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Liner driven FRC implosions
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Field Reversed Configuration (FRC) have been @
studied for magnetic confinement fusion

FRC formation: create a plasma with an axial
B field and then apply the opposite polarity

E— field.

! | The plasma is heating by reconnection during
the formation.

05 ' The peak plasma pressure ~ peak magnetic
pressure
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Plasma temperature is typically < 1 keV
Al - (too low for fusion)

Compression of the FRC would raise the
2 . temperature and density
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We present an analytic model of the fusion

gain of liner driven FRC implosions
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An FRC could be made inside an AutoMag liner D=

The initial field could be provided by the field
coils used to magnetize MagLIF experiments

2, An AutoMag liner has helically conducting
i - paths so that a low current foot pulse can
generate a B field within the liner

o5 ' The AutoMag field can be used to generate
the opposite polarity field to form the FRC
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No laser is required, but the plasma may need
Al - to be heated to 1-2 €V to partially freeze in the
initial bias field.

P . Radio frequency heating of spark arrays could
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Radiel Positn be used to precondition the fuel
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1D analytic FRC models are used as input to our @

gain model.
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. tanh(u)
B(r) = By tanh(K) ’

X = T/'rx, = \/?R
varying k gives a family of solutions

whereu = k(x? - 1),

Polynomial Model

B(x)=B,b(x), b(x) = ax® + cxP +d

Force j(0)=j(1)=0 a = 2£- p =242

p—a a—2

b)

where 2 < a < 4.83.




The pressure profile of the analytic models are consistent with @E‘L;
Lasnex simulations of FRC formation
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Gain model input parameters are insensitive to the W=
analytic models

Lo mald Rotater The fusion rate is proportional to

oo— A <p?>=I'p,2 I'=0.38 for each model

. v ‘ The radiation losses and alpha particle
o4l - ' trapping depend on <pr>=Yp,fr,.
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The liner motion is determined by the initial kinetic energy, the @EL,
convergence ratio, and the FRC magnetic field strength

P,=B,,*/21, B, is the initial maximum
magnetic field strength

1.0 ; : : : :
CR=10 (olid) CR=30 (dnshed) Assummg flux consei‘vatlon, the total
o8 pressure 1s P = Ppx™* x=r1/1,
x(1) = Cx'[1+ (C; — DA —1)?]/?
0.6 12
(c3-1)
T = t/timp and timp = 122
0.4t Pwplas/Pwtot 1 @’ Cr
0ol - '," | The fraction of the compressive work going
' A into the plasma decreases with convergence
| .0 X . because the length of the FRC decreases
0-0 0-5 -0 1> 20 L=Lyx%4. This limits the gain



The optimum fusion gain of adiabatic FRC @
implosions takes a simple form

The fusion gain G = Ei ' ty, fOZ Ap{ov)X{p?V)dt (p2V) = TpfgVox 24
rPy/®(Farp)*/2EL®
(7TLoR)1/3

Af 1 {(ov)dt
V2(CrRO)2(C2-1)">/°70 x24

G = Gos(eo, CR)’ where GO = and

5(90; CR) =

1.8
1.6}
1.4}
Oope = 15.93Cx1° 12t

— »n 1.0}
Sopt = 7.31x1076CR"? z oal

Assuming a beryllium liner with an 0.6

30

aspect ratio of 6 we find 0.4
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The optimum initial radius and implosion time are D=
simple functions of E,, B, and Cg
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The Z machine can deliver about 400 kJ to a liner implosion




The model can be modified to include radiation ®
losses and alpha particle heating

The energy in the plasma of the FRC is E = %PVP where V is the
plasma volume.

s 9E_3(pP |, @
The rate of change is prlals (P - T |4 dt)

The power put into the FRC is Z—VZ = —P (%?’ + B,

where the first term is the rate of doing work on the FRC plasma and
P, is the nonadiabatic power alpha particle and radiation.

: _ _ _ ay _ 0.4x'®
Settlng VpO —\IIVO, Vp—VgoYX2 4 ar mpna

The parameter Y accounts for the change in the adiabat of the plasma.
Defining an adiabat factor, F,, such that the pressure of the plasma is

5/3
P, = F,P, (p’io) we find that F, = Y5/3.
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Radiation is unimportant and gain scales weakly @
with kinetic energy
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Alpha particle heating becomes important at high () e,
Kinetic energy
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Alpha particle heating becomes important at high
Kinetic energy
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Liner driven implosions of Field Reversed Configuration (FRC) () e,
could produce significant fusion

FRC could be formed within a liner using
exterior coils and

2 Weak scaling with implosion energy suggests
i - interesting experiments on small machines

ﬁ Magnetically confined fusion could be studied
os| ' in a new parameter space (high density and
-, _ magnetic fields)
al ' Lasnex simulation have produced yields

Al | comparable to the model

=
T

Axial Position
o

Next steps:
3 . e detail numerical simulations
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Radial Positon » demonstrate the formation of an FRC
» perform implosion experiments
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