

Integrating renewable energy into mining operations: Opportunities, challenges, and enabling approaches

Tsivilile Igogo ^a, Kwame Awuah-Offei ^b, Alexandra Newman ^{c,*}, Travis Lowder ^a, Jill Engel-Cox ^a

^a National Renewable Energy Laboratory, Joint Institute for Strategic Energy Analysis, Golden, CO 80401, United States of America

^b Mining & Nuclear Engineering Department, Missouri University of Science and Technology, Rolla, MO 65409, United States of America

^c Mechanical Engineering Department, Colorado School of Mines, Golden, CO 80401, United States of America

ARTICLE INFO

Keywords:

Mining
Energy integration
Renewable energy
Clean-energy technologies
Battery storage

ABSTRACT

Mining is one of the most energy-intensive industries worldwide. It also provides a critical source of raw materials for the manufacturing, transportation, construction, and energy sectors. Demand for raw materials is projected to increase as the world population grows and many low-income economies become middle-income countries. This growth in mineral demand, coupled with falling mineral ore grade, will likely increase the mining industry's energy demand, used for activities across exploration, extraction, beneficiation and processing, and refining. At the time of this writing, mine operations are – due to their remoteness – dependent on fossil fuels such as diesel, heavy oils, and coal. In principle, mining could use energy recovery, renewable energy, and carbon capture to supplement, replace, or mitigate the impacts of fossil fuel use. However, a combination of renewable-energy technologies would be required. We explore challenges, opportunities, and enabling approaches to integrate renewable energy technologies into mining operations by examining the literature, including academic work, technical reports, and data produced by international agencies. We find that despite numerous opportunities, technical issues still need to be considered, but solutions can tailor renewables to the mining industry. Further research should focus on identifying specific opportunities, technologies, and implementation strategies across the value chain of a variety of minerals with similar operational procedures.

1. Introduction

The mining industry, defined by the activities covered under exploration, extraction, beneficiation, processing, and refining, provides a critical source of raw materials for many industries such as manufacturing, transportation, construction, energy, and the mining industry itself. It is anticipated that demand for raw materials will increase as the population grows and many low-income economies shift to middle-income status [1]. The increase in mineral demand, combined with declining mineral ore grades, is expected to increase energy demands of the mining industry, which will potentially expand its already large greenhouse gas footprint [2,3]. Materials derived from mining processes are heavily embodied in the global economy and will continue to play a critical role in the future of humanity [4]. Correspondingly, the environmental impacts of these mining activities will need to be addressed. In principle, mining could use energy recovery, renewable energy, and carbon capture to lower its energy consumption and decrease greenhouse gas emissions. A combination of renewable-energy

technologies will be required to fully address energy-related challenges facing the mining industry.

1.1. Research issues and motivation

This paper explores the challenges, opportunities, and enabling approaches to integrate renewable technologies into mining operations. Partly to combat its potentially expanding greenhouse gas profile, the mining industry is increasingly adopting renewable energy to power its operations. This uptick in adoption has been driven by several factors, including energy costs, corporate environmental goals, and social license-to-operate considerations. In 2015, there were 600 MW of renewable energy projects sited on or serving mine sites. By the end of 2019, there were nearly 5 GW of renewable energy projects installed at or planned for mine sites around the world [5]. This growth, however, has not been without headwinds. Around-the-clock mining operational loads, the distinctive nature of energy demand, inflexible contracting

* Corresponding author.

E-mail addresses: Tsivilile.Igogo@nrel.gov (T. Igogo), kwamea@mst.edu (K. Awuah-Offei), anewman@mines.edu (A. Newman), Travis.Lowder@nrel.gov (T. Lowder), Jill.Engel-Cox@nrel.gov (J. Engel-Cox).

1 structures, space constraints at the mine site, and policy and regulatory
2 barriers have inhibited adoption of renewable energy technologies at
3 scale.

4 Mining can be divided into two main energy-use categories: off-
5 grid and grid-connected. Traditionally, most off-grid mining operations
6 depend on fossil fuels such as diesel, heavy oils, and coal for on-site
7 generation and haulage [6]. However, grid-connected mining operations
8 are also reliant on fossil fuels, to some degree. The grid, where
9 available, often provides the least costly source of energy, and, as
10 such, is typically preferred by the mining industry over self-generation.
11 In many countries with unreliable grid supply, most grid-connected
12 operations have additional on-site generation as backup. These are
13 mostly sourced from fossil fuels, which adds to the cost of production.

14 Energy is one of the most significant expenses for the mining
15 industry, comprising some 15%–40% of total operating costs, on average [7]. With such a large proportion of expenditures devoted to energy
16 production, and such a significant portion of that energy sourced from
17 fossil fuels, the mining industry is highly exposed to fossil-fuel-market
18 volatility. Energy demand in mining operations is anticipated to grow
19 as much as 36% by 2035 [7].

20 Aside from the economics, the dependence on fossil fuels for mining
21 also impacts the well-being of local communities and has implications
22 for local infrastructure, air and water quality, and the environment.
23 Moreover, pressure is increasing from further down the value chain,
24 where raw material purchasers are beginning to require that their
25 suppliers demonstrate sustainability in operations. All of these factors
26 – economic, societal, and environmental – are motivating a recon-
27 sideration of how energy is generated and used at mining sites. We
28 hypothesize that renewable energy integration into mining operations
29 can address these pressures. Decreasing costs in wind, solar, geother-
30 mal, storage, and other renewable technologies are driving adoption
31 worldwide [8]. A growing renewables market, in turn, means higher
32 demand for minerals and metals (including iron, nickel, lithium, plat-
33 inum, and cobalt), which benefits mining companies and can create
34 circular economies between the two industries.

35 1.2. Literature review

36 Mining is energy intensive, consuming about 38% of global in-
37 dustrial energy use, 15% of the global electricity use, and 11% of
38 global energy use. The total global energy use by the mining industry
39 comprises about 19% of global coal and coal products, 5% of global
40 gas, and 2% of global oil supplied [9,10]. The US Department of
41 Energy (DOE) has estimated that the nation's mining sector consumes
42 about 1315 PJ of energy per annum, whereas mining in South Africa
43 consumes 175 PJ per annum [11,12]. In many developing economies,
44 energy demand from the mining sector is a significant (over 50% in
45 Zambia and Democratic Republic of Congo) portion of overall energy
46 consumption [12,13]. Because of their energy intensity, mining opera-
47 tions tend to emit high levels of greenhouse gases, leading to significant
48 climate change impacts [14,15], which many stakeholders recognize
49 need to be reduced [16,17]. This is especially important because mining
50 will play a significant role in providing materials necessary for the
51 transition towards a low-carbon energy infrastructure [18,19].

52 Climate change impacts of mining, as measured, for example, using
53 life cycle global warming potential, are closely associated with energy
54 consumption. For example, Norgate and Haque [15] show that global
55 production of copper concentrate is responsible for 30 Mtpa of CO₂-
56 eq, while the production of iron ore and bauxite are responsible for
57 17 Mtpa and 0.8 Mtpa of CO₂-eq, respectively. While reducing the
58 energy intensity of mining can reduce its climate change impact to an
59 extent [14,15], the mining sector needs to decrease its reliance on fossil
60 fuels to reduce its carbon emissions.

61 Stakeholders have been working on means to increase renewable
62 energy in the generation mix used by the mining industry to reduce
63 greenhouse gas emissions. Previous research has highlighted various

64 opportunities for including renewable energy in mining projects [20,
65 21]. Attempts to integrate renewable energy should be aligned with
66 the identified energy-intensive unit processes, which include material
67 handling, comminution, thermal process and metal refining [9,10] in
68 order for renewable integration to produce the desired outcomes.

69 There is an emerging body of literature on how the mining industry
70 might integrate more renewable energy into its operations, classified
71 as follows: (i) literature that focuses on particular mining contexts
72 (typically, remote or off-grid mines), (ii) work that relates to specific
73 renewable technologies, and (iii) research that focuses on a particular
74 region. The first group includes work that evaluates the potential for re-
75 newable integration for mines that: are located in remote locations; are
76 often off-grid; and possess significant costs for transporting diesel fuel,
77 if they rely on diesel generators [22,23]. This group also includes work
78 that provides analysis for particular commodities or types of mines.
79 Examples include Stegen [24] and Dutta et al. [25], who examine
80 renewable energy in rare earth minerals extraction. The second group
81 includes work that evaluates specific renewable technologies, e.g., wind
82 and photovoltaic systems [23]. The last group evaluates opportunities
83 and challenges for renewable integration in particular countries [26,
84 27]. For example, Furnaro [27] reviews renewable opportunities for
85 mining in Chile while Baker [26] and Votteler and Brent [28] do the
86 same for South Africa.

87 There is, however, limited work that examines the entire industry
88 comprehensively to identify broad opportunities and challenges
89 to facilitate pre-competitive research that can motivate the industry
90 to integrate renewables, although there are a few compelling exam-
91 ples [29,30]. In 2020, there are about 5GW of cumulative renewable
92 energy projects commissioned or planned for mining operations [31].
93 But, this renewable capacity is still a fraction of total energy demanded
94 by mining operations; thus, the question remains as to why renew-
95 able energy use in the mining industry is developing at such a slow
96 pace. This paper builds on work done by Maennling and Toledo-
97 nado [7] to answer this question by identifying opportunities, barriers of
98 integrating renewables, and enabling approaches to accelerate the use
99 of renewables in mining operations. The main contribution of this
100 paper, therefore, is to identify challenges that slow renewable inte-
101 gration in the mining industry (such as technology readiness) to fit
102 energy demand and research and development gaps. We next provide
103 an overview of the mining industry — including energy use in the
104 industry and the resulting emissions, and the potential for adoption of
105 renewables.

106 The remainder of this paper is organized as follows: Section 2 pro-
107 vides an overview of the mining industry. Section 3 discusses renewable
108 integration opportunities; in the latter part of this section, we describe
109 case studies. Section 4 highlights technical considerations for renew-
110 able integration in mining operations, and then poses challenges for
111 renewable integration in mining operations. Section 5 offers enabling
112 approaches; and, Section 6 concludes.

113 2. Overview of the mining industry and its operations

114 We next provide background for and an overview of the mining
115 industry and its associated operations, and then present the energy
116 challenges associated therewith.

117 2.1. Mining industrial structure, energy use and carbon emissions

118 The global metals and mining sector produced 9830.8 million
119 tonnes of product in 2018 for total revenues of \$2643.3 billion [32].
120 Mining and quarrying materials can be divided into four main groups:
121 industrial minerals, metal minerals, aggregates, and mineral fuels. This
122 paper focuses on the first three categories, excluding mineral fuels as
123 they have been addressed elsewhere in the literature [33]. Generally,
124 commodity prices are cyclical, leading to booms and busts that tend
125 to inhibit significant investments with long payback periods. Even in

1 periods of high commodity prices, the cost of producing from lower
 2 grade ores to meet increased demand tends to increase unit operating
 3 costs, thus limiting shareholder returns. The sector is also heavily reg-
 4 ulated because of societal interests in managing mineral endowments
 5 (e.g., policies on royalties and government tendency to increase returns
 6 to governments in periods of high commodity prices), health and safety
 7 of miners, and environmental impacts of mining. In many countries,
 8 the size of the mining sector makes its influence on energy and other
 9 policy significant. For example, developing countries with over 50% of
 10 their energy generation dedicated to mining [13] cannot afford to allow
 11 the sector to install significant renewable generation with guarantees
 12 to buy back excess power. Consequently, even though the sector has
 13 increased renewable capacity, several unique factors have limited the
 14 rate of renewable integration. These are discussed in Sections 2.2 and
 15 4.

16 Fig. 1 ranks the largest producers of minerals in the world and
 17 categorizes their production into subgroups. Note the particularly high
 18 volume of iron and ferro-alloy metals – which include steel and stainless
 19 steel – produced worldwide. All energy requirements associated with
 20 the extraction of iron ore as well as the production of steel products
 21 represent a sizable opportunity for renewables to play a role in
 22 decarbonization.

23 Generally, mining consists of ground fragmentation (including
 24 drilling and blasting), excavation, loading, transportation, beneficiation
 25 and processing, and smelting and refining. These operations make the
 26 mining industry one of the most energy-intensive businesses. Total
 27 energy demand for mining is anticipated to grow over the near- to mid-
 28 term. Without significant adoption of renewable energy technologies in
 29 the mining industry, most of this new demand will be met with fossil
 30 fuels.

31 Table 1 shows the “cradle to gate” energy use and greenhouse gas
 32 impacts of select metals worldwide, where we define “cradle to gate”
 33 as raw material extraction to refining [35]. Based on these data, gold
 34 extraction is one of the most energy- and emissions-intensive mining
 35 activities — excluding platinum mining. This is in large part due to
 36 increasing ore depletion, which forces miners to extract gold ore from
 37 reserves lying deeper underground. About 3340 Metric tons (Mt) of
 38 gold was produced in 2017, according to the World Mining Database.
 39 Assuming the energy intensity and greenhouse gas emissions per ton
 40 of gold extracted are still the same as 2007 estimates (see Table 1),
 41 then roughly 186 to 283 terawatt hours (TWh) of energy was used
 42 to produce gold in 2017, yielding about 58 to 90 million Mt of CO₂
 43 emissions globally as a result of that mining.

44 While steel requires less energy and produces less CO₂ than gold
 45 per ton of metal production (Table 1), the high volume of global iron
 46 and steel production, as well as the process emissions and high heat re-
 47 quirements in steelmaking, render iron and steel production the highest
 48 consumer of energy and producer of greenhouse gas emissions within
 49 the mining industry. For example, in 2018, crude steel production was
 50 about 1808 million tons [37]. Assuming that the energy and emission
 51 intensity of steel in 2018 is similar to the intensity in 2007 (Table 1),
 52 that would mean the steel industry used about 11,644 TWh of energy
 53 and produced about 3616 million Mt of CO₂ emissions.

54 Fig. 2 shows renewable project trends from 2000 to 2019. (Prior
 55 to 2000, the use of renewables in mining operations was nearly non-
 56 existent.) Recent years have seen an uptick in renewable energy adop-
 57 tion by mining companies, with a notable spike in commissioned
 58 projects in 2019. This renewable installation has increased from 42 MW
 59 annually in 2008 to 3397 MW in 2019 [31]. Most of the systems in
 60 2018 and 2019 are hybrids – i.e., a combination of wind, solar, energy
 61 storage, and other technologies – generally backed by fossil fuels to
 62 smooth the variability of the renewable energy generation (see Fig. 2).

2.2. Challenges and factors of interest in renewable energy use in mining operations

This section discusses the principal issues shaping the mining industry at the time of this writing and how these are driving interest in renewable energy use in mining operations.

Declining Ore Grades

Depletion of higher grade and easily accessible ores has driven mining companies to seek resources that are more remote and deeper in the ground. Falling ore grades also means that more materials need to be extracted, loaded, hauled, transported, and processed than would otherwise be necessary to produce the same amount of metal or minerals. This intensifies the energy requirements for mine operations. For example, a decrease in copper ore grade between 0.2% to 0.4% requires seven times more energy than present-day operations [3].

Studies suggest that declining ore grades, combined with increasing demand for metals, will exacerbate the greenhouse gas emissions impact from primary metal production [2]. This presents the mining industry with the dual challenges of seeking decarbonization measures while at the same time facing the prospect of growing energy demand. Additionally, the increasing remoteness of mines presents energy supply chain issues, which can have greenhouse gas and cost implications in the form of available fuel types, transportation needs, site access and infrastructure measures.

Volatile Prices

The mining industry is susceptible to supply and demand shocks that affect energy and metal prices because these, in turn, affect the cost of production and revenue. Ultimately, increasing costs and decreasing revenues can translate to thinner profit margins. Energy is one of the largest expenses in mining. On average, this expense ranges from 15% to 40% of the total operational cost [7]. In the mining and quarrying sectors, 57% of energy consumed comes from fossil fuels; specifically, of this 57%, 33% is derived from oil products, 13% stems from coal, and 11% emanates from natural gas. Electricity (from various sources) accounts for 40% of energy consumption by the mining and quarrying sectors and heat some 3% — mostly generated from combustible fuels [38]. Fossil fuels supplied to many mining operations must be imported, which exposes them to exchange rate differences and tariffs, supply chain logistics, and geopolitical risk. For example, between 2011 to 2014, oil was mostly trading above \$100 per barrel but, at the time of this writing, has dropped to an average of \$45 per barrel. Energy price fluctuations, in combination with declining metal prices, present major concerns for mining industry profitability.

Increasing Environmental Concerns

There are two primary ways in which mining operations can significantly impact the environment, both at the local and global levels: (i) equipment and other mechanized systems associated with the execution of mining activities can emit greenhouse gasses and other toxins; and, (ii) mining activities such as blasting and processing can generate waste containing toxic chemicals. These mining activities can lead to soil erosion, land use impacts, air pollution, and contamination of water sources and soil [39]. As the industry searches for more difficult-to-extract mineral resources in ecologically sensitive areas, environmental concerns are expected to increase the level of scrutiny. This is one of the reasons that the International Council on Mining and Metals requires its members to address environmental concerns [40].

Increasing Political and Social Concerns

At the same time, the mining industry is experiencing increasing pressure from its shareholders and external stakeholders to reduce dependence on fossil fuels and to address inter-generational equity issues. These stakeholders include international organizations, host governments, local communities, and end-use producers (metal buyers) such as major electronics and renewable energy technology manufacturers [16,17]. Recognizing the important role that the mining industry

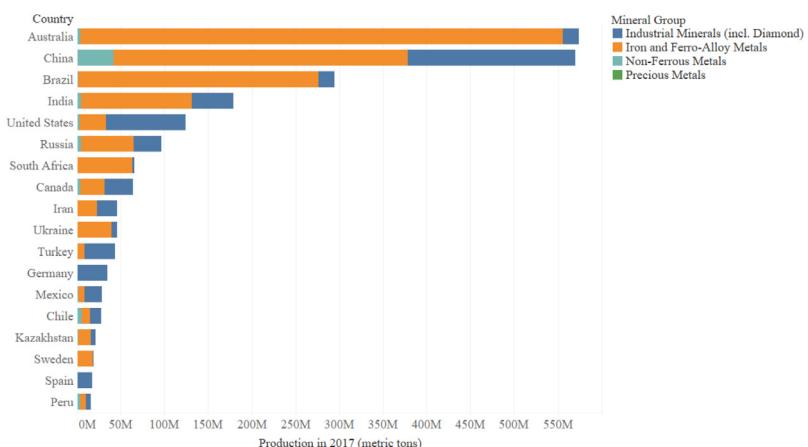


Fig. 1. Leading minerals producers.

Source: [34].

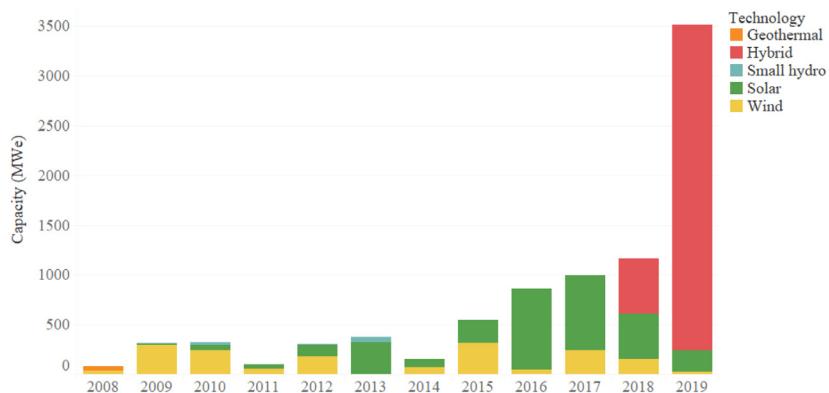


Fig. 2. Global renewable projects associated with mining companies.

Source: [31].

Table 1

Energy use and Greenhouse gas impacts for 'Cradle-to-Gate' of select metals.
Sources: [35] and [36].

Metal	Feed	Process or route	Greenhouse gasses (kWh/t)	Gross energy requirement (MtCO ₂ -eq/Mt)
Gold	Refractory ore (3.5 g Au/t ore)	Refractory ore route	85,019,200	26,840
	Non-refractory ore (3.5 g Au/t ore)	Non-refractory ore route	55,829,200	17,560
Titanium	Ilmenite (36.0% Ti)	Becher and Kroll processes	101,080	35.7
Aluminum	Bauxite ore (17.4% Al)	Bayer refining, Halle Heroult smelting	59,080	22.4
Nickel	Laterite ore (1.0% Ni)	Pressure acid leaching, and solvent extraction and electrowinning	54,320	16.1
	Sulfide ore (2.3% Ni)	Flash furnace smelting and Sherritt-Gordon refining	31,920	11.4
Stainless	Multiple ores	Electric furnace and Argone Oxygen decarburization	21,000	6.8
Steel				
Copper	Sulfide ore (2.0% Cu)	Heap leaching, and solvent extraction and electrowinning	17,920	6.2
Zinc	Sulfide ore (5.5% Pb, 8.6% Zn)	Electrolytic process	13,440	4.6
	Sulfide ore (5.5% Pb, 8.6% Zn)	Imperial smelting process	10,080	3.3
Copper	Sulfide ore (3.0% Cu)	Smelting and converting and electro-refining	9240	3.3
Lead	Sulfide ore (5.5% Pb, 8.6% Zn)	Imperial smelting process	8960	3.2
Lead	Sulfide ore (5.5% Pb, 8.6% Zn)	Lead blast furnace	5600	2.1
Steel	Iron ore (64% Fe)	Integrated route (blast (oxygen) furnace)	6440	2.3

Notes: Multiple ores under stainless steel represent pig iron (94% Fe), chromite ore (27.0% Cr, 17.4% Fe), and laterite ore (2.4% Ni, 13.4% Fe). The gross energy requirement represents the cumulative amount of primary energy consumed from extracting to refining metal.

1 can play in achieving emissions targets, host countries are beginning
2 to require more stringent pollution controls and statutory reporting
3 requirements (e.g., the inclusion of the effects of energy consumption
4 in environmental impact assessments to obtain an operating permit).
5 For example, host governments of leading mineral producers such as

Canada, Australia, and Chile are creating enabling policies and regulations such as carbon taxes, green certifications, and flexible dispatch to accommodate renewable sources integration [41,42]. The communities in which mines operate are beginning to mobilize as well, advocating not only for their local air and water quality, but also for a fair portion

1 of the resources, and for a lasting, sustainable energy infrastructure
 2 from which they could benefit after the mine closes. Accordingly, as
 3 energy demand for mine operations increases in the coming years,
 4 so too will the need to source generation that addresses stakeholder
 5 concerns.

6 **3. Opportunities for integrating renewable energy in mining operations**

8 Renewable energy technologies such as wind and solar have
 9 recently become the cheapest source of power on a levelized-cost-of-
 10 energy basis in many parts of the world, and capital costs for these also
 11 continue to fall [43]. Accordingly, integrating renewable generation
 12 into mining operations may offer an opportunity for companies not
 13 only to decarbonize operations, but also to improve operating margins
 14 and reduce risks associated with fossil fuel volatility. Mining compa-
 15 nies and national governments can also realize secondary effects with
 16 renewable energy, such as stimulating local economic development,
 17 improving social license to operate, and creating shared value. We
 18 divide renewable integration opportunities in the mining industry into
 19 two main categories, those for mining operations and those for mining
 20 communities.

21 *3.1. Opportunities for mining operations*

22 Several mining activities rely on electric power, but most electricity
 23 generation is fossil fuel-fired, and, thus, may be satisfied by renewable
 24 energy. While on-grid mining operations may have no choice as to
 25 their source of electricity (in this case, greening grid systems could
 26 be a viable option), off-grid mining operations and back-up electricity
 27 for on-grid power could benefit from renewable integration into their
 28 operations. Also, there are mining operations in both grid-connected
 29 and off-grid sites that use fossil fuels directly as a source of energy or
 30 feedstock that can benefit from renewable sources (see, for example,
 31 [Table 2](#)).

32 In the United States, the majority of primary metal and non-metallic
 33 mineral production uses fossil fuels for various operations beyond
 34 extraction. Metal production generally consumes more energy than
 35 nonmetallic minerals. The bulk of this energy consumption (about
 36 70%) is from the iron and steel industry, followed by the alumina and
 37 aluminum industries at 14% [44]. For nonmetallic mineral production,
 38 the majority of energy consumption is used by the cement industry at
 39 30%, followed by glass industry at 14% and the lime industry at 12%.

40 Most energy is used for process heat, with a significant amount
 41 sourced from fossil fuels (mostly natural gas and coal in the United
 42 States). This implies that a significant reduction of fossil fuel used in
 43 mining operations can be achieved by targeting process heat, though,
 44 as discussed in Section 4, this presents some challenges. After natural
 45 gas, electricity is the second major source of energy in U.S. primary
 46 metal production, and is used mainly for process heat, machine drive
 47 and electrochemical processes. Likewise, in nonmetallic mineral pro-
 48 duction, most electricity is used for machine drive and process heat.
 49 In contrast to process heat, this electricity load can be readily supplied
 50 with renewable energy, particularly hybrid systems or virtual crediting
 51 contracts that can smooth the variability of the generation profile.

52 **Renewables for electricity demand**

53 Renewables can play a role in displacing heavy oil fuels, diesel, and
 54 coal used for electricity-dependent mining operations (see [Table 2](#)). For
 55 example, comminution (the process of reducing ore and/or rock to de-
 56 sired sizes by mechanical means) is one of the most electricity-intensive
 57 activities in mining [11]. Katta et al. [45] estimated that comminution
 58 uses an average of 15% of total energy demand in iron mining
 59 and an average of 21% of total energy demand in gold production.
 60 Fortunately, comminution is almost exclusively electrified, making it
 61 easier to address with renewable sources. This study also indicated

62 that underground mining ventilation systems use significant electricity
 63 — in gold production, about 20% of total energy demand is used
 64 in ventilation. In the United States, electricity is used for processing
 65 metals, especially to generate process heat, for machine drive and in
 66 electrochemical processes. But, 63% of this electricity comes from fossil
 67 fuels. For off-grid mining operations, electrifying this electricity load is
 68 possible, but for on-grid operations, this opportunity may not present
 69 itself. Rather, greening the grid may be a viable option; this is out of
 70 our scope, but has been covered extensively by other studies [46].

71 Electricity generation for off-grid operations or on-site backup for
 72 on-grid operations can be powered with renewable sources. (For on-
 73 grid operations, in certain markets, excess renewable electricity can
 74 be sold back to the grid.) Renewables are becoming an increasingly
 75 appealing option for remote, off-grid operations that have available
 76 resources (e.g., sun, wind, geothermal). Rio Tinto is planning to build a
 77 34 MW solar PV with a 12 MWh lithium-ion battery system to meet its
 78 electricity demand in their Koodaideri mine in Pilbara, Australia [47].
 79 This system will meet about 65% of the Koodaideri mine's electricity
 80 demand during peak hours. Success stories of mines using geothermal
 81 power in remote sites of Papua New Guinea, and wind power in the
 82 Arctic of northern Canada illustrate the effectiveness of renewables
 83 in serving remote facilities [48,49]. Solar power in the Outback of
 84 Australia provides yet another example [50]. [Fig. 3](#) depicts a solar
 85 installation at Rio Tinto's Weipa bauxite mine in Australia.

86 **Renewables to replace fossil fueled heat and transportation**

87 There are mining industry activities that depend on direct combus-
 88 tion of fossil fuels. In this case, fossil fuel is used to generate heat for
 89 mining processes such as firing in iron mining or as fuel to power
 90 equipment used for ventilation, hauling and on-site transportation.
 91 Some of these activities may be transitioned to electric loads with the
 92 electricity provided by renewable technologies, while others may use
 93 renewable energy directly.

94 [Table 2](#) categorizes these loads under auxiliary operations, material
 95 handling, beneficiation, and processing. While material handling may
 96 not be electricity-intensive in mineral manufacturing (EIA, 2014), in
 97 ore production, energy consumption by material handling is significant
 98 and will need to be addressed if the mining industry is to reduce
 99 its carbon footprint. Transport and haulage, for example, use about
 100 10% of total energy demand in gold production and iron ore ex-
 101 traction [45]. Integrating renewables into material handling is more
 102 challenging because diesel is still a significant source of energy for
 103 many of these activities, particularly for truck haulage. However, the
 104 industry has started to use battery-powered and biodiesel trucks and
 105 load-haul-dumps and is also exploring hydrogen-powered haulage. At
 106 the time of this writing, underground mines provide cutting-edge ex-
 107 amples because of the need to comply with diesel particulate matter
 108 emissions standards. This motivation does not exist for surface mines
 109 (that also have larger equipment). Additionally, electrifying mobility
 110 for underground mines can result in economic offsets in the avoided
 111 cost of ventilation equipment [51]. Surface mines can benefit from
 112 technologies such as electric trolley-assist, combined with other sol-
 113 lutions (e.g., biodiesel and energy recovery during braking on the
 114 downhill haul), to reduce fossil fuel use [52,53].

115 **Renewables for feedstock demand**

116 Some mining activities require fossil fuels as feedstock in their
 117 production processes. Coal and natural gas comprise the majority of
 118 feedstocks in the mining industry, and — while it is challenging for
 119 renewables to entirely displace these — some studies suggest that re-
 120 newable sources can supply 20%–30% of fossil fuel feedstock demand
 121 for industrial minerals, and ferrous-alloy and non-ferrous metal pro-
 122 ducers [54]. For example, steel production using smelting reduction
 123 largely relies on coal as feedstocks to produce coke needed in blast
 124 furnaces and blast oxygen furnaces, from which around 70% of global
 125 steel is produced. On average, 1000 kg of crude steel produced by this
 126 route uses 780 kg of metallurgical coal [55]. Additionally, both coal

Table 2

Example of mining processes and associated fuel sources.

Mining process	Activities and equipment	Fuel source
Exploration, Extraction and Auxiliary operations	Ventilation: HVAC Drilling: Loader trucks, diamond drills, rotary drills, percussion drills, drill boom jumbos Dewatering: Pumps Digging: Hydraulic shovels, cable shovels, continuous miners, longwall mining machines, drag lines, front-end loaders Power supply: Generators	Electricity and Natural Gas Electricity, Diesel, and Compressed Air Electricity Electricity and Diesel Fossil Fuel
Material handling	Discrete transportation systems: Haul trucks, service trucks, bulldozers, pickup trucks, bulk trucks, load-haul dumps, shuttle cars, hoists Continuous transportation systems: Conveyor belts, pumps, pipelines	Diesel and Electricity Electricity
Beneficiation and processing	Communition Crushing: Crushers Grinding: Mills Separations: Physical: Floating, centrifuge Chemical: Electrowinning Drying, Firing, Smelting (oven and furnace) refining e.g., electrolytic refining, fire refining	Electricity Electricity and Fossil Fuels Fossil Fuels Electricity and Fossil Fuels

Fig. 3. Solar installation at Rio Tinto's Weipa bauxite mine in Australia. Copyright: Australian Renewable Energy Agency.

1 and natural gas are used as reducing agents in the direct-reduced iron
2 production process. In a gas-based, direct-reduced iron plant, natural
3 gas is combined with water and heat to develop hydrogen and carbon
4 monoxide needed to convert iron ore to direct-reduced iron, while in
5 a coal-based, direct-reduced iron plant, carbon from coal is used as a
6 reducing agent [56]. Biomass and hydrogen produced by renewables
7 present an opportunity to substitute fossil fuel feedstocks in some
8 activities, such as hydrogen reduction in iron and steel making.

9 **Production of hydrogen via renewables**

10 Hydrogen has many uses in the mining industry such as generating
11 high-temperature heat, power, feedstock, fuel for transportation and
12 other mining equipment, and energy storage. Currently, it is largely
13 produced from natural gas, coal, and oil [57]. For mining operations
14 with the capability to install variable renewable energy technologies
15 such as wind and solar, excess electricity could be converted to hy-
16 drogen and stored for other mining activities. For example, the Raglan
17 Mine in Canada has been replacing diesel with wind power and energy
18 storage [58].

3.2. Opportunities for mining communities and circular economy

20 Rapid growth of renewable technologies also presents synergistic
21 opportunities between the mining industry, local and national gov-
22 ernments, and renewable technologies, most of the latter of which
23 use materials that are considered critical—i.e., they are of strategic
24 importance to certain industries and have a certain degree of supply
25 chain risk. These include minerals such as cobalt, lithium, nickel, and
26 rare earth metals. For most of these materials, substitution with another
27 metal or mineral is either infeasible or reduces the effectiveness of the
28 technology.

29 Supply risk for these materials is partly caused by political insta-
30 bility and environmental concerns. Unstable countries contribute a sig-
31 nificant amount to mineral production, e.g., 50% of cobalt production
32 comes from the Democratic Republic of Congo [59]. The communities
33 where many mine sites operate are generally rural and agricultural.
34 Sharing renewable energy with communities around mines will stimu-
35 late economic activities by encouraging agri-business, which will create
36 jobs, leaving a lasting impact on communities and promoting social and
37 political stability.

1 A reduction in mining costs (by downsizing energy expenditures)
 2 can increase a host country's competitiveness, which, in turn, can
 3 encourage more in-country processing operations. This has been strate-
 4 gically important for many mining countries as, at present, most raw
 5 minerals are exported to places where lower energy costs and more
 6 reliable energy supply render processing more economical [60]. This
 7 deprives many countries of the additional value that could be gained
 8 from the mineral sector. One of the inhibitors of increasing in-country
 9 mineral processing in mining countries is the lack of affordable and
 10 reliable energy.

11 3.3. Options in renewable energy integration

12 Renewable integration opportunities will require customization de-
 13 pending on the particular mining operation, its location relative to
 14 available renewable resources, and on-site energy requirements of the
 15 mine. Opportunities across the mining sector consist of new investment
 16 and participation from domestic and foreign investors [7]. Increased lo-
 17 cal content could result if renewable integration draws local investment
 18 into the mining sector, creating shared value [61].

19 We now highlight loads that could benefit from integrating renew-
 20 ables for two types of mining operations: iron and gold, which were
 21 selected based on their environmental impact, and the benefits that
 22 renewable energy can confer on their greenhouse gas content. Some of
 23 the ensuing discussion also applies to other sub-sectors of the mining
 24 industry. The disaggregated energy data used in this section – even
 25 from reliable sources such as Natural Resource Canada and U.S. bench-
 26 marking studies – have several discrepancies [62]. Nevertheless, these
 27 data provide valuable insight into average energy consumption; the
 28 actual energy consumption by a specific activity and mining company
 29 could differ from the average values reported herein.

30 Iron and Steel Production

31 Iron and steel production are divided into: ore mining, and iron
 32 and steel making, all of which are energy intensive (with a significant
 33 amount of this energy sourced from fossil fuels), and consequently
 34 generate high greenhouse gas emissions. Several iron mining activities
 35 are powered by electricity. Katta et al. [45] indicate that, in 2016,
 36 about 39% of the total energy used by Canada's iron ore mining sector
 37 came from electricity.

38 The comminution and pelletization processes consume a significant
 39 amount of this electricity per ton. Iron ore production with renewable
 40 resources such as solar, wind, and geothermal could produce some
 41 of this electricity. Since no change in the mining processing system
 42 would be required, renewable electricity could be applied to existing,
 43 as well as to new, mining sites. Analysis using tools such as REopt [63]
 44 could determine optimal renewable integration based on the mine load
 45 profile and location.

46 Iron ore mining also uses a significant amount of direct fossil
 47 fuels [45]. For example, the heavy fuel oil or coke in palletization
 48 accounts for about 896,808 BTU/t (\approx 263 kWh/t) of pellets produced.
 49 In 2016, firing activities accounted for about 42% of total energy used
 50 by the Canadian iron ore mining sector. Drying also uses a significant
 51 amount of fossil fuel, typically diesel, at about 51,856 BTU/t (\approx 15
 52 kWh/t) of material produced. These activities are medium- to high-
 53 temperature processes up to 300 °C (for drying) and up to 1350 °C
 54 (for pelletizing) [64]. For iron mining sites with availability of sunlight
 55 and supporting geology, deep geothermal and concentrated solar power
 56 technology could satisfy drying heat demand. Commercially available
 57 concentrated solar power cannot completely replace heavy fuel oil and
 58 coke use for high-temperature processes but, as mentioned in Section 4,
 59 there are promising technologies that can produce heat above 1000 °C.
 60 While it is not yet economical to produce hydrogen with renewables at
 61 a scale needed by mining operations, hydrogen created with renewable
 62 energy could be used to meet demands for high-temperature heat
 63 (<https://hydrogogeneurope.eu/green-heating-and-cooling>). Given finan-
 64 cial constraints, mining sites with good renewable energy resource

availability and high energy costs could exploit excess renewable en-
 65 ergy produced during peak hours, which could be used to create
 66 hydrogen that can be stored and combusted to generate required heat.

67 A significant amount of energy in iron and steelmaking is used in
 68 process heat. In the United States, these industries comprise about 8%
 69 of total energy consumed by the manufacturing industry, and account
 70 for about 70% of total energy used by primary metal industries [44].
 71 Most of this is employed directly for process energy (about 35% of total
 72 energy used in iron and steelmaking). The United States has made great
 73 strides in electrifying steel furnaces by processing scrap. Over 60% of
 74 the steel produced in the United States uses an electric arc furnace [65].
 75 However, the bulk of energy used in iron and steelmaking is supplied
 76 from natural gas.

77 There may be limitations on electrifying some iron and steel pro-
 78 duction loads with renewables, especially for existing operations in
 79 primary iron and steel production. Further mining-operation-specific
 80 analysis would be needed to determine the economics and technical
 81 viability of renewable options, both for new mines or as a way to reduce
 82 costs and carbon emissions at existing facilities. For new or future
 83 projects, a strong focus on demonstrating recent technology innovations
 84 in process electrification that have been applied in other sectors could
 85 be explored to expand the applicability of these renewable-energy
 86 options. Other fossil-fuel-intensive activities unique to mining, such as
 87 digging, drilling, haulage and loading, should be analyzed to better
 88 understand the applicability of process electrocution to take advantage
 89 of low-cost renewable sources, if available.

90 Gold Production

91 Gold production is the most energy- and greenhouse-gas-emission
 92 intensive metal per unit produced, and this characteristic is likely to
 93 persist with the depletion of high-grade gold reserves. Unlike iron
 94 and steel production, which use a large amount of fossil fuels for
 95 feedstock processing and process heat, gold production uses a much
 96 higher contribution of electricity, presenting more opportunities for
 97 renewable integration.

98 The majority of fossil fuel use stems from underground gold ore
 99 extraction [45]. Particularly relevant in underground operations in
 100 Canada are activities such as: drilling (roughly 8 kWh/t ore removed);
 101 mucking (roughly 6 kWh/t of ore removed); and transportation (6
 102 kWh/t from an underground mine and 113 kWh/t from an open pit
 103 mine). Many of these activities can be electrified, allowing for more
 104 renewable-based energy sources. Additionally, as the industry extracts
 105 more gold from underground reserves, the higher energy intensity of
 106 underground mining will further increase energy consumption. Thus,
 107 expanded consideration of energy efficiency, paired with renewable
 108 integration into material handling in underground mines, are bound
 109 to significantly reduce the energy intensity and carbon footprint for
 110 gold extraction. In an effort to improve mine air quality, underground
 111 mines are already actively engaged in electrifying their activities due to
 112 pressure to reduce diesel particulate matter. Mill heating could be pow-
 113 ered with renewables in areas with strong resources (e.g., high wind
 114 speeds or solar irradiation). Current commercially available renewable
 115 technologies may not be able to economically substitute for natural gas
 116 in high-temperature processes at the time of this writing, but may be
 117 able to do so under the right conditions in the future.

118 4. Challenges for renewable energy integration in mining

119 Renewable energy use in the mining industry is growing, but technical
 120 challenges still limit the quantity of renewable energy that can serve
 121 operational loads. The bulk of the mining industry's energy demand
 122 requires careful evaluation when considering renewable integration.
 123 This section presents some of these considerations.

1 4.1. Mining operation-specific challenges

2 Feedstock Demand

3 Mining operations that require fossil fuels as a feedstock are usually
 4 difficult to fully decarbonize with current renewable technologies.
 5 Advancement will allow for higher penetration levels. While biomass
 6 (charcoal) can be used as a feedstock alternative in some operations,
 7 global sustainable production of charcoal, its transport cost to plant
 8 sites, and technicalities of charcoal use in steelmaking are still major
 9 concerns [36,66]. Hydrogen also presents an alternative feedstock to
 10 fossil fuels in, e.g., direct-reduced iron operations; it presents a much
 11 better source in terms environmental impact than biomass when pro-
 12 duced using water and renewable electricity. But generating hydrogen
 13 using renewable sources at the required scale is still expensive. More
 14 research and development investments are needed to reduce the cost
 15 of hydrogen produced by renewables that could be used in metal
 16 processing. For example, commercial use of hydrogen as a substitute for
 17 carbon monoxide in steel making is not expected until the 2030s [57].

18 Process Heat Demand

19 Process heat demand is a major energy consumer within the mining
 20 industry. Process heat requirements for the mining industry span the
 21 spectrum from low- to high-temperature. Industrial low-temperature
 22 heat is defined as below 150 °C; medium-temperature as temperature
 23 between 150 °C and 400 °C; and high-temperature above 400 °C [54,
 24 57]. This variability of process heat demand dictates technology selec-
 25 tion at the mine site. For example, in steel production, a temperature
 26 between 800 °C and 1200 °C is used in the reduction of iron oxide
 27 to metallic iron. In the copper smelting process, a heat temperature be-
 28 tween 250 °C and 350 °C is used in roasting copper ore to copper oxide.
 29 During the aluminum extrusion process, aluminum billets are heated
 30 to soft solids at a temperature of between 400 °C and 500 °C. Low- to
 31 medium-temperature heat is generally produced through steam, while
 32 direct heat (mostly through the combustion of fossil fuels) is used
 33 to produce high-temperature heat [54]. Currently, high-temperature
 34 industrial requirements are generally fulfilled by fossil fuels — 65%
 35 using coal, 20% with natural gas, and 10% through oil [54,57].

36 **Table 3** shows that most renewable energy technologies currently
 37 deliver low- or medium-temperature process heat and are thus only
 38 applicable for some process requirements. Concentrated solar power
 39 technology is showing promising results but requires larger land avail-
 40 ability and sufficient solar resources. Currently, commercial applica-
 41 tions of concentrated solar power can achieve process heat tempera-
 42 tures of up to 550 °C [33]. However, experimental concentrated solar
 43 power facilities, such as the Heliogen Lancaster California facility, have
 44 demonstrated temperatures in excess of 1000 °C [67]. Researchers at
 45 the Barbara Hardy Institute have developed a technique that could
 46 help lower this fossil fuel dependency in high-temperature process
 47 heat production. Through their pilot system, they demonstrated that
 48 renewable energy from hybrid systems (solar and wind energy, coupled
 49 with thermal energy storage) could deliver industrial temperatures be-
 50 tween 150 °C and 700 °C [68]. This could serve the demand for many
 51 metal processing activities that require medium- to high-temperatures,
 52 such as non-ferrous metal production involved in copper smelting and
 53 aluminum extrusion.

54 At the time of this writing, the only commercially available renew-
 55 able solution for high-temperature process heat in excess of 550 °C can
 56 be delivered by biomass (charcoal or combined heat and power). Char-
 57 coal can generate heat temperature of up to about 1260 °C [70]. But,
 58 biomass fuel sources such as charcoal or wood are not without limita-
 59 tions. Hydrogen produced by renewables might meet high-temperature
 60 heat requirements, but currently production of hydrogen using renew-
 61 ables is largely uneconomical [57]. Hydrogen is also an attractive
 62 emissions-free source of energy for several other mining activities [71,
 63 72].

64 **Table 3**
 65 Current commercially available and economical renewable energy technologies.

66 Category	67 Technology type	68 Temperature levels
69 Renewable source	Biomass, boiler	Low
	Biomass, high temperature	Medium
	Biomass, combined heat-and-power	High
	Biogas, anaerobic digestion	Low
	Solar PV ^a	High
	Wind ^b	High
	Heat pump	Low
	Geothermal direct use	Low
	Deep geothermal	Medium
	Solar thermal	N/A
70 Energy storage	Hydrogen	N/A
	Pump storage	N/A
	Battery storage	N/A

71 Note: Low temperature (150 °C), medium temperature (150 °C–400 °C), and high
 72 temperature (> 400 °C). National Renewable Energy Lab estimates supplemented by
 73 [44,54,69].

74 ^aHigh temperature heat production using solar and wind beyond 550 °C is not yet
 75 commercially offered, and is still in the demonstration phase at research facilities.

76 Constant Energy Demand

77 Mining operations require significant, high quality and generally
 78 constant energy supply, often 24 h a day and seven days a week, that
 79 can only be met by few renewable sources (hydro-electric and geother-
 80 mal). However, hydro-electric and geothermal are limited because they
 81 have to co-occur with mineral resources to be applicable; the need to
 82 meet constant energy demand therefore still poses challenges associated
 83 with their implementation and presents a barrier when attempting to
 84 integrate large shares of variable renewable energy. Even technologies
 85 such as wind and solar whose co-occurrence may be more favorable
 86 could overproduce during peak generation hours; this can lead to
 87 complexities associated with the excess energy, some of which may
 88 be stored using, e.g., batteries or hydrogen electrolysis. If the mine
 89 is grid-connected and has a net metering or grid export agreement
 90 with the system operator, it may be able to sell the excess energy.
 91 However, most commonly, extra energy is curtailed, because current
 92 battery technologies are limited in their number of hours of storage,
 93 and a larger battery bank could be economically prohibitive. Moreover,
 94 net metering or some other export compensation mechanism can be
 95 difficult for mining projects to obtain for a variety of reasons, including:
 96 lack of regulatory framework allowing for grid exports; size limitations
 97 in jurisdictions where net metering is available; and low compensation
 98 rates.

99 To manage variability, mines often turn to hybrid systems generally
 100 supported by on-site diesel generators, which reduce fossil fuel use but
 101 do not eliminate it entirely. Examples include solar PV-battery-diesel
 102 hybrid systems, wind-battery-diesel hybrid systems, and solar-wind-
 103 battery-diesel systems. For example, the mining town of Coober Pedy
 104 in Australia operates a hybrid wind (4 MW), solar (1 MW), and bat-
 105 tery storage (1 MW/500 kWh) powerpack that has displaced about
 106 70% of diesel use [7]. Many mines can only economically integrate
 107 renewables to cover part of their load, for example, between 30% and
 108 40% of total electricity demand — using current renewable and control
 109 technologies [73].

110 Another approach to address variability and reduce the capital
 111 investment for renewable energy is to ensure the mining operation
 112 is energy-efficient. In particular, the electric load is an important
 113 aspect of planning optimal generation capacity for renewables [74].
 114 The literature contains several recent reviews of energy efficiency
 115 best practices in the mining industry [9,10], which can help reduce
 116 the overall and renewable energy needs, thus reducing capital invest-
 117 ments. These practices include mine-to-mill optimization [75], ventila-
 118 tion on demand [76], thermal management for energy efficiency of

1 haul trucks [77], and use of control algorithms to optimize energy
 2 demand [78,79].

3 Although the use of renewable energy technology can clearly reduce
 4 the need for carbon-based energy at mines—especially those with
 5 exceptional renewable resources such as wind, hydropower or solar,
 6 or with high energy cost, over the near term, it is not likely to provide
 7 deep decarbonization of mining operations. Continued efforts to further
 8 lower the cost of renewable power and energy storage, combined with
 9 the expansion of mine operators' ability to effectively address the
 10 integration of variable energy generation, will be needed.

11 Mining Industry Design and Investment Structure

12 Most mining operations make investment decisions that account
 13 for the life of the mine, which may range from 2 to more than
 14 50 years. This time horizon is a critical input into the mine's return-on-
 15 investment calculation [80]. Major decisions in mine planning and
 16 design are usually made during the pre-feasibility and feasibility phases.
 17 Once the mine site is constructed according to a design, the selected
 18 technologies and their capacities are fixed for several decades. Making
 19 changes to the mine development plan after the investment decision has
 20 been made can require many levels of approval and may cause ripple
 21 effects on the design.

22 Most mining production activities are based on an all-or-nothing
 23 approach, meaning that the mine produces at capacity as long as it is
 24 covering its operational expenditures, because it has already incurred
 25 the capital investment. Once a mine has the ability to change its capital
 26 investment for expansion, there is room for flexibility. This feature of
 27 mining operations has implications in integrating renewable energy.
 28 For example, the blast furnace-basic oxygen furnace mechanism in steel
 29 manufacturing accounts for around 70% of global steel production.
 30 Many of the processing plants utilizing this technology were built in
 31 the past 10 to 20 years and have a long lifespan, and it would be costly
 32 to integrate renewable energy into their existing operations before the
 33 end of their design life [66]. In this case, other solutions such as CO₂
 34 abatement or energy efficiency could be more appropriate [66]. At the
 35 time of this writing, CO₂ abatement technologies are still costly, but
 36 if research and development enable cost reduction, blast furnace-basic
 37 oxygen furnace technology could benefit. Renewable energy may be
 38 competitive economically when installed as part of a mine expansion
 39 or when planning new operations (i.e., if renewable energy solutions
 40 are evaluated as part of the design and feasibility study processes). At
 41 a workshop held for mining stakeholders at the National Renewable
 42 Energy Laboratory in 2019, participants identified a lack of training and
 43 education resources for mine engineers to evaluate renewable energy
 44 as part of overall mine design. This is a gap that mining schools and
 45 engineering programs could address with updates to their curricula.
 46 It could also be an opportunity for professional training and certi-
 47 fication organizations. For example, Oz Minerals and Cassini Resources
 48 from Australia through their pre-feasibility study indicated that their
 49 proposed new copper-nickel mine located in West Musgrave, Australia
 50 will be powered by up to 80% renewables. The companies propose
 51 to utilize a hybrid system of solar-wind-battery-diesel which produces
 52 220,000 tons per annum less CO₂ compared to a fully diesel-powered
 53 operation [81].

54 4.2. Industrial linkage challenges

55 Despite renewable potential (see Section 3), the ratio of renewable-
 56 to-total energy used in the mining industry is still small [31]. Dis-
 57 cussions with mining industry professionals and related stakeholders
 58 regarding the opportunities for and barriers to deployment of renew-
 59 able energy technologies at mine sites elicited the challenges presented
 60 in this section and the potential solutions identified in Section 5 [82].

61 Political Will and Adjustment Costs

62 Integrating more renewable energy into mining operations will
 63 cause resource relocation from fossil fuels to renewable energy and

64 will result in displacement effects (job losses and re-alignment of
 65 skills within the broader energy economy). This is especially true for
 66 countries where the mining sector is a significant portion of the energy
 67 demand. In such economies, increasing the percentage of renewable
 68 generation in the mining sector will displace significant resources from
 69 the fossil fuel supply chain to the renewable energy supply chain.
 70 Depending on the country, the domestic fossil fuel supply chain might
 71 be a more dominant portion of the economy than the renewable energy
 72 supply chain (which might rely more on imports). In such cases, the
 73 political will does not exist to provide the policies and infrastructure
 74 for a transition to renewable energy in the mining sector.

75 In our discussions with industry, one participant from a company
 76 with mines in Africa relayed a relevant experience that illustrates this
 77 point. They own and operate a mine in a country with an unreliable
 78 energy generation system that is heavily reliant on natural gas-fired
 79 plants. In a particular period of load shedding, the mining company en-
 80 gaged the government in discussions to evaluate increasing the mine's
 81 renewable generation capacity to remove some of their load from the
 82 grid. Fearing the loss of a major customer who pays on time, the state-
 83 owned utility preferred the mining company to provide them support
 84 to acquire natural gas feedstock to maintain viability of their existing
 85 operations.

86 Conflicting Business Models

87 Principal among the challenges is the misalignment in commercial
 88 incentives between the mining and energy industries. Because of cycles
 89 in commodity prices, the mining industry values flexibility, or the
 90 ability to ramp down or cease production at a mine site if the metal
 91 market price becomes unprofitable to keep the mine open. However,
 92 of the high capital costs for renewable energy, renewable energy power
 93 purchase agreements are typically longer term in nature.

94 There can also be misalignment between mine life and renewable
 95 asset life. Most mining projects evaluate profitability of a mine project
 96 to the end of its estimated life (which can range from 2 to more
 97 than 50 years), while renewable project payoffs might correspond to
 98 a minimum of 8 years. This mismatch in asset life makes negotiating
 99 cost-effective renewable energy contracts difficult. Many renewable
 100 projects associated with the mining industry are, accordingly, owned by
 101 mining operators. However, in our conversations with industry, several
 102 companies indicate that their core business is mining, not energy genera-
 103 tion. Favorable contractual arrangements could help scale renewable
 104 integration beyond what mining companies are capable of installing
 105 and managing by themselves. Also, some countries' host policies do
 106 not support favorable business models for renewable integration in
 107 that they lack the legal framework for net-metering policies to export
 108 excess energy to the grid, or for renewable project ownership transfers
 109 post-mining.

110 Need for Technology Proof-of-Concepts

111 The growing renewable energy industry has largely been focused
 112 on electricity production and grid integration over the last decade,
 113 and technology solutions designed for other industrial processes are
 114 still nascent. While wind, solar and other renewable technologies have
 115 established solid track records, there is limited experience in their
 116 integration into the on-grid and off-grid mining sectors. Other energy
 117 service technologies, such as expanding energy storage and advanced
 118 control markets, are becoming more common within the utility sector;
 119 however, the associated technical and financial models are still largely
 120 untested within the mining industry. Other truly emerging technolo-
 121 gies such as hydrogen mobility and fuel cells for power production
 122 and resiliency have limited commercial histories. For off-grid mines,
 123 which likely have some of the highest potential for renewable energy
 124 deployments due to the traditionally high cost of energy services, incor-
 125 porating larger contributions of variable renewable technology, while
 126 demonstrated in smaller commercial and utility applications, have not
 127 been widely demonstrated at scale within the mining sector. While a
 128 few larger companies have run pilots to demonstrate economic viability

1 of these technologies, they remain out of reach for mid-market and
2 small-scale mining operations without analytical and financial support.

3 Lack of Renewable Energy Awareness and Expertise

4 Decision makers in both the private sector and within some governments do not often consider renewable solutions during mine planning,
5 negotiation, and design. Stakeholders indicate that the engineers who
6 determine a mine's design are unequipped with the skillsets and de-
7 tailed information to incorporate renewable energy into their analyses.
8 Governments and regulators in many countries where mining comprises
9 an appreciable portion of gross domestic product also do not have
10 experience in incorporating renewables into their power system, again
11 limiting the abilities of mines to access renewable energy through power
12 purchase contracts. Mining and energy policies, development agree-
13 ments, and evaluation tools are generally not created with renewable
14 energy in mind. Additionally, fossil subsidies, special tax conditions and
15 fuel levy exemptions granted to mines through mining agreements can
16 inhibit the use of alternative energy sources.

18 Land Constraints

19 Another impediment that the mining industry faces is the availabil-
20 ity of land on which to site renewable energy assets. Mining companies
21 point to a general misconception about the footprint of mine sites,
22 and how little of the terrain is of suitable grade and ground cover for
23 solar PV or wind turbine installation. Also, suitable land for renewable
24 projects could be the same land that has mineral potential (i.e., to
25 host mineral resources and reserves or that have significant exploration
26 potential).

27 5. Enabling approaches

28 Joint Institute for Strategic Energy Analysis' conversations with
29 mining stakeholders revealed a pervasive and growing interest in re-
30 newable integration within the mining industry. The workshop was
31 held under the Chatham House rule [83]; thus, we are unable to
32 ascribe opinions to particular individuals or their affiliations. This
33 section presents enabling approaches that could help with scaling this
34 integration.

35 5.1. Alignment of business model and incentives

36 Some mining companies are currently executing power purchase
37 agreements with renewable projects, and self-finance, regardless of the
38 challenges with mismatched commercial incentives. However, many
39 mining companies, especially small- to medium-size operations, are still
40 wary of the lack of flexibility renewable energy options present, and/or
41 lack the funding needed for initial investment. Policy support will be
42 important in developing contract structures (such as power purchase
43 agreements) that better align incentives and regulatory frameworks
44 that support net metering for grid-connected mining operations. Con-
45 ducting analysis of costs and benefits of integrating renewables could be
46 used to inform respective governments and other stakeholders, such as
47 the financial sector, which provide funding to these projects. The task
48 to engage the energy and mining industries in developing these suitable
49 power purchase agreements can be facilitated by host governments
50 that have the most to gain in terms of stimulating local economies,
51 increasing tax revenues, and achieving greenhouse gas emissions goals,
52 among other benefits.

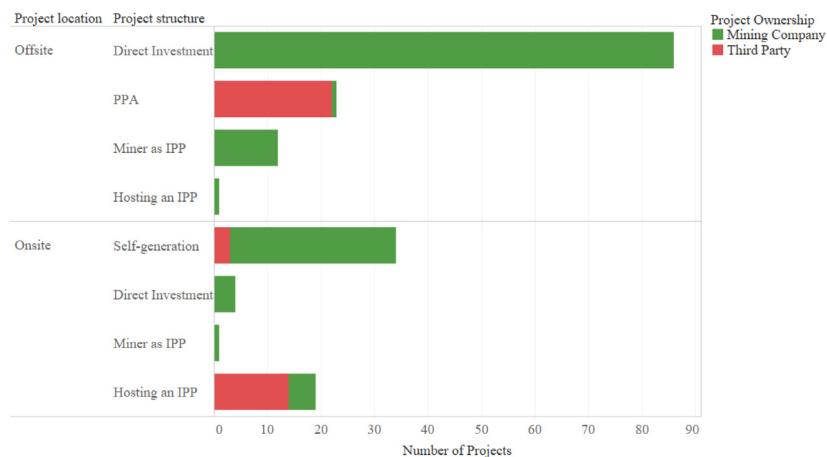
53 5.2. Capacity building

54 As discussed in Section 4, there are several technical considerations
55 for integrating renewable sources into mining operations, many of
56 which will need to be tailored to specific mine needs. Access to existing
57 tools, integration, and training to assess renewable integration potential
58 during a pre-feasibility phase will be important to expand renewable
59 energy development, especially for small- to medium-size companies

60 and their consultancies. These capabilities can also be provided through
61 renewable energy developers, third-party independent engineers or re-
62 search institutions. Additionally, educational programs at colleges and
63 universities, and professional certifications, should be used to address
64 this knowledge gap. For single-technology applications, solar has the
65 highest installed capacity, followed by wind energy. The majority of
66 these projects – around 85% – are owned by mining companies. The
67 remaining 15% are either contracted through power purchase agree-
68 ments or other means by which the mining company is an off-taker (see
69 Fig. 4). Approximately 73% of these projects are off-site while 27% are
70 on-site.

71 5.3. Research and development

72 More research and development are required to incrementally re-
73 move today's barriers to integrating renewables into mining operations.
74 The mining industry needs cost-effective solutions for scaling renewable
75 use, for using renewable sources to produce high-temperature heat, and
76 for implementing low-cost energy storage with longer durations. There
77 are also research and development opportunities for other emerging sol-
78 lutions such as green hydrogen production as alternative low-emissions
79 feedstocks or for heating. Similarly, there are opportunities to electrify
80 transportation (for equipment that is currently powered by diesel) and
81 to improve the energy efficiency of material haulage (e.g., energy
82 recovery on downhill transportation). Research and development in-
83 vestments for the mining industry can have second-order benefits in
84 terms of advancing solutions for other energy-intensive industries, in-
85 cluding chemicals and food processing. Progress has been made within
86 the utility sector to incorporate large amounts of renewable energy
87 while expanding general electrification of the energy sector. The mining
88 industry does not need to lead the efforts in renewable energy adoption
89 but can realize significant gains in renewable energy use by adopting
90 technologies and techniques that have been deployed successfully in
91 other sectors.


92 5.4. Pooling resources

93 The availability of capital is a major obstacle to scaling renewables
94 in places where favorable power purchase agreements may not exist.
95 Many mining activities are located in close proximity to other producers
96 (e.g., processing facilities) and local communities. Pooling resources be-
97 tween these parties can allow for the installation of a shared system that
98 serves local energy needs. This could be a viable solution, especially for
99 small- to medium-scale mine sites with limited capital availability.

100 Especially for off-grid or edge-of-grid applications, there is an ex-
101 panded opportunity to employ multi-technology microgrid systems,
102 which can confer resiliency. There are, however, notable challenges
103 with productive uses for microgrids in remote communities [84]. Min-
104 ing companies already invest internationally, such as in operations
105 in Sub-Saharan Africa, and in independent power producers or the
106 grid [85]; the same investment model could be used to acquire a
107 multi-technology microgrid that can be shared. A mine site could act as
108 an anchor customer to such a microgrid and local communities could
109 benefit from an additional, reliable source of energy (provided that the
110 community and mine site are in close enough proximity to minimize
111 wiring costs). Policy and regulations are often critical in facilitating
112 microgrids, so engagement with governments is important.

113 5.5. Government policies and regulations

114 As with microgrids, government policies and regulations are central
115 to many enabling approaches. At a global level, increasing coordination
116 and cooperation help to deploy renewable energy technologies, but
117 these implementation efforts can be stalled at the county and local
118 levels. In most resource-rich countries, existing policies and regulations
119 were not created with renewable sources in mind. It is only recently

Fig. 4. Renewable Project Business model. PPA: power purchase agreement; IPP: independent power producers.
Sources: Data is from [31].

1 that some of these countries have begun reviewing their policies and
2 regulations to help scale the development of renewable resources,
3 but often these do not explicitly address the concerns of the mining
4 industry.

5 Additionally, in many developing countries, policies require companies to source a certain percentage of intermediate goods from domestic
6 manufacturers [86]. Manufacturing is an energy-intensive sector, and
7 many of these developing countries have limited access to energy,
8 and/or have unreliable energy generation. Renewable energy could
9 be used to support low-energy-intensive manufacturing such as agri-
10 business and could offer countries opportunities to reap the benefits
11 of their local contacts to fulfill local content requirements. The col-
12 laborative efforts between the mining industry, the energy industry,
13 international organizations, and host governments will be needed to
14 create policy and regulation to support scaling renewables. For ex-
15 ample, large systems could be installed that can be shared between miners
16 and communities.

17 To assist mines specifically in accessing renewables, governments
18 may need to review their tax exemptions and subsidies that currently
19 apply to fossil fuel purchases, or to explore the possibility for carbon
20 pricing or renewable energy portfolio standards (which can create
21 tradable renewable energy certificates). Research and documentation of
22 mechanisms by which governments have traditionally had a significant
23 impact on their renewable energy policy goals and how they would
24 apply to renewable energy would also be useful. For example, gov-
25 ernment policies can help in innovating green hydrogen technologies,
26 stimulating commercial demand, building infrastructure, and reducing
27 costs through funding, among other actions [57].

29 6. Conclusions

30 The mining industry is not only one of the most energy-intensive
31 industries, it is also the major source of raw materials for several
32 industries including renewable energy technologies. The demand for
33 raw materials will increase as many low-income economies shift to
34 middle-income status; correspondingly, the pressure on the mining
35 industry to reduce emissions will intensify. Because of their energy
36 consumption, mining operations are also sensitive to energy costs and
37 their variability. Cost reductions of wind and solar PV technologies pro-
38 vide strong financial incentives to expand the use of renewable energy
39 within the mining industry. Many options reduce carbon production
40 and take advantage of energy cost savings, such as an increase in energy
41 efficiency measures, expanded use of energy recovery, and the use of
42 renewable energy to supply electric, transportation and thermal energy
43 needs. These renewable-energy options are not without challenges and,
44 therefore, remain relatively unexplored across the mining sector. We

45 present here the challenges, opportunities, and enabling approaches for
46 renewable use in mining operations. The viability of different energy
47 sourcing options is also greatly dependent on where the mine is located
48 and whether it receives power from an external source or by self-
49 generation. Additionally, the phase of its development, construction
50 and operation will have a major impact on the viability of incorporating
51 different renewable or energy efficiency options.

52 Renewable energy can be integrated into the extraction, processing,
53 and refining phases of mineral production. These activities include, but
54 are not limited to, transportation, drilling, digging, loading, and power
55 generation for mine sites without grid connection. For mines that are
56 grid-connected, working with the utility to expand the use of renewable
57 energy either on the utility or mine side of the utility meter could
58 provide benefits of renewable technologies, while potentially sheltering
59 mines from some of the more complicated legal and financial concerns
60 of developing their own renewable energy sources. Renewable energy
61 can also be used to provide process heat, though most current sources
62 are best aligned to provide low- or medium-value heat (below 400 °C).

63 While many activities are common across the mining industry, en-
64 ergy requirements vary. We use iron ore extraction and gold production
65 to showcase different opportunities. Both commodities use a signifi-
66 cant amount of electricity that could be decarbonized by renewable
67 sources. Unlike gold production, iron and steel production use fossil
68 fuels as direct-process feedstock or to make heat. An environmentally-
69 friendly solution for iron and steel will require more than the use
70 of renewables if deep decarbonization is to be achieved. Despite nu-
71 merous opportunities, technical issues will need to be considered. The
72 incorporation of small contributions of renewable energy for electricity
73 production in isolation or on the utility side of the mine meter are not
74 technically challenging. The implementation of energy efficiency efforts
75 to transition fossil-based energy uses to electricity can also allow for
76 expansion of renewable energy in the mining sector. Expanding the
77 contribution of renewable energy, especially for electrically isolated
78 mines, poses additional technical issues that may be specific to the
79 mineral type as well as to the mine, and, thus, will require a more
80 tailored approach. Some of the major technical issues are feedstock
81 replacement, process heat demand, and renewable energy variability.
82 Some mining activities require fossil fuel as inputs either to create
83 carbon or hydrogen for their processes. Biomass and hydrogen present
84 themselves as environmentally-friendly energy sources that can be used
85 as feedstock, though the sustainable production of biomass at a scale
86 required by the mining industry will be difficult. Some mining activi-
87 ties require very high-temperature process heat that is generally not
88 currently attainable by most common renewable sources. While current
89 concentrated solar power, wind, and solar PV technology can provide
90 cost-effective thermal energy in favorable renewable energy resource

1 areas above 400 °C, most high-temperature-energy-intensive mining
 2 activities require temperatures beyond those achieved by current com-
 3 mercially available concentrated solar power. The use of wind and
 4 solar energy systems for high-temperature thermal energy, although
 5 technically viable, is not currently commercially available. While vari-
 6 ability of renewable energy is seen as a challenge to mining operations,
 7 hybrid systems can help alleviate this, especially when combined with
 8 energy storage and fossil-based dispatchable generation. Although not
 9 technical or financially viable to provide all of the mines' energy needs
 10 using green sources, mines can greatly expand their use of renewable
 11 energy using commercially existing technologies.

12 Despite the technical and financial challenges, there are solutions
 13 that can be employed to enable scaling of renewables in the mining
 14 industry. The first solution is alignment of a business model between
 15 the energy (utility, renewable and financing) and mining industries,
 16 which could be facilitated by host governments or other legal entities.
 17 Second, capacity building, in terms of improved tools and educational
 18 programs, could be developed to increase the skills of key stakeholders
 19 in the mining industry. Third, greatly expanded information sharing
 20 and the development of pilot projects within the mining sector will
 21 help transfer knowledge of how renewable energy at lower energy
 22 contributions can be successfully implemented. Benefits from these
 23 experiences will also extend to other energy-intensive industries such as
 24 the chemical industry. Fourth, government policy and regulations can
 25 play an important role in implementing many of the approaches we
 26 suggest. For example, most basic research and development is initiated
 27 at government research institutes. Additionally, government support
 28 in aligning policies across industries and advocating for integration of
 29 renewable energy sources in adjacent sectors, such as the utility sector,
 30 could help both government and mining companies achieve emissions
 31 goals, which have been one of the central issues in many developing,
 32 resource-rich countries. Finally, and especially when considering longer
 33 term deep decarbonization methods and impending cost reductions of
 34 renewable technologies, expanded research and development will be
 35 crucial to addressing many of the remaining technical issues to further
 36 transition the mining industry away from fossil fuels. For example,
 37 finding ways to economically achieve high-temperature requirements
 38 by renewable sources, and determining alternative and sustainable
 39 feedstock will be important to many energy-intensive mining activities.
 40 Other enabling approaches include pooling of resources between mines
 41 and communities.

42 This paper provides insights into the potential of renewable use in
 43 the mining industry. However, mining processes vary depending on the
 44 type of mineral produced and the possibilities for renewable resources
 45 at the mine site. Further research could focus on identifying specific
 46 opportunities, technologies, and implementation strategies across the
 47 value chain of a variety of minerals with similar operational pro-
 48 cedures. Specific attention should be placed on minerals or processes
 49 that could benefit from renewable energy technologies in terms of the
 50 reduction of energy use and emissions.

51 Declaration of competing interest

52 The authors declare that they have no known competing financial
 53 interests or personal relationships that could have appeared to
 54 influence the work reported in this paper.

56 Acknowledgments and disclaimer

57 This work was authored, in part, by the National Renewable Energy
 58 Laboratory, operated by Alliance for Sustainable Energy, LLC,
 59 for the U.S. Department of Energy (DOE) under Contract No. DE-
 60 AC36-08GO28308. Funding was provided by the Joint Institute for
 61 Strategic Energy Analysis (JISEA). Sections of this paper were pre-
 62 viously published as a technical report <https://www.nrel.gov/docs/fy20osti/76156.pdf>. The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government.

References

- 1 MIT. Strategic metals: Will future supply be able to meet future demand? 2016, URL <https://web.mit.edu/12.000/www/m2016/finalwebsite/problems/supplydemand.html>, Accessed August 27, 2020. 66
- 2 Norgate T, Haque N. Energy and greenhouse gas impacts of mining and mineral 67 processing operations. *J. Cleaner Prod.* 2010;18(3):266–74. 68
- 3 Lezal S, Cannon C, Blank K. Low-Carbon Metals for a Low-Carbon World: A 69 New Energy Paradigm for Mines. Tech. Rep., Rocky Mountain Institute; 2019. 70
- 4 Carvalho FP. Mining industry and sustainable development: Time for change. 71 *Food Energy Secur* 2017;6(2):61–77. 72
- 5 Kirk T, Cannon C. Sunshine for mines: A brighter vision for sustainable resources. 73 2020, URL <https://rmi.org/sunshine-for-mines-a-brighter-vision-for-sustainable-resources/>, Accessed August 27, 2020. 74
- 6 Igogo T, Lowder T, Engel-Cox J, Newman A, Awuah-Offei K. Integrating 75 Clean Energy in Mining Operations: Opportunities, Challenges, and Enabling 76 Approaches. Tech. Rep., National Renewable Energy Laboratory; 2020. 77
- 7 Maenling N, Toledoano P. The renewable power of the mine. 2018. 78
- 8 Larsen N. Favorable renewable-energy economics are now too attractive 79 to ignore. 2019, URL <https://internationalbanker.com/brokerage/favourable-renewable-energy-economics-are-now-too-attractive-to-ignore/>, Accessed August 27, 2020. 80
- 9 Levesque M, Millar D, Paraszczak J. Energy and mining—the home truths. *J. 81 Cleaner Prod.* 2014;84:233–55. 82
- 10 Awuah-Offei K. Energy efficiency in mining: A review with emphasis on the 83 role of operators in loading and hauling operations. *J. Cleaner Prod.* 2016;117:89–97. 84
- 11 USDepartment of Energy. Mining industry energy bandwidth study. 2007, URL 85 https://www.energy.gov/sites/prod/files/2013/11/f4/mining_bandwidth.pdf, Accessed August 27, 2020. 86
- 12 Oladiran M, Meyer J. Energy and exergy analyses of energy consumptions in the 87 industrial sector in South Africa. *Appl. Energy* 2007;84(10):1056–67. 88
- 13 Imasiku K, Thomas VM. The mining and technology industries as catalysts for 89 sustainable energy development. *Sustainability* 2020;12(24):1–13. 90
- 14 Ditsese O, Awuah-Offei K. Effect of mine characteristics on life cycle impacts of 91 US surface coal mining. *Int J Life Cycle Assess* 2012;17(3):287–94. 92
- 15 Norgate T, Haque N. Energy and greenhouse gas impacts of mining and mineral 93 processing operations. *J. Cleaner Prod.* 2010;18(3):266–74. 94
- 16 Kuykendall T. Path to net zero: Miners are starting to decarbonize as investor 95 pressure mounts. 2020, URL <https://www.spglobal.com/marketintelligence/en/news-insights/latest-news-headlines/path-to-net-zero-miners-are-starting-to-decarbonize-as-investor-pressure-mounts-59583837>, Accessed September 1, 96 2020. 97
- 17 ICMM statement on climate change. 2015, URL <https://www.icmm.com/website/publications/pdfs/climate-change/icmm-statement-on-climate-change-2015.pdf>, Accessed August 27, 2020. 98
- 18 The growing role of minerals and metals for a low carbon future (No. 117581, 99 pp. 1–0). The World Bank; 2017. 100
- 19 Hodgkinson JH, Smith MH. Climate change and sustainability as drivers for the 101 next mining and metals boom: The need for climate-smart mining and recycling. 102 *Resour. Policy* 2018;101205. 103
- 20 Zharan K, Bongaerts JC. Decision-making on the integration of renewable energy 104 in the mining industry: A case studies analysis, a cost analysis and a SWOT 105 analysis. *J Sustain Mining* 2017;16(4):162–70. 106
- 21 Moreno-Leiva S, Haas J, Junne T, Valencia F, Godin H, Kracht W, Nowak W, 107 Eltrop L. Renewable energy in copper production: A review on systems design 108 and methodological approaches. *J. Cleaner Prod.* 2020;246:118978. 109
- 22 Paraszczak J, Fytas K. Renewable energy sources—a promising opportunity for 110 remote mine sites? In: Proceedings of the International Conference on Renewable 111 Energies and Power Quality, 2012; p. 28–30. 112
- 23 Soberanis ME, Alnagar A, Mérida W. The economic feasibility of renewable 113 energy for off-grid mining deployment. *Extractive Ind Soc* 2015;2(3):509–18. 114
- 24 Stegen KS. Heavy rare earths, permanent magnets, and renewable energies: An 115 imminent crisis. *Energy Policy* 2015;79:1–8. 116
- 25 Dutta T, Kim K-H, Uchimiya M, Kwon EE, Jeon B-H, Deep A, Yun S-T. Global 117 demand for rare earth resources and strategies for green mining. *Environ. Res.* 118 2016;150:182–90. 119
- 26 Baker L. Renewable energy in South Africa's minerals-energy complex: A 'low 120 carbon' transition? *Rev African Polit Economy* 2015;42(144):245–61. 121
- 27 Furnaro A. Neoliberal energy transitions: The renewable energy boom in the 122 Chilean mining economy. *Environ Plan E: Nat Space* 2019;951–75. 123
- 28 Voteler RG, Brent AC. A literature review on the potential of renewable 124 electricity sources for mining operations in South Africa. *J Energy Southern 125 Africa* 2016;27(2):1–21. 126
- 29 McLellan B, Corder G, Giurco D, Ishihara K. Renewable energy in the minerals 127 industry: A review of global potential. *J. Cleaner Prod.* 2012;32:32–44. 128
- 30 Zharan K, Bongaerts JC. Survey on integrating of renewable energy into the 129 mining industry. *J Environ Account Manage* 2018;6(2):149–65. 130
- 31 BNEF. Miners turn to clean energy: Costs and key strategies. Database. 2019. 131
- 32 Global metals & mining. 2021, URL marketresearch.com, Accessed February 14. 132

[33] Ericson S, Engel-Cox J, Arent D. Approaches for Integrating Renewable Energy Technologies in Oil and Gas Operations. Tech. Rep., National Renewable Energy Laboratory; 2019.

[34] World mining database. 2020, URL <https://www.world-mining-data.info/?>, Accessed August 27, 2020.

[35] Norgate T, Jahanshahi S, Rankin W. Assessing the environmental impact of metal production processes. *J. Cleaner Prod.* 2007;15(8–9):838–48.

[36] Norgate T, Haque N, Somerville M, Jahanshahi S. Biomass as a source of renewable carbon for iron and steelmaking. *ISIJ Int* 2012;52(8):1472–81.

[37] World Steel Association. World steel in figures 2019. 2019, URL <https://www.worldsteel.org/en/dam/jcr:96d7a585-e6b2-4d63-b943-4cd9ab621a91/World%2520Steel%2520in%2520Figures%25202019.pdf>, Accessed September 1, 2020.

[38] Alova G. Integrating renewables in mining: Review of business models and policy implications. 2018, p. 14.

[39] Sahu H, Prakash N, Jayanthu S. Underground mining for meeting environmental concerns—a strategic approach for sustainable mining in future. *Procedia Earth Planet Sci* 2015;11:232–41.

[40] Davy A. It's time for the mining industry to step up on the environment and human rights. 2018, URL <https://www.ethicalcorp.com/content/its-time-mining-industry-step-environment-and-human-rights>, Accessed September 1, 2020.

[41] Norton Rose Fulbright. Renewable energy in latin america. 2017, URL <https://www.nortonrosefulbright.com/-/media/files/nrf/nrfweb/imported/renewable-energy-in-latin-america.pdf?la=en&revision=66edb636-af27-43d7-8c44-c65564b1833b>, Accessed August 27, 2020.

[42] Natural Resources Canada. Government of Canada promotes renewable energy innovation in mining. 2019, URL <https://www.canada.ca/en/natural-resources-canada/news/2019/01/government-canada-promotes-renewable-energy-innovation-mining.html>, Accessed August 27, 2020.

[43] Lazard. Levelized cost of energy and levelized cost of storage. 2019, URL <https://www.lazard.com/perspective/lcoe2019>, Accessed August 27, 2020.

[44] Energy Information Administration. Manufacturing energy consumption survey. 2014, URL <https://www.eia.gov/consumption/manufacturing/data/2014/#5>, Accessed August 27, 2020.

[45] Katta AK, Davis M, Kumar A. Development of disaggregated energy use and greenhouse gas emission footprints in Canada's iron, gold, and potash mining sectors. *Resour. Conserv. Recy.* 2020;152:104485.

[46] Palchack D, Cochran J, Ehlen A, McBennett B, Milligan M, Chernyakhovskiy I, Deshmukh R, Abhyankar N, Soonee K, Narasimhan S, Joshi M, Sreedharan P. Gerening the grid: Pathways to integrate 175 gigawatts of renewable energy into India's electric grid, vol. I—National study. Greening the grid program. 2017, URL <https://www.nrel.gov/docs/fy17osti/68530.pdf>, Accessed August 27, 2020.

[47] Deign J. Mining giants embrace renewables, but decarbonization remains a steep climb. 2020, URL <https://www.greentechmedia.com/articles/read/mining-giants-embrace-renewables-but-decarbonization-remains-a-steep-climb>, Accessed August 28, 2020.

[48] Booth M, Bixley P. Geothermal development in papua new guinea: A country update report: 2000 – 2005. 2005, URL <https://www.geothermal-energy.org/pdf/IGAstandard/WGC/2005/0136.pdf>, Accessed August 27, 2020.

[49] Judd E. Raglan mine: Canada's first industrial-scale wind and energy storage facility, energy and mines. 2014, URL <https://energyandmines.com/wp-content/uploads/2014/08/Raglan.pdf>, Accessed August 27, 2020.

[50] Slavin A. First solar PV and battery plant to be built in Australia, bhp partners up, energy and mines. 2016, URL <https://energyandmines.com/2016/09/first-solar-pv-and-battery-plant-to-be-build-in-australia-bhp-partners-up/>, Accessed August 27, 2020.

[51] Demirel N. Energy-efficient mine ventilation practices. In: *Energy Efficiency in the Minerals Industry*. Springer; 2018, p. 287–99.

[52] Terblanche PJ, Kearney MP, Hearn CS, Knights PF. Technology selection and sizing of on-board energy recovery systems to reduce fuel consumption of diesel-electric mine haul trucks. In: *Energy Efficiency in the Minerals Industry*. Springer; 2018, p. 301–33.

[53] Terblanche PJ, Kearney MP, Nehring M, Knights PF. Potential of on-board energy recovery systems to reduce haulage costs over the life of a deep surface mine. *Mining Technol* 2019;128(1):51–64.

[54] IRENA. A background paper to “renewable energy in manufacturing”. 2015.

[55] World Steel Association. World steel in figures. 2019, URL <https://www.worldsteel.org/en/dam/jcr:96d7a585-e6b2-4d63-b943-4cd9ab621a91/World%2520Steel%2520in%2520Figures%25202019.pdf>, Accessed September 1, 2020.

[56] MIDREX. The MIDREX process - the world's most reliable and productive direct reduction technology. 2018, URL https://www.midrex.com/wp-content/uploads/Midrex_Process_Brochure_4-12-18.pdf, Accessed August 27, 2020.

[57] IEA. The future of hydrogen: Seizing today's opportunities. 2019, URL <https://webstore.iea.org/the-future-of-hydrogen>.

[58] Hatch. Raglan mine integrated wind-storage-diesel energy. 2020, URL <https://www.hatch.com/en/Projects/Energy/Raglan-Mine-Integrated-Wind-Storage-Diesel-Energy-Project>, Accessed August 14, 2020.

[59] Patterson S, Wexler A. Despite cleanup vows, smartphones and electric cars still keep miners digging by hand in congo. 2018, URL <https://www.wsj.com/articles/smartphones-electric-cars-keep-miners-digging-by-hand-in-congo-1536835334>, Accessed August 27, 2020.

[60] Comtrade UN. Trade database. 2020, URL <https://comtrade.un.org/data/>, Accessed August 27, 2020.

[61] Porter M, Kramer M. Creating shared value. *Harv. Bus. Rev.* 2011;89(1/2):62–77.

[62] Levesque M, Millar D, Paraszczak J. Energy and mining—the home truths. *J. Cleaner Prod.* 2014;84:233–55.

[63] Ogunmodede O, Anderson K, Cutler D, Newman A. Optimizing design and dispatch of a renewable energy system. *Appl. Energy* 2021;accepted.

[64] de Moraes SL, de Lima JRB, Ribeiro R. Iron ore pelletizing process: An overview. 2019, Accessed August 27, 2020.

[65] Steel industry profile. 2020, URL <https://www.energy.gov/eere/amo/steel-industry-profile>, Accessed August 27, 2020.

[66] Decarbonization of industrial sectors: The next frontier. 2018.

[67] CSP startup heliogen cranks up solar thermal to 1,000 degrees. 2020, URL <https://www.greentechmedia.com/articles/read/heliogen-cranks-solar-thermal-up-to-1000-degrees-cel>.

[68] Jacob R, Belusko M, Liu M, Saman W, Bruno F. Using renewables coupled with thermal energy storage to reduce natural gas consumption in higher temperature commercial/industrial applications. *Renew. Energy* 2019;131:1035–46.

[69] Renewable energy solution for industrial heat application. 2019.

[70] Cheng Z, Yang J, Zhou L, Liu Y, Wang Q. Characteristics of charcoal combustion and its effects on iron-ore sintering performance. *Appl. Energy* 2016;161:364–74.

[71] Jackson C, Molloy P. A renewable hydrogen way forward for the mining industry? 2018, URL <https://rmi.org/a-renewable-hydrogen-way-forward-for-the-mining-industry/>, Accessed August 27, 2020.

[72] Zaharia N. Mining heavyweights form green hydrogen consortium. 2020, URL <https://www.australianmining.com.au/news/mining-heavyweights-form-green-hydrogen-consortium/>, Accessed August 27, 2020.

[73] Guibalb J. Hybrid power opportunities in mining. 2019.

[74] Aslam S, Herodotou H, Mohsin SM, Javaid N, Ashraf N, Aslam S. A survey on deep learning methods for power load and renewable energy forecasting in smart microgrids. *Renew. Sustain. Energy Rev.* 2021;144:110992.

[75] Kojovic T, Thornton D, Adel G, Demeyer S, et al. Can mine to mill optimisation succeed under complex constraints? *Australasian Inst Mining Metall Publ Series* 2007;105–18.

[76] Chatterjee A, Zhang L, Xia X. Optimization of mine ventilation fan speeds according to ventilation on demand and time of use tariff. *Appl. Energy* 2015;146:65–73.

[77] Nessim W, Zhang FJ, Zhao CL, Zhu ZX. Optimizing operational performance of diesel mining truck using thermal management. In: *Advanced Materials Research*, Vol. 813. Trans Tech Publ; 2013, p. 273–7.

[78] Middelberg A, Zhang J, Xia X. An optimal control model for load shifting—with application in the energy management of a colliery. *Appl. Energy* 2009;86(7–8):1266–73.

[79] Ristić L, Bebić M, Jevtić D, Mihailović I, Štaknić S, Rašić N, Jeftević B. Fuzzy speed control of belt conveyor system to improve energy efficiency. In: *2012 15th International Power Electronics and Motion Control Conference (EPE/PEMC)*. IEEE; 2012, p. DS2a-9.

[80] Statista. Duration of the extraction period of a mine by selected commodities. 2020, URL <https://www.statista.com/statistics/255479/mine-life-per-commodity/#:text=>, Accessed August 27, 2020.

[81] Spence A. New \$1 billion mine looks to solar, wind, batteries for 80% of power needs. 2020, URL <https://reneweconomy.com.au/new-1-billion-mine-looks-to-solar-wind-batteries-for-80-of-power-needs-90179/>, Accessed August 27, 2020.

[82] Jisea workshop with mining industry professionals, november 7, 2019. National Renewable Energy Lab; 2019.

[83] Severn A. The chatham house rule. *Morecambe Bay Med J* 2015;7:87.

[84] Booth S, Li X, Baring-Gould I, Kollanyi D, Bharadwaj A, Weston P. Productive use of energy in african micro-grids: Technical and business considerations. 2018, URL <https://www.nrel.gov/docs/fy18osti/71663.pdf>, Accessed August 27, 2020.

[85] World Bank. Africa – power mining projects database. 2014, URL <https://datacatalog.worldbank.org/dataset/africa-powermining-projects-database-2014>, Accessed August 27, 2020.

[86] Stephenson M. Addressing local content requirements: Current challenges and future opportunities. 2013, URL <https://www.ictsd.org/bridges-news/biores/news/addressing-local-content-requirements-current-challenges-and-future#:text=>.