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2 1 Outline

CAMI LDRD project motivation
Automated CT Segmentation

Geometric Uncertainty Characterization for DL Segmentation Models
* Monte Carlo Dropout Network

* Bayesian Convolutional Neural Network



Can we predict the behavior of as-built parts with error bars!?
Credible Automated Meshing of Images (CAMI) LDRD, Scott Roberts (1513), Pl

Hypothesis: We can develop an automated and credible image-to-mesh technology that can
demonstrate the physics impact of per-unit variability on material, component, or system
performance

Objective: We seek to develop a methodology for
automatically, efficiently, and reproducibly creating
conformal finite element meshes from 3D tomography Uncertainty quantification and propagation

with quantified uncertainty. Deep learning algorithms

Research thrusts — primary science questions: « Image segmentation
1. Automatic CT segmentation via Machine Learning (ML) il Bl
2. Automatic conformal tetrahedral mesh creation (ATM)
5. Uncertainty quantification and propagation (UQ)

Automatic tetrahedral meshing

¢ Conformal interfaces
» Feature-governed mesh resolution

¥ 30 Image Data '*;-f
§ (16-bit

Physics solve

¢ Finite element method predictions
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Can we predict the behavior of as-built parts with error bars!? th

Hypothesis: We can develop an automated and credible image-to-mesh technology that can
demonstrate the physics impact of per-unit variability on material, component, or system

performance

Objective: We seek to develop a methodology for
automatically, efficiently, and reproducibly creating
conformal finite element meshes from 3D tomography
with quantified uncertainty.

Research thrusts — primary science questions:
Il. Automatic CT segmentation via Machine Learning (ML) I
2. Automatic conformal tetrahedral mesh creation (ATM)
|3. Uncertainty quantification and propagation (UQ) I
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Uncertainty quantification and propagation

Deep learning algorithms

¢ Image segmentation
e Part identification

Automatic tetrahedral meshing

¢ Conformal interfaces
* Feature-governed mesh resolution

Physics solve

* Finite element method predictions






In order to use in simulations, we need to segment the image
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CT Segmentation is hard for humans (and painful)

CT scans must be labeled by component for simulations

https://en.wikipedia.org/wiki/Image_segmentation

Labeling by hand does not scale

Deep Learning algorithms can segment CT scans automatically

B

° Find each component of the object by material
° Find any anomalies

o Pass this to a usable form for numerical simulations



Using ML to save time and effort while improving accuracy I

AUTOMATED CT SEGMENTATION



Thresholding is not enough to get good segmentations of dense
materials

High density material can cause bright and dark ”shadow” artifacts in the CT reconstruction
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Segmentation is a classic computer vision problem

Image segmentation is well studied

o Small files

° Large training sets

https://www.cityscapes-dataset.com/

Volumetric segmentation is different Cityscape
> Big data (~1e5 pixels)
> Class imbalance (lots of background)
> Small training sets with “bad” human labels

> Humans can’t label a billion voxels without taking big shortcuts

Medical researchers are leading this work toward Deep Learning
solutions

Rattlesnake Tail
(-1e9 voxels)
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. | Mitigating challenges with CS/ML/statistics techniques

CT scans are large

o Used chunks of the volume

> Optimized our model for GPU memory
usage on GPU cluster

Class Imbalance
> Adjusted loss function that guides training

Artifacts and noise

o Selected Convolutional Neural Network
(CNN) architecture with strength in shape
recognition




., | Deep learning has a wide set of existing solutions

“Deep learning is the first class of algorithms that is scalable... performance just keeps getting
better as you feed them more data”

Andrew Ng, Founder of Google Brain

o U-net, a big advance in biomedical
segmentation

> Olaf Ronneberger, Philipp Fischer, Thomas Brox , “U-Net:
Convolutional Networks for Biomedical Image Segmentation”,
in Medical Image Computing and Computer-Assisted
Intervention (MICCAL), Springer, LNCS, Vol.9351: 234--241,
2015

o V-net follows as a natural extension
o F Milletari, N. Navab, and S. A. Ahmadi, “V-net: Fully

convolutional neural networks for volumetric medical image
segmentation,” in 2016 Fourth International Conference on 3D

Vision (3DV), Oct 2016, pp.565-571 V-Net architecture for segmenting volumetric data
(2016)

We started with a V-Net and made improvements as necessary
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., | Yolumetric battery segmentation achieves high accuracy

Human label ML prediction

Averaged 99.7% accuracy compared to human labels over held out test set



‘ Extending segmentation model to different battery types seems

challenging TRAINING SET

DOMAIN NAME | ACCURACY

E35 0.984

Tesla 0.973

Litarion 0.966 7
25R6 0.955

Electrode | 1 0.948
Electrode_Ill_1 | 0.945

GCA400 0.928 Litarion ' Electrode IV1 -

Electrode IV_1 | 0.917
Electrode_Il_2 | 0.902 TEST SET
GCA2000 0.900

Electrode_I_2 | 0.892
Electrode_Ill_2 | 0.773
Electrode_IV_3 | 0.748
Electrode_IV_2 | 0.745
Electrode_II_3 | 0.699
Electrode_IlI_3 | 0.668
Mean 0.8714375
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6 ‘ Inference results outside the training domain are
qualitatively better than accuracy measurements indicate

Electrode Il_3 CT scan slice
R NI S G AN B L0 Ty




17

http://www.cs.ox.ac.uk/people/yarin.gal/website/blog_3d801aa532c1ce.html

Using dropout to estimate segmentation confidence

UNCERTAINTY QUANTIFICATION




13 | Credible Uncertainty Quantification (UQ) is an open question

* Uncertainty quantification is critical when segmentations are used in high-consequence scenarios

* But deep learning does not provide UQ) estimates — they are not statistical models!

* How can we cast a neural network as a statistical model to obtain theoretically justified UQ?

Monte Carlo Dropout Network (MCDN)

Bayesian Neural Network (BININ)

(Gal 2016)

Insert dropout layers into neural network to
approximate Deep Gaussian Process

Learns uncertainty in the output space
Has been implemented for 3D domains (Liu)
Statistical soundness questioned (Osband 2016)

Easy to implement, no parameter increase

(Blundell 2015)

Learn distributions instead of pointwise
estimates for each weight in the neural network

Learns uncertainty in the weight space
Thought to be infeasible in 3D (Gal 2016)
Statistically sound (Graves 2011)

Very hard to implement, 2x parameter increase




. | Standard neural network models do not provide error bars

Softmax output is not enough to determine model uncertainty

Training domain Training domain
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*Solid black line is the result when dropout is not used

*Grey area shows inputs and outputs when dropout is used during inference

*We can use dropout at inference time to approximate uncertainty

“Dropout as a Bayesian

Approximation” & \

https://www.cs.ox.ac.uk/people/yarin.gal/website/blog_3d801aa532c1ce.html _Gal et. al.. 2016



. ‘ Uncertainty quantification allows us to add error bars to
our deep learning models

Using a deep learning technique called
dropout, we sample segmentation results
from the trained model.

For each pixel, we quantity the level of
uncertainty in our model, and we can
make decisions about the model’s
credibility on a particular task.

In training domain

Uncertainty map -
brighter pixel values
indicate higher uncertainty

The trained model has less confidence in
segmentations of inputs that fall outside
of the training distribution.

Work in progress: Use uncertainty maps
to bound variance in geometries of as-
built parts for use in simulations

Outside training domain

Gal, Yarin, and Zoubin Ghahramani. "Dropout as a Bayesian
approximation: Representing model uncertainty in deep

learning.” international conference on machine learning. 2016.
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How can we understand geometric uncertainties in deep

learning segmentations?

CT scan of battery with output of softmax layer overlaid
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We present first-ever 3D Bayesian CNN (BCNN) for UQ

* Refutes theory that BCNNSs are infeasible
in 3D due to poor convergence

* Used many recent advances in field to
produce a reliable deep learning system

* Tested on CT scan datasets of lithium-ion
battery electrodes & laser-welded metals

* Can extend to multiple datasets of
mission-critical materials

* Outperforms MCDN 1n quality of

uncertainty maps

* Also outperforms MCDN in most
recent uncertainty validation metrics

(a) CT scan slice. (b) Target segmentation.
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(¢) BCNN uncertainty (ours). (d) MCDN uncertainty.
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23 ‘ 3D BCNN Architecture

* Draws from original 3D segmentation architecture called V-Net (Milletari 2016)
* Uses Bayesian layers with standard normal prior in decoder half (right)

* Total of 1.92 million parameters and 49 layers
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@ 3D convolution with 3x3x3 filters, 1x1x1 stride, and ReLU activation

= g ik >
l'u' Ilig‘r E
> | |
i@‘.iJl! @ Upsampling of size 2x2x2 followed by 3D Bayesian convolution with 2x2x2 filters - 1
11x22x22x128 11x22x22x128 3D Bayesian convolution with 3x3x3 filters, 1x1x1 stride, and ReLU activation ‘

@ Concatenation

Group normalization with 4 groups

@ Max pooling of size 2x2x2

@ 3D convolution followed by pixel-wise convolution with sigmoid activation



24 | Variational learning allows distributions on weights

* Problem: intractable to calculate the exact posterior distribution of the weights

* Solution: perform variational learning (Graves 2011) with Bayes by Backprop (Blundell 2015)

F(D,0) = KL[g(w]0) || P(w)]
— 41q(w|9)[10gP(D"lU)].

°* Minimize variational free energy loss above
* Left side: simplicity of prior (KL divergence)
* Right side: complexity of dataset (Negative log-likelihood)

* Annealing of KL term necessary for reliable convergence

* Bayes by Backprop: integrate distribution updates into backpropagation

* Minimizes extra training computation
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25 I Group normalization helps train quickly and reliably

* Problem: large volumes only allow for small mini-batches

* Makes batch normalization fail, but batch normalization 1s necessary for reliable convergence

* Solution: use group normalization (Wu and He 2018)

* Calculates normalization independent of batch size

* Outperforms batch norm for size 8 or lower

Batch Norm Layer Norm Instance Norm Group Norm
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Group normalization represented in tensor format (Wu and He 2018)



26 | Test results on lithium-ion battery electrodes

* Accuracy roughly equal to MCDN
* BCNN UQ 1s usable and interpretable, outperforming MCDN UQ

BCNN

segmentation

Target

Ty € segmentation

< MCDN

segmentation
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27 | Test results on lithium-ion battery electrodes

* BCNN uncertainty captures continuity and visual oradients
p y g

* BCNN uncertainty more often identifies areas of high visual uncertainty in the CT scan

(c) BCNN uncertainty (ours). (d) MCDN uncertainty.
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28 I Test results on laser-welded metal joints

* Accuracy roughly equal to MCDN
* BCNN UQ 1s usable and interpretable, outperforming MCDN UQ

* Captures visual gradients and continuity

Target segmentation

CT scan slice

BCNN segmentation

BCNN uncertainty

MCDN segmentation

MCDN uncertainty
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(Questions?

cmarti5@sandia.gov

Sandia National Laboratories



