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\\ Trusted Artificial Intelligence =
\

What makes a prediction trustworthy?

/
O
1. Scientific Method & Machine Learning
2. Naturalist Epistemology & Rational Beliet
l 3. Bayesian Inference, Prior Belief, & Machine Learning
0O 4. A Universal Formulation of Complexity
/5 5. Numerical Experiments & Results
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Standard Machine Learning (ML) training practices are analogous to the scientific method.

\\ Scientific Method & Machine Learning @?‘
\

/ Scientific Method: Machine Learning:
O il . Gather evidence.] 11 . Curate training data. ]
LZ. Formulate a hypothesis] 2. Adjust model parameters o
3. Test predictions with } X predict training labels. .
l 3 experiments. 3. Monitor predictions using
5 \4. Accept or reject the model.} . validation dataset. )
4. Select model producing best

/ _ validation predictions. )

Unfortunately, standard approaches do not use data efficiently. L
Wasteful methods require a lot of evidence to obtain reliable results. i %

.G;\VJ ~
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Underdetermined polynomial regression demonstrates the problem with g
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having many parameters (21 basis functions) and few data (12 points).

Not only is it difficult to
identify the optimal model,

training fails to propose
credible models.

By controlling model
complexity from first
principles,

we obtain rigorously
justified uncertainty in
predictions.
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Leave-One-Out Cross-Validation

| | = predictive mean
— predictive deciles
®  training data
®  validation data

\\ Cross-Validation and Limited Data
N

|

Artificially-Generous ~Cross-VaIidatiun\

MY

/ Parsimonious Ensemble Maximum \

Leave-One-Out Aggregate

arsimonious Ensemble Aggregate
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The subtext of uncertainty quantification for machine learning is the
desire for a clearer understanding of what may be true.

\\ Rational Beliet & Uncertainty Quantitfication H=.
A

The scientific method 1s based upon the naturalist view of epistemology.

O
[ Validity derives from consistency. J
l 1. Rational beliefs must avoid internal contradictions.
Rational beliefs must account for all past observations.
O 3. As additional data become available, credible past beliefs
yield predictions matching additional evidence.
4, As additional data become available, rational beliefs evolve.
\ The first point allows us to place the remaining points within a e,
mathematically rigorous extended logic, Bayesian inference. ‘ X
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Building on the work of Keynes (1929) and Jeffreys (1939), Cox (1946) uses binary logic to

derive the laws of probability as an extended logic representing degrees of truth.

Logic:

a-b=b-g,

a-(avb)=a,

/D Jed Duersch, Sandia National Labs

~~a=a,
avb=bva,
ava=a,
a-(b-c}=(a-b)-c=a b-c,
av(bve)=(avb)vc=avbvec,
~(a-b)=~av ~Db,
~(avb)=~a-~Db,

(6) av(a-b)=a.

\\ Belief as an Extended Logic @?"
\

(1
(2
(39

4)
(%)

()
(5)
(67

Extended logic:

® Probability is nonnegative.
® Impossibility has probability zero.

® Certainty has maximum probability, normalized to
one.

® Bayes’ theorem conditions belief on evidence.
(ol — Pb(@)
p(b)
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Empirical Data: D = {
Likelihood: p(D

1\>Bayesian Inference
\O features labels

El’z',ys | i € [n]}

6), or more precisely p(y | z, 0)

Evidence: p(D | M) = /dﬁp(D | 0)p(6 | M)

y

%

Rational Predictions:

& Bayes’ Theorem A
p(0 | D, M) =

-~ p(D|0)p(0 | M)

p(D|M)

p(i | & D, M) = /depm

potential labels % K new features
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z,0)p(0 | D,M)

8/6/2020

7




71

The Problem of Prior Belief @?'

Inference requires prior belief. When data are limited, predictions are highly sensitive

1 to pnor belief (Owhadi, 2015). Maximum entropy priots demonstrate this:

Prior Predictive Posterior Predictive Prior Predictive
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\Scope of the Machine Learning Problem

Symmetric sensitivity thought experiment

1.2

explains this point.

06

047

02

| ;l - this manifold.

0.5 0 0.5 1 15

The model universe is the set of all coherent predictive models

©={0|p(y|z,0)predicts y from x} .

In this perspective, prior belief subsumes computational
/) architecture and regularization.
J
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| * Any convex combination of basis functions

® This 1s every machine learning problem.
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* With n observations, d differentiable parameters, we
have at least d — n degenerate parameter dimensions;
prior belief totally determines posterior belief on




Postulates of information as a rational measure of change in belief:

1. Information is a reasonable expectation over rational belief or a hypothetical
choice measuring a change in belief.

\\ Information as Change in Beliet @?"
N

O
2. Information is additive over independent processes.
3. When we have no change in belief, we have zero information.
4. The information gained from any hypothetical belief to rational belief is
l nonnegative.
O Theorem 1. Information satisfying these postulates is computed as
. (1 (Z )
Lol a) ao(2)] = af der:)log (245 ).
\ q0(2)
Duersch, J.A.; Catanach, T.A., Generalizing Information to the Evolution of Rational f*/f'\;%
/3 Belief. Entropy Journal, 2020. wﬁ%‘
. . \J\\’\
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Theoretlcal Framework to Control Complexity
\J Hyperprior: p(¢) Prior: p(0]v) Predictions: p(y|z, 8) g

[ o L S

Potential prior Computational Outcomes to

representations models predict

l ®* A prior representation ¥ fits in your computer; it is a discrete

random variable and corresponds to some sequence of symbols.

@) ' . . .
® Prior complexity is the amount of information generated when

/D a specific representation 1s realized.

X(¥) = Ly [r(@10)Ip(¥)] = —log (p(¥)) =N
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®* Solomonoff (1960) used program length to derive algorithmic probability:

\\ Program Length & Algorithmic Probability H=.
A

As a program, P (-) has length €(1) given by the number of bits used to encode it

O with some interpretet.

Given W(z,y) = {®i|lvi(z) =y,i=1,2,...} then p(sh;) oc 27,

* Kolmogorov (1968) used program length to define information-theoretic complexity
l of a mapping: ’
K(z,y) = min £(3)).

manifold of potential models and the parameter distribution over that manifold.

/} For our purposes, a sequence of symbols 3 specifies prior belief, including both a

A universal hyperprior over arbitrary architectures easily [ ( ’l;b) — ( Q/)) J
/3 follows by regarding prior complexity as program length. X = L\Y).
J
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\Complemty in Decision Trees @g’?

/1\3
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\>\> Example Encoding, Decision Tree Node @?—-
\

Example code: (branch, 2,10 1)

Branch or branch Splitting
Leaf? dimension? {branch, leaf} log,(2) = 1bit
f1, 2, 3} log,(3) = 1.58 bits
l 2:0,%:100,%:101, ...}
1 bit 3 bits 3 bits

O

!

Infer label Solittin Process left.
¢ probabilities from thI]_::)e h lip
/] Dirichlet prior. O Process right.
\
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How much does our belief change in ¥, %, and 8 when we observe

Sandia
Ntonel
Informatlon Minimization Objective &) g
/1\J data ¥, select a ptior representation P, and infer model belief?

= argmin Ly 55y yp(o15.6) [rIDT@COPEN,9) [|p(, 6,9)

Y™ = arg mgxw(¢) 1

w(¥) =E, 010 Lr )

Q

= log (p(¥|9)
Jed Duersch, Sandia National Labs

y)) + L (y19) [p(v)||go(y)] - Representation posteriot.

p(yl0) || 90(y)]
7,9) | p(60])]

- ]ﬂ[p(ﬁhyﬂﬁ) [p(@ | | Model info due to inference.
\ o ﬂ[r(qph/*}) [r(zﬁh}) | p(¢)] . Representation info due to selection.

Expected info gained about data.
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\Extreme Data Limitations & Uncertainty @"""

Bootstrap Parsimony
| Standard Tree Parsimony Tree Aggregate Aggregate 1
1 N All three experiments are generated
/| ' .
y from the same, heavily skewed,
O g distribution.
0.2
. Row 1: Learning from a single point
Test Info = 0.959 - 0.041 oo Test Info = 0.094 Test Info = 0.959 - 0.041 0o Test Info = 0.260 . "
1 results in extreme uncertainty.
0.8
o : Row 2: A group with the same label
o g contributes confidence. Uncertainty
o o increases as we move away from data.
(1) Test Info = 0.959 - 0.041 oo Test Info = 0.800 Test Info = 0.959 - 0.041 oo Test Info = 0.863
. Row 3: Learning from heavily skewed
. labels is possible. Our model avoids
\ 9 confidence in regions without dat
0.2
00 0.2 0.4 0.6 0.8 10 0.2 0.4 0.6 0.8 10 0.2 04 0.6 0.8 10 0.2 0.4 0.6 0.8 1 0
Test Info = 1.000 Test Info = 0.977 Test Info = 0.999 Test Info = 0.969
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Aggregate
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0.2
0

Test Info = 0.611 - 0.389 oo Test Info = -0.181 Test Info =0.123 - 0.018 o©

1
0.8
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0.4
0.2

Test Info = 0.672 - 0.328 o Test Info = 0.174 Test Info = 0.125
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\> Overlapping Labels
\) Standard Tree Parsimony Tree o

- O

Test Info 0 082 0 009 00

0

Aggregate

0.2

Test Info = 0.051

Test Info = 0.162

0.4 0.6
Test Info = 0.263

0.8

and Artifacts

Parsimony

1
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Row 2: Bootstrap aggregation may

produce artifacts that artificially hew
to the data.

&

" This distribution generates both
labels in the middle region.

Row 1: The parsimonious aggregate
avoids confidence with few data.

red probability

Row 3: Parsimony trees resist
increases in complexity as the dataset
grows.
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\Parsnnomous Polynomial Regression B
e Ooe O Buniiow Tl f

Accounting for many
explanations gives us
natural extrapolation

predictive mean uncertainty.
predictive deciles
®  training data
2
£
K = ool
£ S 0 Additional data
& g 1 provide specificity.
= 2
_3 1
2
‘@ 1
-D'S 0 Complexity justifiably
R increases with the
Q o
N 5 size of the dataset.
-3
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principles of science.
* Controlling complexity with information is more reliable than cross-validation.

\> Summary
\O ®* We are developing machine learning inference methods that are rooted in the

O
® Our next challenge is to optimize efficiently in high parameter dimensions.

® We believe this theoretical framework will support 1. well-founded learning from

limited data, 2. firm differential privacy guarantees, 3. robust anomaly detection.
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