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2 Outline

CAMI LDRD project motivation

Automated CT Segmentation

Geometric Uncertainty Characterization for DL Segmentation Models

• Monte Carlo Dropout Network

• Bayesian Convolutional Neural Network
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I Can we predict the behavior of as-built parts with error bars?
3 I Credible Automated Meshing of Images (CAMI) LDRD, Scott Roberts (1513), PI

Hypothesis: We can develop an automated and credible image-to-mesh technology that can
demonstrate the physics impact of per-unit variability on material, component, or system
performance

Objective: We seek to develop a methodology for
automatically, efficiently, and reproducibly creating
conformal finite element meshes from 3D tomography
with quantified uncertainty.

Research thrusts — primary science questions:
1. Automatic CT segmentation via Machine Learning (ML)

2. Automatic conformal tetrahedral mesh creation (ATM)

3. Uncertainty quantification and propagation (UQ)
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Uncertainty quantification and propagation

Deep learning algorithms

• Image segmentation

• Part identification

Automatic tetrahedral meshing

• Conformal interfaces

• Feature-governed mesh resolution

Physics solve

• Finite element method predictions



4 Can we predict the behavior of as-built parts with error bars?

Hypothesis: We can develop an automated and credible image-to-mesh technology that can
demonstrate the physics impact of per-unit variability on material, component, or system
performance

Objective: We seek to develop a methodology for
automatically, efficiently, and reproducibly creating
conformal finite element meshes from 3D tomography
with quantified uncertainty.

Research thrusts — primary science questions: 

L Automatic CT segmentation via Machine Learning (ML)

2. Automatic conformal tetrahedral mesh creation (ATM)

3. Uncertainty quantification and propagation (UQ)
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Uncertainty quantification and propagation

Deep learning algorithms

• Image segmentation

• Part identification

Automatic tetrahedral meshing

• Conformal interfaces

• Feature-governed mesh resolution

Physics solve

• Finite element method predictions



5 CT produces raw images unsuitable for simulation



6 In order to use in simulations, we need to segment the image
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7 
I CT Segmentation is hard for humans (and painful)

CT scans must be labeled by component for simulations

https://en.wikipedia.org/wiki/Image_segmentation

Labeling by hand does not scale

Deep Learning algorithms can segment CT scans automatically
. Find each component of the object by material

. Find any anomalies

. Pass this to a usable form for numerical simulations



8 1

Using ML to save time and effort while improving accuracy

AUTOMATED CT SEGMENTATION
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Thresholding is not enough to get good segmentations of dense
materials

High density material can cause bright and dark "shadow" artifacts in the CT reconstruction

4

a

La

Pi

1



10 Segmentation is a classic computer vision problem

Image segmentation is well studied

o Small files

o Large training sets

Volumetric segmentation is different

o Big data

o Class imbalance (lots of background)

o Small training sets with "bad" human labels

o Humans can't label a billion voxels without taking big shortcuts

Medical researchers are leading this work toward Deep Learning
solutions

https://www.cityscapes-dataset.com/

Cityscape
(-1e5 pixels)

Rattlesnake Tail
(-1e9 voxels)



11 1 Mitigating challenges with CS/ML/statistics techniques

CT scans are large

. Used chunks of the volume

. Optimized our model for GPU memory
usage on GPU cluster

Class Imbalance
. Adjusted loss function that guides training

Artifacts and noise
. Selected Convolutional Neural Network
(CNN) architecture with strength in shape
recognition

o
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1 Deep learning has a wide set of existing solutions

"Deep learning is the first class of algorithms that is scalable... peormance just keeps getting
better as you feed them more data"

U-net, a big advance in biomedical
segmentation

Olaf Ronneberger, Philipp Fischer, Thomas Brox , "U-Net:
Convolutional Networks for Biomedical Image Segmentation",
in Medical Image Computing and Computer-Assisted
Intervention (MICCAI), Springer, LNCS, Vol.9351: 234--241,
2015

o V-net follows as a natural extension
F. Milletari, N. Navab, and S. A. Ahmadi, "V-net: Fully
convolutional neural networks for volumetric medical image
segmentation," in 2016 Fourth International Conference on 3D
Vision (3DV), Oct 2016, pp.565-571

Andrew Ng, Founder of Google Brain
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V-Net architecture for segmenting volumetric data
(2016)

We started with a V-Net and made improvements as necessary
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Volumetric battery segmentation achieves high accuracy

Slice of 3D Image Human label ML prediction

Averaged 99.7% accuracy compared to human labels over held out test set
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14 
Extending segmentation model to different battery types seems
challenging
DOMAIN NAME ACCURACY

E35 0.984

Testa 0.973

Litarion 0.966

25R6 0.955

Electrode_1_1 0.948

Electrode_111_1 0.945

GCA400 0.928

Electrode_IV_1 0.917

Eectrode_11_2 0.902

GCA2000 0.900

Etectrode_1_2 0.892

Electrode_111_2 0.773

Electrode_IV_3 0.748

Electrode_IV_2 0.745

Electrode_11_3 0.699

Electrode_111_3 0.668

Mean 0.8714375

TRAINING SET

Litarion Electrode IV_1
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Inference results outside the training domain are
qualitatively better than accuracy measurements indicate

Electrode 11 3 CT scan slice Human label ML prediction

ML segmentation is 69.9% accurate to the human label...but looks qualitatively better



http://www.cs.ox.ac.uk/people/yarin.gal/website/blog_3d801aa532c1ce.html

Using dropout to estimate segmentation confidence

UNCERTAINTY QUANTIFICATION



18 I Credible Uncertainty Quantification (UQ) is an open question

• Uncertainty quantification is critical when segmentations are used in high-consequence scenarios

• But deep learning does not provide UQ estimates — they are not statistical models!

• How can we cast a neural network as a statistical model to obtain theoretically justified UQ?

Monte Carlo Dropout Network (MCDN)

(Gal 2016)

Insert dropout layers into neural network to
approximate Deep Gaussian Process

Learns uncertainty in the output space

Has been implemented for 3D domains (Liu)

Statistical soundness questioned (Osband 2016)

Easy to implement, no parameter increase

Bayesian Neural Network (BNN)

(Blundell 2015)

Learn distributions instead of pointwise

estimates for each weight in the neural network

Learns uncertainty in the weight space

Thought to be infeasible in 3D (Gal 2016)

Statistically sound (Graves 2011)

Very hard to implement, 2x parameter increase
N.



19 1 Standard neural network models do not provide error bars
Softmax output is not enough to determine model uncertainty

Training domain
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'Solid black line is the result when dropout is not used

Grey area shows inputs and outputs when dropout is used during inference

•We can use dropout at inference time to approximate uncertainty
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NN input value

https://www.cs.ox.ac.uk/people/yarin.gal/website/blog_3d801aa532c1ce.html

Dn... Boeslan Approxiinallon:

"Dropout as a Bayesian
Approximation"
- Gal et. al., 2016



Uncertainty quantification allows us to add error bars to
our deep learning models

Using a deep learning technique called
dropout, we sample segmentation results
from the trained model.

For each pixel, we quantify the level of
uncertainty in our model, and we can
make decisions about the model's
credibility on a particular task.

The trained model has less confidence in
segmentations of inputs that fall outside
of the training distribution.

Work in progress: Use uncertainty maps
to bound variance in geometries of as-
built parts for use in simulations

Gal, Yarin, and Zoubin Ghahramani. "Dropout as a Bayesian
approximation: Representing model uncertainty in deep

learning." international conference on machine learning. 2016.
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CT scan slice ML segmentation
Uncertainty map -
brighter pixel values

indicate higher uncertainty



How can we understand geometric uncertainties in deep
learning segmentations?

- 0.9

- 0 8
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CT scan of battery with output of softmax layer overlaid



22 I We present first-ever 3D Bayesian CNN (BCNN) for UQ

• Refutes theory that BCNN s are infeasible
in 3D due to poor convergence

• Used many recent advances in field to
produce a reliable deep learning system

• Tested on CT scan datasets of lithium-ion
battery electrodes & laser-welded metals

• Can extend to multiple datasets of
mis sion-critical materials

• Outperforms MCDN in quality of
uncertainty maps

• Also outperforms MCDN in most
recent uncertainty validation metrics

(a) CT scan slice.
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23 3D BCNN Architecture

- Draws from original 3D segmentation architecture called V-Net (Milletari 2016)

• Uses Bayesian layers with standard normal prior in decoder half (right)

Total of 1.92 million parameters and 49 layers
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® 3D convolution with 3x3x3 filters, lx1x1 stride, and ReLU activation

® Group normalization with 4 groups

0 Max pooling of size 2x2x2

0 Upsampling of size 2x2x2 followed by 3D Bayesian convolution with 2x2x2 filters

10 3D Bayesian convolution with 3x3x3 filters, W.A. stride, and ReLU activation

O Concatenation

® 3D convolution followed by pixel-wise convolution with sigmoid activation

O



24 I Variational learning allows distributions on weights

• Problem: intractable to calculate the exact posterior distribution of the weights

• Solution: perform variational learning (Graves 2011) with Bayes by Backprop (Blundell 2015)

T(731,19) — KL[4(w19) 11 P(w)]
Eq0,169 [log P(D1w)].

• Minimize variational free energy loss above

• Left side: simplicity of prior (KT, divergence)

• Right side: complexity of dataset (Negative log-likelihood)

• Annealing of KL term necessary for reliable convergence

• Bayes by Backprop: integrate distribution updates into backpropagation

• Minimizes extra training computation



25 I Group normalization helps train quickly and reliably

• Problem: large volumes only allow for small mini-batches

• Makes batch normalization fail, but batch normalization is necessary for reliable convergence

• Solution: use group normalization (Wu and He 2018)

• Calculates normalization independent of batch size

• Outperforms batch norm for size 8 or lower

Batch Norm Layer Norm Instance Norm Group Norm

Group normalization represented in tensor format (Wu and He 2018)



26 I Test results on lithium-ion battery electrodes

• Accuracy roughly equal to MCDN

• BCNN UQ is usable and interpretable, outperforming MCDN UQ

Target

segmentation

CT scan slice
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(a) CT scan slice.

27 I Test results on lithium-ion battery electrodes

• BCNN uncertainty captures continuity and visual gradients

• BCNN uncertainty more often identifies areas of high visual uncertainty in the CT scan
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(b) Target segmentation.

(c) BCNN uncertainty (ours). (d) MCDN uncertainty.



28 I Test results on laser-welded metal joints

• Accuracy roughly equal to MCDN

• BCNN UQ is usable and interpretable, outperforming MCDN UQ

• Captures visual gradients and continuity

Target segmentation

CT scan slice

BCNN segmentation MCDN segmentation

BCNN uncertainty
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Questions?
cmarti5@sandia.gov
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