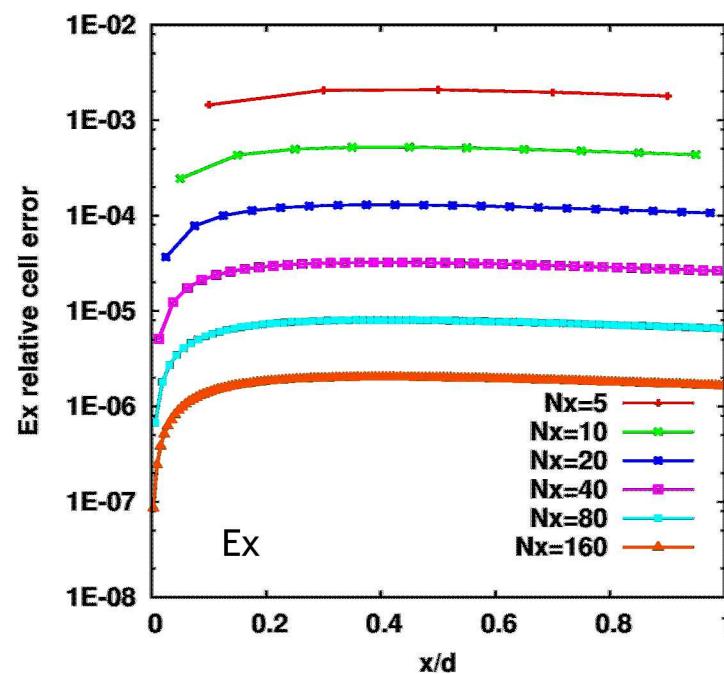
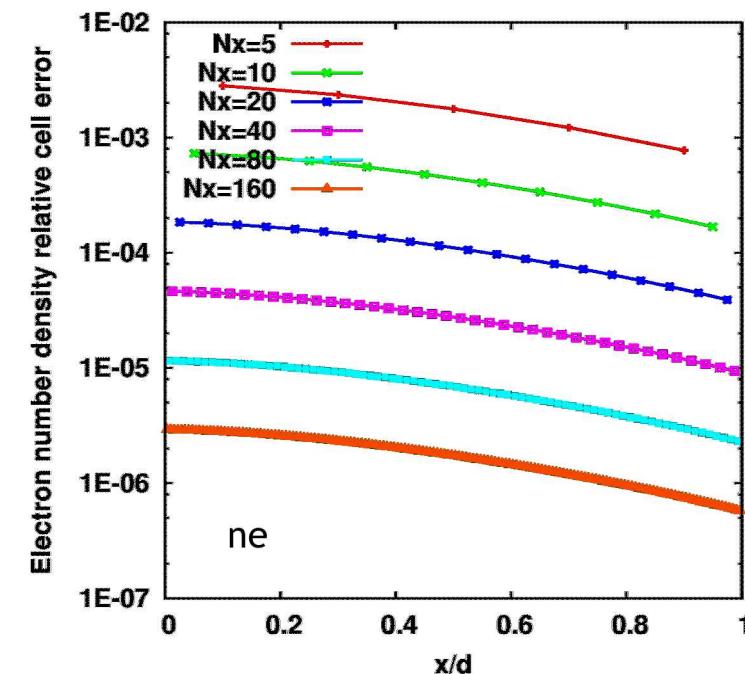
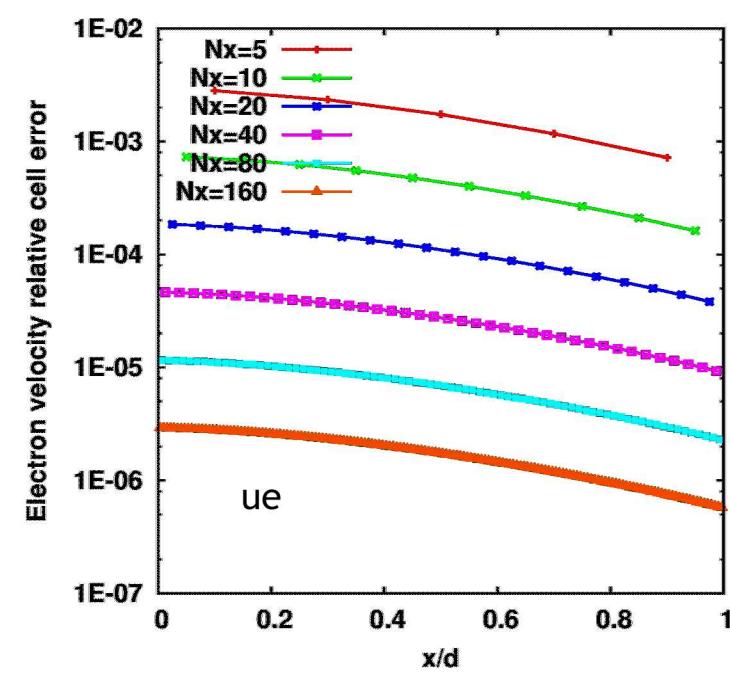
16

Relative error profiles for the electric field, electron number density and velocity

- Monotonic reduction in error under mesh refinement for all three quantities

$$\text{error}_i^{Rel} = \frac{|\langle f(x) \rangle_i - \langle f^h \rangle_i|}{|\langle f(x) \rangle_i|}$$

$\langle f(x) \rangle_i$ is the hex centered integrated table value
 $\langle f^h \rangle_i$ is the hex centered simulation value



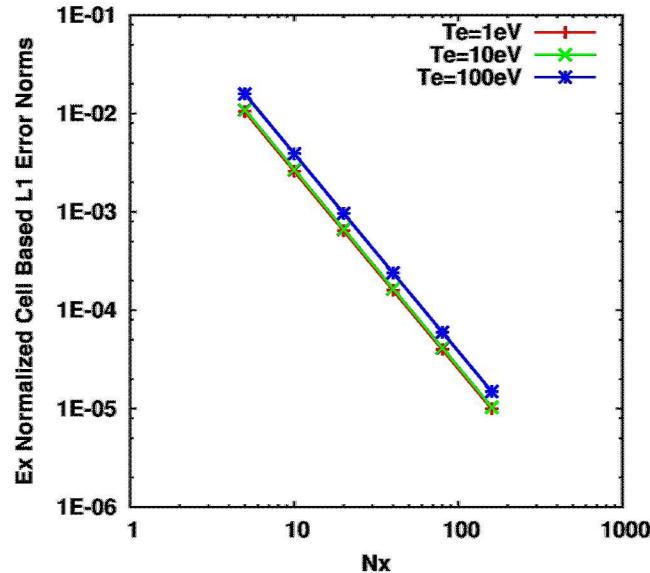
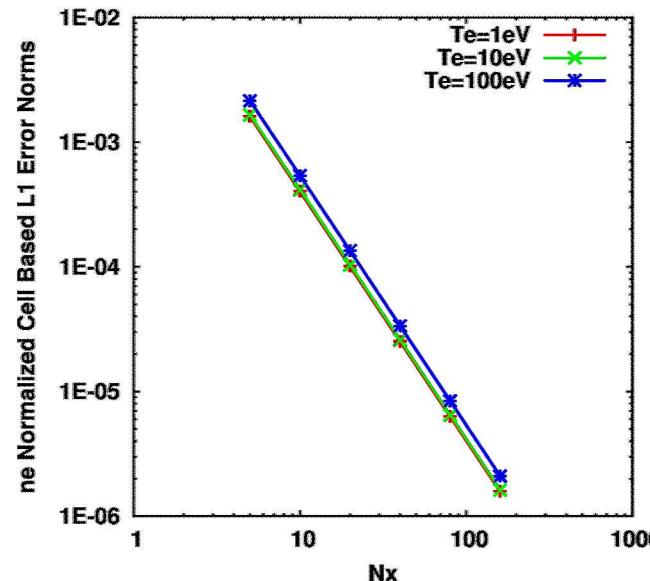
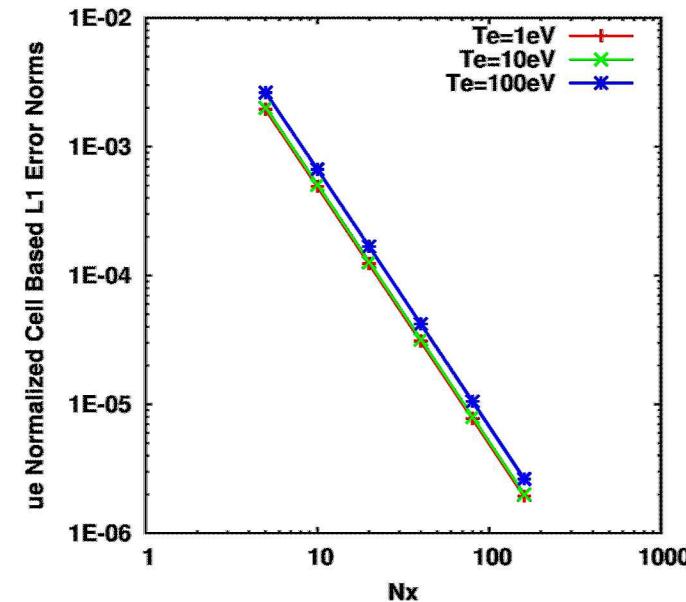
Multi-Fluid Code Verification: Warm Diode (Cell averaged)

17

Consistent convergence rates for all three temperatures:

- Electric field, number density and velocity converge at expected rate

L1 norm definition: $\mathcal{E}_{L1} = \frac{1}{N_x} \sum_{i=1}^{N_x} | \langle f(x) \rangle_i - \langle f^h \rangle_i |$



Nx	E_L1_slope	n_L1_slope	ux_L1_slope
5-10	2.014e+00	1.996e+00	1.986e+00
10-20	2.010e+00	2.000e+00	1.993e+00
20-40	2.006e+00	2.000e+00	1.997e+00
40-80	2.003e+00	2.000e+00	1.999e+00
80-160	2.002e+00	2.000e+00	2.000e+00

Te=1eV

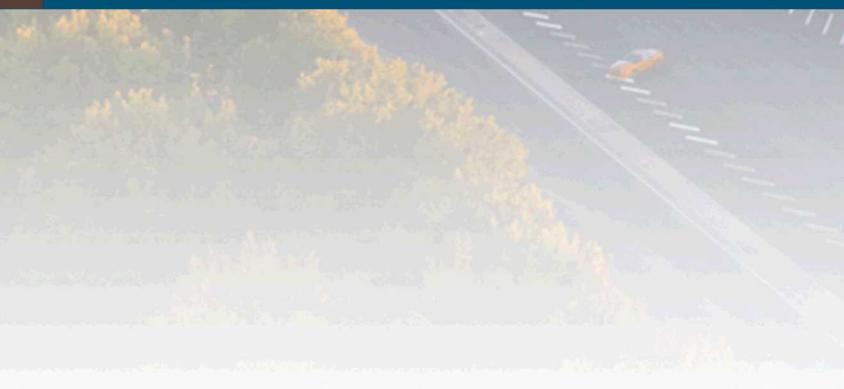
Nx	E_L1_slope	n_L1_slope	ux_L1_slope
5-10	2.014e+00	1.986e+00	1.993e+00
10-20	2.011e+00	1.993e+00	1.998e+00
20-40	2.006e+00	1.997e+00	2.000e+00
40-80	2.003e+00	1.998e+00	2.000e+00
80-160	2.002e+00	1.999e+00	2.000e+00

Te=10eV

Nx	E_L1_slope	n_L1_slope	ux_L1_slope
5-10	2.015e+00	1.995e+00	1.980e+00
10-20	2.015e+00	2.002e+00	1.991e+00
20-40	2.009e+00	2.002e+00	1.996e+00
40-80	2.005e+00	2.000e+00	1.997e+00
80-160	2.003e+00	2.001e+00	2.000e+00

Te=100eV

Summary



Summary

19

Cold diode verification (SAND2019-9384)

- Analytic solution was developed based on Jaffe (1944)
- This is a very good choice for verifying a PIC code
- Expected orders of accuracy were observed
- Several boundary condition issues were exposed and remedied
- New Velocity-Verlet time integration scheme was verified

Warm diode

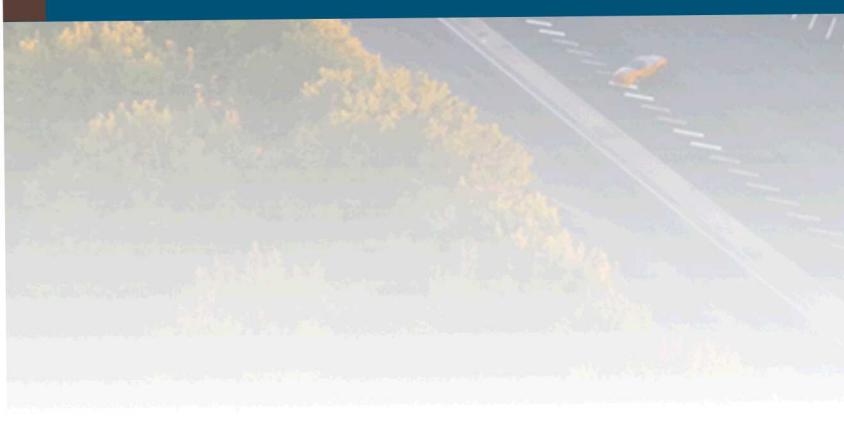
- A quasi-analytic solution to the Euler/Poisson system including pressure gradient effects has been developed
- EMPIRE-Fluid solutions compare reasonably well with the quasi-analytic solutions capturing both structure and temperature sensitivity
- Several code issues have been exposed and addressed
- Expected rates of convergence based on cell integrated/averaged quantities has been demonstrated

Next Steps

- Continue improving diagnostics in EMPIRE-Fluid
- Develop an automated version for faster turn-around
- Drive this problem to more realistic temperatures and adiabatic index
- Develop relativistic versions of the diode for verification in EMPIRE-PIC and -Fluid

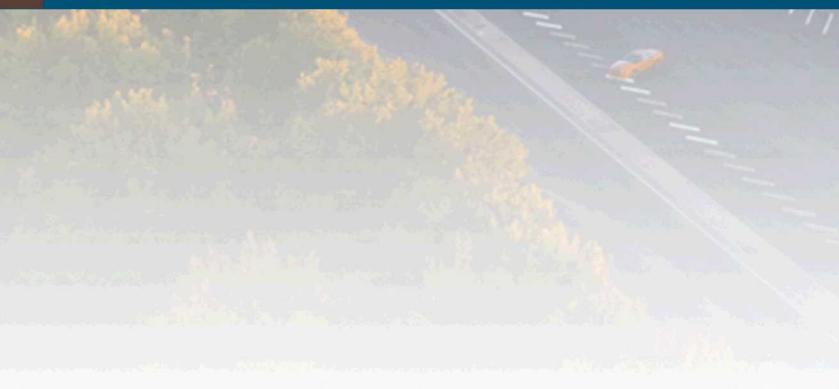
A wide-angle aerial photograph of a city at sunset. In the foreground, there are several industrial and office buildings, some with parking lots. A major highway with multiple lanes is visible. The city extends into the middle ground, with more buildings and green spaces. In the background, a range of mountains is visible under a clear sky.

Thank you!

A close-up aerial photograph of a multi-lane highway. The road curves to the right, with several cars visible. To the left of the highway is a dense area of green trees and bushes. In the background, more of the city's buildings and the surrounding landscape are visible.

Are there any questions?

Backup Slides



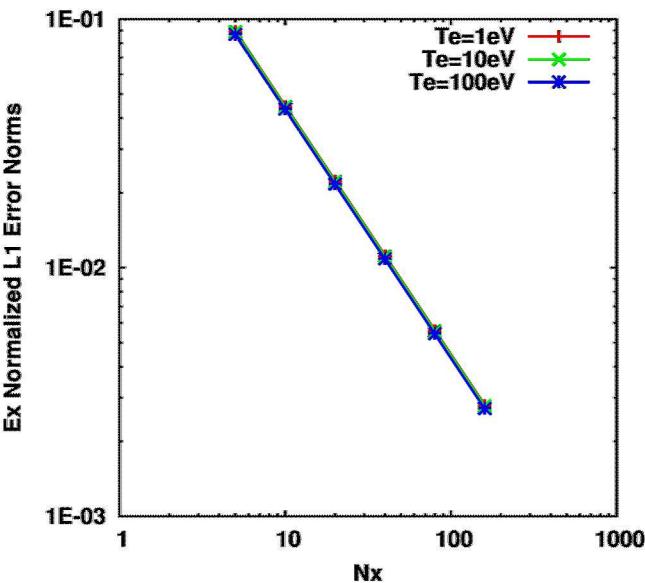
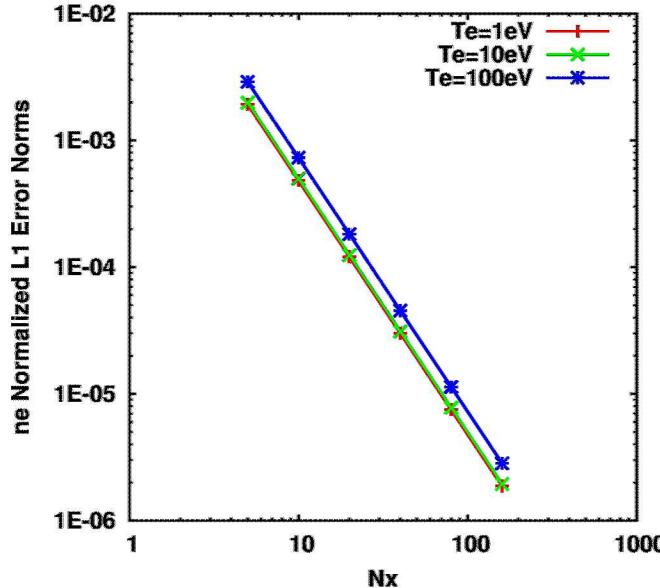
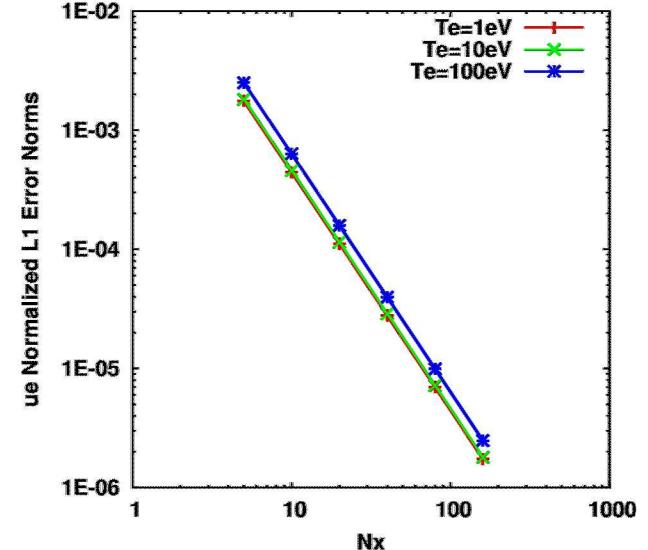
Multi-Fluid Code Verification: Warm Diode (Internal norms)

22

Consistent convergence rates for all three temperatures:

- Electric field converges at expected rate
- Electron number density and velocity convergence stalls

L1 norm definition: $\mathcal{E}_{L1}^{Rel} = \frac{\int_{\Omega} |f - f^h| dV}{\int_{\Omega} |f| dV}$



Nx	E_L1_slope	n_L1_slope	ux_L1_slope
5-10	1.000e+00	1.990e+00	1.980e+00
10-20	1.000e+00	2.003e+00	1.997e+00
20-40	1.000e+00	2.003e+00	1.999e+00
40-80	1.000e+00	2.002e+00	2.000e+00
80-160	1.000e+00	2.001e+00	2.000e+00

Te=100eV

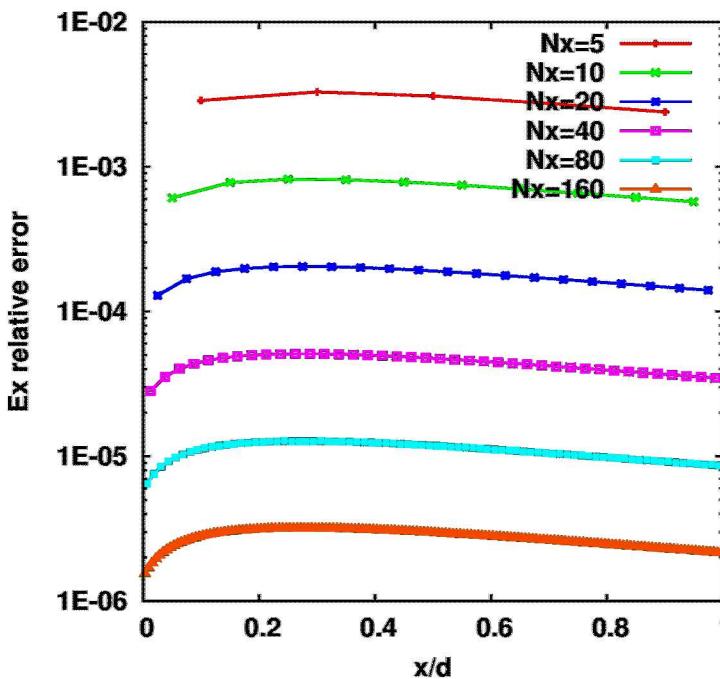
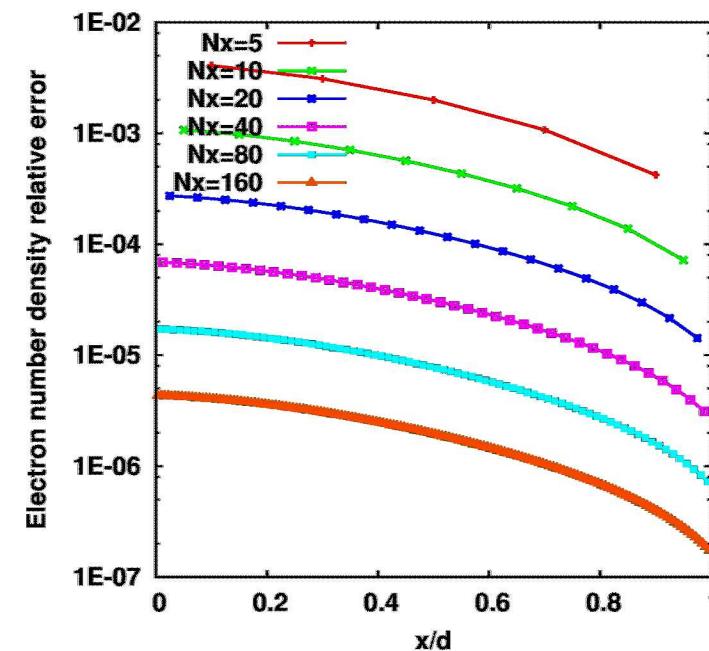
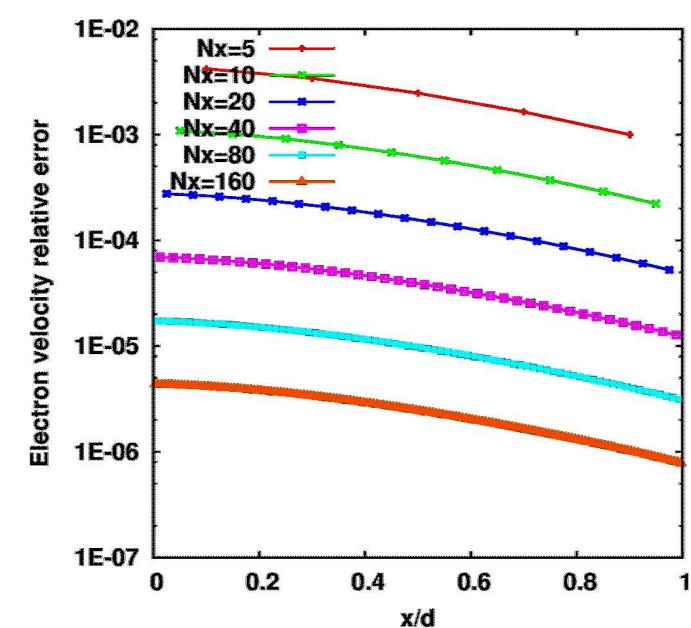
Multi-Fluid Code Verification: Relative Error from Interpolated analytic Table $T_e = 1 \text{ eV}$

Relative error profiles for the electric field, electron number density and velocity

- Non-monotonic behavior for the electric field
- Errors are converging to a different solution

$$\text{error}_i^{Rel} = \frac{|f(x_i) - \langle f^h \rangle_i|}{|f(x_i)|}$$

$f(x_i)$ is the interpolated table value at the hex centroid
 $\langle f^h \rangle_i$ is the hex centered average value



Multi-Fluid Code Verification: Warm Diode (Interpolated table values norms)

24

Consistent convergence rates for all three temperatures:

- Electric field converges at expected rate
- Electron number density and velocity converge at expected rates

