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PERSEUS/FLEXO Overview:

 PERSEUS: A generalized Ohm’s Law (XMHD),
FORTRAN9O, Discontinuous Galerkin (DG)
code. Originally developed at Cornell (Martin,
Seyler) and licensed to SNL. Numerous
publications demonstrating the need for
XMHD physics in modeling of pulsed power
systems.

1) Feed plasma transport requires
XMHD due to low densities

 FLEXO: A new C++ XMHD code (Flux Limited
Extended Ohm’s law) based on PERSEUS.
Developed at SNL with new capabilities: multi-
material equation of state (EOS), adaptive
mesh refinement (AMR). All code developed
from birth to support MPI-X (GPU/threaded) B
advanced computer architectures. 3) Law density feed plosma (~10718jcc) chawges

morphology and stability of liner stagnation

2) XMHD predicts helical
instability in 3D calculations
due to feed plasma driving flux
compression in MagLIF



PE

PERSEUS is the design code for experiments to

investigate the origins of the helical instability

in MagLIF.

PERSEUS validation tests on Z experimental
results are bringing new insights:

e MagLIF simulations show steeper helical
pitch on liner surface for larger flux
compression volume.

* Results are closer to qualitative agreement
with experiment when modeling influence
of Hall physics on B-field diffusion into
low-density plasma.

RSEUS has demonstrated its pred|ct|ve
abilities for Z-target physics.
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FLEXO is being developed to provide increased fidelity:

* Develop a framework that supports:

Structured block-based adaptive mesh
refinement (AMR)

for the execution of generalized Ohm’s Law
(G.O.L.) magnetohydrodynamics

with a multiple material formulation : 29/
using tabular equations of state NS
that can execute using MPI + threaded 3
parallelism




PERSEUS/FLEXO Algorithm:

Governing Equations: Time advancement strategy:
Olp] +V -[pv] =0 Explicit predictor:
pt=p" = At V- [pv]

. I|=JxB
Klpv]+V - [pv & v +pI] = J x pv]* = [pv]" = At V- [pv @ v +pI]" + At [J x B]"
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For details see: Seyler, Martin, Physics of Plasmas 18, 012703 (2011) )



FLEXO Framework: structured block AMR

Based on an MPI-parallelized octree

Each leaf in the octree is an (i,j,k) structured grid -> “block” \

Physics is evaluated over each block 2 T

Fluxes across block boundaries couple the block physics
Shared memory parallelism -> kernels over block entities (cells, faces, ...)
MPI parallelism -> solution information transferred at block boundaries

Block adjacencies restricted to at most one finer or coarser level (2-1 interfaces)



FLEXO Framework: Threaded Parallelism

 Thread-based parallelism occurs over block entities (cells, faces, ...)
* A physics functor is written over entities
* A parallel for each construct (“hpc::grid_for_each”) is called for the functor
* Mixing + matching execution spaces (OpenMP, CUDA,...) a possibility, not yet exercised

auto f = [=] HPC_DEVICE Chpc::vector3<int> const& cell_loc) {
int const cell = hpc::get_index(cell_loc, cell_grid);
for (int basis = 0; basis < nbasis(polynomial_order); ++basis) {

; ) Timings for advection example (80x80x80 cells)
resid(cell, RHO, basis) += 1.0;

} 10?
¥

hpc: :grid_for_eachChpc: :execution: :device, cell_grid, f);

* Allow tabular EOS on GPUs
e Leverage NG capable library “mu”
* Ability to import SESAME tables into C++ data structures
* Performs bisection to find appropriate cell in table 10° 10t
* Performs bilinear interpolation in table cell to evaluate EOS Threads

10!

Time (s)




FLEXO Framework: mpi Parallelism

e Octree stored on every MPI rank (Athena approach)
* Data only initialized for owned blocks

 Ownership determined by a Z-curve ordering of leaf nodes in octree

e Z-curve also to be used for dynamic load balancing (in progress)

* MPI parallelism achieved via transfer of block border data:
 The DG solution interpolated to QPs on block border
* Borders classified as:
» “standard” -> adjacent block at same depth
e “coarse to fine” -> adj. block at depth + 1
* “fine to coarse” -> adj. block at depth -1
* “boundary” -> no adjacent block
* Fluxes computed exactly at AMR interfaces
* Eliminates need for prolongation / restriction of solution

_____________________________

———————————————————————————————

_____________________________

send array

receive array



FLEXO Framework: Refinement to STL geometry

* Simple example case:
e STL screw-pinch geometry with ~60,000 triangles
e Start with 2x2x2 octree mesh
* Refine a block if any cell center in the block is “interior’ to STL geometry
* ‘Interior’-ness determined by a ray-shooting point in polygon type algorithm
* Repeat 5x

 |nitialize density based on cell center being ‘interior’ or "exterior’ to STL geometr

S,

Z-curve block ID - j:r)’
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Examining stabilization approaches:

* Discontinuous Galerkin approaches:
* Slope limiters:
* Can be applied (synchronously or asynchronously) directly to conserved
variables or via primitive variables
e Barth-Jesperson with minmod (more robust) and MC (less diffusive)
e Vertex (Kuzmin)
* Moment
 Artificial Viscosity Methods (P > 0)
e Positivity limiter

D. Kuzmin / Journal of Computational and Applied Mathematics 233 (2010) 3077-3085

Fig. 1. Vertices and neighbors of £2, on a triangular mesh.

* High-resolution Finite Volume:
e Minmod, MC, Superbee, Anti-diffusion (Harten et al.) etc.

Moment limiter: L. Krivodonova,"Limiters for high-order discontinuous Galerkin methods", JCP 226 (2007) 879-896.



Compatible gradient limiting

N K e
dC = JdP C=| pu P=| u Jij = 35
/ \ LB L P ’
Limited Limited
conserved- primitive-
variable slopes variable slopes ideal gas:
1 0 0 |
1,2 1
_ §u Pt y—1

”Hierarchical slope limiting in explicit and implicit discontinuous Galerkin methods”, D. Kuzmin, JCP 257 (2014) 1140-1162.
*discussions with Ed Love (Dept. 1351)



HRFV ideal for shocks:

Sod: Traditional Multi-material test. Exact solution is available.

* HRFV captures the shock without oscillations.

* DG methods need additional dissipation for discontinuities
(shock and contact here).

e All methods considered here smear the contact. Not
surprising as contacts are not self-steepening.

* All methods appear to converge to the analytic solution
with refinement.
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2x10-8

exact

DG idea

Dispersive Euler: single-material. Good test of methods on
smooth data. Exact solution is available.
(http://ammar-hakim.org/sj/je/je5/je5-dispersive-eqns.html)

DGP2

for smooth waves = A =T

1x10°8 |

5x1079 L

vel-x

5x109 ¥
5, 8) = Ax108 |
— +VF =S8 100 elements
ot 15x108 L
Q — [p.| PU, pU, pE]T z | -2x10°8 :
) ) sf 1 0 0.2 0.4 0.6 08 1
T
= [0._ )\"L‘Bzﬁ —)\'L-:Bz , G] zf 1 2x10-8 :
’ - : exact
HRFVYMC —o—
15x108 | DGP1ML
DGP1 —+—
* HRFV misses much of the frequency content at lower 1x108 | DR == |
resolutions. —

* DG (without non-linear stabilization) demonstrates
excellent results at low resolution.
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* DG limiters degrade accuracy relative to unlimited 5x109 |
approach. 1x108 |
e All methods appear to converge to analytic solution with er0s | 800 elements
refinement. '
2x10-8




Hybrid DG/FV:

Can we apply different methods in different regions (or
physics) according to their strengths?

* DG performs well in smooth regions but is not robust
at shocks/discontinuities (fails immediately for
Leblanc shock tube with AV approach).

* FV performs well at shocks/discontinuities but
requires significant refinement there when using
HRFV.

e Hybrid DG / sub-grid FV: DG in smooth regions
and (refined) FV for discontinuities.
* Indicator can be used for selection of FV
elements
* Selection of FV regions would vary in space
and time

* Hybrid FV-hydro / DG-magnetics.
* Mass, momentum and energy via FV
* Maxwell eqns. Via DG.
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A taxonomy of Eulerian multimaterial:

‘Eulerian Methods for Multimaterial (single fluid) Flows \
Sharp Material Diffuse Material
Interface Interface

)
Interface Levelset Slope limiter
Reconstruction Methods Artificial compression

(e.g. PLIC, MOF) THINC




Explore diffuse multimat. methods:

* Most approaches are derivatives of Baer and Nunziato (1986).

* Five Equation Model (Allaire et al., 2002 and many others)
 Single velocity/momentum equation.
e Strong enforcement of pressure equilibrium.
e Additional evolution equation(s) for volume fraction and individual component
mass conservation statements.
* Separate energy equations per component are not used, partitioning inherent in
pressure equilibration.
* Six Equation Model (Saurel et al., 2009)
 Single velocity/momentum equation.
* Multiple pressures (one per material) with relaxation step.
 Multiple internal energy equations (one per material).
e Evolution equation for material volume fractions.
e Additional equation for mixture total energy.



Five Equation Evolution System:

Volume fraction:

Mass conservation:

Momentum conservation:

Total energy conservation:

Oa;
oo pi ~ Closure model:
& + V- (apiV) =
ot D 0=
opv d
o TV lveve )= p=) b
J
E — 5. 5.5,
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Treat as conservation + source




HLLC Approximate Riemann Solver:

We use HLLC solver with some modifications to treat multiple materials:

( F; if 0<.S5y
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Batten et al., 1997; Saurel et al., 2009; Toro et al., 1994




Care needed in solving VF evolution:

(‘9042 SM Alg. / 1 Material
+ V- (av) =V v 255 M Ae 2 e =3
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Five equation model behavior
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Multimaterial (5egn model)
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Thoughts on multimat:

Properly resolving contacts is surprisingly(?) difficult as they do
not have physical sharpening as do shocks. This becomes more
problematic when dealing with multiple materials and mixing.

Diffuse interface methods used here allows some inter-mixing of
material with the amount dictated by choice of discretization.
* Simple sharpening schemes (e.g. Super-bee, Over-bee, etc.)
can help.
* “Adaptivity” at contact can help.
* Artificial compression methods that can provide O(h)
refinement on contacts are now being .

Strong enforcement of pressure continuity is problematic for
mixing of “real” (e.g. tabular EOS-base) materials. Starting to
implement/test pressure relaxation approaches (Miller and
Puckett, 1996; Saurel et al., 2009).
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Conclusions:

* Numerous developments are underway.

* Framework:
* Block-based mesh refinement now available.
* Designed to be NGP (MPI-GPU) for performant code base.
 PERESUS algorithms are being implemented.
Discretizations:
* Optimal choice depends on physics regime.
e Appropriate method may require a hybrid approach.
* Multimaterial:
e Exploring diffuse methods.
e Studying approaches that address contact capturing and state equilibration.

* Developing a broad set of tools and expertise that can be applied strategically.



Many mixture models:

e |deal mixing rule (rarely used):

my
EOS call artial density: P = —
p= Zﬂi‘z‘pi o, T P Y Vi

: ’ mass fraction: T; = p;
e Law of partial pressures (Dalton’s Law): pilp
P=n [plvT] = D2 [ﬂ%T] = ... = Pm [pm7T] volume fraction: «o; = —/—

pure material density: p; = —

e Law of additive volumes (Amagat’s Law; many hydro-codes):

P=D1 [ﬁlaT] = P2 [ﬁ?aT] = ... = Pm [ﬁmaT] P:Zazﬁz

 Magyar and Mattsson (2013) suggest that Amagat’s Law is superior though more
recent work (Wayne et al., 2020) suggests neither is a good representation for shock-
hydro problems.

* None of these methods are completely satisfactory for numerical hydrodynamics.
None-the-less, we will use law of additive volumes to obtain mixture pressure, density
and internal.



