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Nanomagnetic Neural Networks

• Neural networks (NNs) are useful for
pattern recognition tasks that humans
are traditionally better at like speech
and image recognition

• Synapses and neurons of a neural
network can be implemented using
spintronic domain wall devices

• Magnetic domain wall device current
density vs synapse change linearity can
be tuned to optimize NN training

• Goal: model shape-based nonlinear
synaptic behavior at device and system
level
• Nonlinear synaptic behavior implement

unsupervised learning

Hassan et al., Magnetic domain wall neuron with lateral inhibition
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Domain Wall Synapses
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• Linear synapses implemented by
rectangular channel

• Notches provide the fixed
states/positions for the domain wall
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• Nonlinear tuning can be
implemented by using sloped
channel



Micromagnetics and Analytical modeling

• Develop non-linear synapse model
using micromagnetics simulation
software MuMax3

• Produce SPICE compatible
analytical device model

• Emphasis on ways to minimize
leaking behavior in synapses

Brigner et al., Graded-Anisotropy-Induced Magnetic Domain Wall Drift for an

Artificial Spintronic Leaky Integrate-and-Fire Neuron
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Benchmark results for smooth synapse
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Edge roughness does not impact synapse
behavior
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Notches prevent leaking
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Notch pinning verification

Pulsed current notch pinning :: 10 nm. notch dianteter .= 25 nm 11,2 =. 50 nm x10-5
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• Pinning dependence
likely dependent on
Walker breakdown
precession of domain
wall
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• Domain wall at wide

-1 end hard to pin, likely
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Analytical modeling

• Approach: use 1D solution for DW
motion in Walker breakdown regime

• Subsume all geometry based effects
(slope, notches) into field term (H)
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DW position = 25 nm = I Cr: f smooth

Analytical results
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Temperature Considerations
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DW pinning dependence on temperature
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• Temperature causes noise,
random motion for each spin in
the system

• Random magnetization
fluctuations due to heat cause
gradual depinning

• Notches must provide energy
well exceeding energy of heat
fluctuation



Conclusion

• Set up micromagnetics model of trapezoidal synapse using CoFeB material
parameters with implementation of:
• Spin transfer torque, spin Hall effect, Rashba effect
• Notches and surface roughness
• PMA vs IMA materials

• Notches were identified as a shape-related way to prevent leaking

• Analytical model useful for circuit-level simulations developed, with effects
of geometry consumed into effective magnetic field term

• Limitations identified:
• Resolution of device limited due to notches
• Pinning effect dependent on temperature
• Notches in different positions have different thresholds due to demagnetizing field



Future Research

• Investigation into required notch depth to prevent depinning
due to thermal fluctuations

• Improvement of notch field effects in analytical model

• Analyze multiple interacting devices and neural network
update behavior


