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Trusted Artificial Intelligence

What makes a prediction trustworthy?

1. Scientific Method & Machine Learning

2. Naturalist Epistemology & Rational Belief

3. Bayesian Inference, Prior Belief, & Machine Learning

4. A Universal Formulation of Complexity

5. Numerical Experiments & Results
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( Scientific Method & Machine Learning

\
Standard Machine Learning (ML) training practices are analogous to the scientific method.

D
) Scientific Method: Machine Learning:

,a) Sandia
1-mala

1. Gather evidence.

Formulate a hypothesid

3. Test predictions with
experiments.

Accept or reject the moded

4. Select model producing best1 
validation predictions. /AD) Unfortunately, standard approaches do not use data efficiently.

Wasteful methods require a lot of evidence to obtain reliable results.

1. Curate training data.

2. Adjust model parameters to
predict training labels.

3. Monitor predictions using
validation dataset.
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\O\Du Cd rdo s s-yadlidlation. l and L. imdeited,Datha pro
blem with

having many parameters (21 basis functions) and few data (12 points).

Not only is it difficult to

identify the optimal model,

training fails to propose

credible models.

By controlling model

0 complexity from first

principles,

we obtain rigorously

justified uncertainty in

predictions.
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Rational Belief & Uncertainty Quantification G
fi 
"las

) The subtext of uncertainty quantification for machine learning is the

) desire for a clearer understanding of what may be true.

The scientific method is based upon the naturalist view of epistemology.

Soda

0

Validity derives from consistency.  J
1. Rational beliefs must avoid internal contradictions.
2. Rational beliefs must account for all past observations.

3. As additional data become available, credible past beliefs

yield predictions matching additional evidence.
//()) 4. As additional data become available, rational beliefs evolve.

The first point allows us to place the remaining points within a

mathematically rigorous extended logic, Bayesian inference.
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Building on the work of Keynes (1929) and Jeffreys (1939), Cox (1946) uses binary logic to

0 derive the laws of probability as an extended logic representing degrees of truth.

0

0

Belief as an Extended Logic

Logic:
(1)

a.b -a, (2) avb—bva, (2')

a • a= a, (3) ava=a, (31)

a- (b = (a • b) •c b • c, (4)

av(bvc)=(avb)vc=.avbve, (4')

(a • b) = —a v —b, (5)

--- (a v = —a. (5i)

a • (a v 1)) = a, (6) a v (a-b) =a. (6')

Extended logic:
• Probability is nonnegative.

• Impossibility has probability zero.

• Certainty has maximum probability, normalized to
one.

• Bayes' theorem conditions belief on evidence.

p(alb) = 
p(bla)p(a)

p(b)
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E

he parameters
Likelihood: p(D 0) or more prec sely p(y x, 0)

}

Evidence: p(D M p(1, I 0)13(61 I M)

I Bayes' Theorem

p(o I D M)

p(D o)p(o M) 

13(7) 

0 Rational Pre ictions:

potential labels 74
Jed Duersch, Sandia National Labs
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The Problem of Prior Belief
Inference requires prior belief. When data are limited, predictions are highly sensitive

to prior belief (Owhadi, 2015). Maximum entropy priors demonstrate this:
1s

t-
or

de
r 
ba

si
s 

/3/ Jed Duersch, Sandia National Labs

2

1.8

1.6

1.4

1.2

-C9 1

0.8

0.6

0.4

0.2

2
1.8

0.2

Prior Predictive

0
0 0.2 0.4 0.6 0.8

Feature

ANIMMIL

1 00 0.2 OA 0.6

Feature

2

1.8

1.6

1.4

1.2

0.8

0.6

0.4

0.2

1.8

1.6

1.4

1.2

Posterior Predictive Prior Predictive
2

0.8

0.6

0.4

0.2

0.8

1.8

0.4

0.2

0

1.8(1)
• 1.6
(/)

Cit 1.4

0.4

saitlis&

0.2

Aii1111111111111111__ 

0.2

0
0 0.2 0.4 0.6 0.8 1 °0

Feature

2

1.8

1.6

1.4

1.2

0.8

0.6

0.4

0.2

0.8

0.6

0.4

0.2

Posterior Predictive

0.4 0.6

Feature

0.8

8/6/2020 8



0

0

Scope of the Machine Learning Problem
1. 2

0

-0.5

1

Symmetric sensitivity thought experiment

0 5 5

• Any convex combination of basis functions
explains this point.

• This is every machine learning problem.

• With n observations, d differentiable parameters, we
have at least d — n degenerate parameter dimensions;
prior belief totally determines posterior belief on

this manifold.

The model universe is the set of all coherent predictive models

= {0 p(y ) predicts y from x}

In this perspective, prior belief subsumes computational

architecture and regularization.
Jed Duersch, Sandia National Labs 8/6/2020



Ho Information as Change in Belief
) Postulates of information as a rational measure of change in belief:

) 1. Information is a reasonable expectation over rational belief or a hypothetical
choice measuring a change in belief.

2. Information is additive over independent processes.

3. When we have no change in belief, we have zero information.

4. The information gained from any hypothetical belief to rational belief is
nonnegative.

Theorem 1. Information satisfying these postulates is computed as

c=)[vi(z) I go(z) dz r(z) log

Duersch, J.A.; Catanach, T.A., Generalizing Information to the Evolution of Rational

Belief. Entropy Journal, 2020.
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Theoretical Framework to Control Complexity Labliaj

Hyperprior: p(0) Prior: ROM Predictions: p(y x 0)

Y.

Potential prior

representations

Computational

models
Outcomes to

predict

• A prior representation fits in your computer; it is a discrete
random variable and corresponds to some sequence of symbols.

• Prior complexity is the amount of information generated when
a specific representation is realized.

II opm [ (1,10) log (13(0)
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Pro ram Len gth & Alg orithmic Probability
• Solomonoff (1960) used program length to derive algorithmic probability:

As a program, .00 has length -I) op) given by the number of bits used to encode it
with some interpreter.

g 

Given W(x, y)   {0 IV)   y, i .} then p(0 •) a 2

0

if

i)

• Kolmogorov (1968) used program length to define information-theoretic complexity
of a mapping:

K (x , y) min £01) .
'IP Ex I (x 7Y)

For our purposes, a sequence of symbols ip specifies prior belief, including both a
manifold of potential models and the parameter distribution over that manifold.

O A universal hyperprior over arbitrary architectures easily

follows by regarding prior complexity as program length.

// Jed Duersch, Sandia National Labs
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Complexity in Decision Trees\K
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11:D Example Encoding, Decision Tree NBranch or

O

o
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leaf

Infer label

probabilities from

Dirichlet prior.

branch Splitting

dimension?

Splitting

threshold?

{branch, leaf} log2 (2) = 1 bit

{1, 2, 3} log2 (3) = 1.58 bits

{1/2 : 0, 1/4 : 1 0 0, 3/4 : 101, ...
1 bit 3 bits 3 bits

Process left.

Process right.

ode

Example code: (branch, 2, 1 0 1)

:0•0E E P  4,4,
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Information Minimization Objective
How much does our belief change in y, IA and 0 when we observe

data y, select a prior representation ib, and infer model belief?

arg en

arg m

(y y~rOPIib)P(B

(01

Ob) [r(y10 (010P(9lY 0) II 1)(7/)

(y16911 qo(y)1, Expected info gained about data.

Y VI) II p(Okb)] Model info due to inference.

[ (OP) I p(0)] • Representation info due to selection. ?

log _p(itpl y)) (yio p(y)llgo(y)1 Representation posterior.

Jed Duersch, Sandia National Labs 8/6/2020 15



Extreme Data Limitations & Uncertainty
\ Bootstrap Parsimony

\b 

0 8

Standard Tree Parsimony Tree Aggregate Aggregate
, 1

All three experiments are generated

from the same, heavily skewed,
0 6

distribution.
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Row 1: Learning from a single point

results in extreme uncertainty.

o Row 2: A group with the same label

?) contributes confidence. Uncertainty

increases as we move away from data.

0

Row 3: Learning from heavily skewed

labels is possible. Our model avoids

confidence in regions without dat

8/6/2020 16



vN Overlapping Labels and Artifacts
Bootstrap Parsimony

\\b Standard Tree Parsimony Tree Aggregate

) 

Aggregate

This distribution generates both
0 8

labels in the middle region.
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Row 1: The parsimonious aggregate

avoids confidence with few data.

Row 2: Bootstrap aggregation may

o produce artifacts that artificially hew

to the data.

Row 3: Parsimony trees resist

)increases in complexity as the datasetd 

grows.
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Aggregate Ensemble Maximum Ensemble Aggregate
.1.

Accounting for many

n
explanations gives us

extrapolation

Parsimonious Polynomial Regression
Leave-One-Out Parsimonious Parsimonious
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Additional data

provide specificity.

Gra

Elj Laboratories

Complexity justifiably

increases with the

size of the dataset.
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\ • We are developirng machine learning inference methods that are rooted in theK()

principles of science.

• Controlling complexity with information is more reliable than cross-validation.

• Our next challenge is to optimize efficiently in high parameter dimensions.

• We believe this theoretical framework will support 1. well-founded learning from

limited data, 2. firm differential privacy guarantees, 3. robust anomaly detection.

o
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Thank you!
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