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Liner driven FRC implosions
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Field Reversed Configuration (FRC) have been
studied for magnetic confinement fusion
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FRC formation: create a plasma with an axial
B field and then apply the opposite polarity
field.

The plasma is heating by reconnection during
the formation.

The peak plasma pressure - peak magnetic
pressure

Plasma temperature is typically < 1 keV
(too low for fusion)

Compression of the FRC would raise the
temperature and density

We present an analytic model of the fusion
gain of liner driven FRC implosions
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An FRC could be made inside an AutoMag liner
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The initial field could be provided by the field
coils used to magnetize MagLIF experiments

An AutoMag liner has helically conducting
paths so that a low current foot pulse can
generate a B field within the liner

The AutoMag field can be used to generate
the opposite polarity field to form the FRC

No laser is required, but the plasma may need
to be heated to 1-2 eV to partially freeze in the
initial bias field.

Radio frequency heating of spark arrays could
be used to precondition the fuel
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1D analytic FRC models are used as input to our
gain model.
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tanh(u)
B (r) = Bx 

tanh(K) 
where u = k(x2 —1) ,

x = r/rx, rx =
varying k gives a family of solutions

Polynomial Model

B(x)=Bxb(x), b(x) = axa + cxfis + d

Force j(0)=j(1)=0 a = 2
-
16
a

where 2 < a < 4.83.

2a+4
/3 = a-2
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is=
The pressure profile of the analytic models are consistent with 
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Lasnex simulations of FRC formation
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Gain model input parameters are insensitive to the Osman=
analytic models
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The fusion rate is proportional to
<p2>=F x2.p F=0.38 for each model

The radiation losses and alpha particle
trapping depend on <pr>=Tpxr0.
T-0.5
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fin, iirmi
The liner motion is determined by the initial kinetic energy, the um liims
convergence ratio, and the FRC magnetic field strength
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P0=B02/24.10 Bo is the initial maximum
magnetic field strength

Assuming flux conservation, the total
pressure is P = Por4 x=r/r0

x(r) = cR 1[1 + (cli — 
1)(1 

— 
T)9112

(c-1
2 -1)1/2

T = t/timp and timp =
a1/2C2R

The fraction of the compressive work going
into the plasma decreases with convergence
because the length of the FRC decreases
L=L0x". This limits the gain
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The optimum fusion gain of adiabatic FRC
implosions takes a simple form

The fusion gain G = EV timp .102 Af(o-v)(p2V)dT (p2V) = Fpl oVox-2.4

G = G0S(90, CR), where Go =
TP(1,16(FARPL)1/24/3 

(TcLoR)113

A f 1,1 (cry) clx
.5(90, CR) =  N-516 .10 x2.4
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The optimum initial radius and implosion time are
simple functions of Ek, B, and CR

Analytic FRC Implosion Model
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The model can be modified to include radiation
losses and alpha particle heating

The energy in the plasma of the FRC is E = 22 Pvp where Vp is the

plasma volume.

The rate of change is 'cl = 
2 (13, ciVp + v dP)

dt 2 dt P dt )

The power put into the FRC is dtclilli = —P 117t13 + Pna

where the first term is the rate of doing work on the FRC plasma and

Pna is the nonadiabatic power alpha particle and radiation.

Setting vpo =0/0, Vp=VoYx2.4
dY 
= 

0.4x 1'6 n
nardt 13017130

The parameter Y accounts for the change in the adiabat of the plasma.
Defining an adiabat factor, FA, such that the pressure of the plasma is

5/3
Pp = FA PO (

n 

) we find that FA = Y513.
Po
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Radiation is unimportant and gain scales weakly
with kinetic energy
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Analytic Model B=1
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Analytic Model B=10
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Alpha particle heating becomes important at high
kinetic energy
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Alpha particle heating becomes important at high C animmr-baft
kinetic energy
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Liner driven implosions of Field Reversed Configuration (FRC)
could produce significant fusion
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FRC could be formed within a liner using
exterior coils and

Weak scaling with implosion energy suggests
interesting experiments on small machines

Magnetically confined fusion could be studied
in a new parameter space (high density and
magnetic fields)

Lasnex simulation have produced yields
comparable to the model

Next steps:
• detail numerical simulations
• demonstrate the formation of an FRC
• perform implosion experiments
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