

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

SAND2020-7833C

# Learning Compact Physics-Aware Photocurrent Models Using Dynamic Mode Decomposition

Joshua Hanson

Sandia National Laboratories

August 3, 2020

laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, a Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract

# Motivation

- Radiation-induced photocurrent in semiconductor devices has traditionally been simulated using complex physics-based models, which are accurate, but often computationally expensive to solve numerically.
- We want to develop compact photocurrent models that are efficient for use in large-scale circuit simulators, but remain faithful to the underlying physics.
- We approach this problem by using Dynamic Mode Decomposition (DMD) to model the internal device dynamics derived from physics-based simulations. We use the simulated state as training data, instead of raw experimental measurements.
- This allows us to reproduce the accuracy of the physics-based models, but with the run-time efficiency of machine learning models.

# Brief intro to Koopman operator theory

- Consider a discrete-time dynamical system

$$\mathbf{x}_{k+1} = f(\mathbf{x}_k)$$

$$\mathbf{x}_k \in M \hookrightarrow \mathbb{R}^n$$

$$h : M \rightarrow \mathbb{R}$$

- Learning the transition map  $f$  can be difficult for nonlinear dynamics.
- Idea: "lift" the dynamics from the manifold  $M$  to a Hilbert space  $\mathcal{O}(M)$  of observables. Want the lifted dynamics to be linear.
- Definition: The *Koopman operator* is the infinite-dimensional linear map given by

$$\begin{aligned}\mathcal{K} : \mathcal{O}(M) &\rightarrow \mathcal{O}(M) \\ h &\mapsto h \circ f\end{aligned}$$

# Brief intro to Koopman operator theory

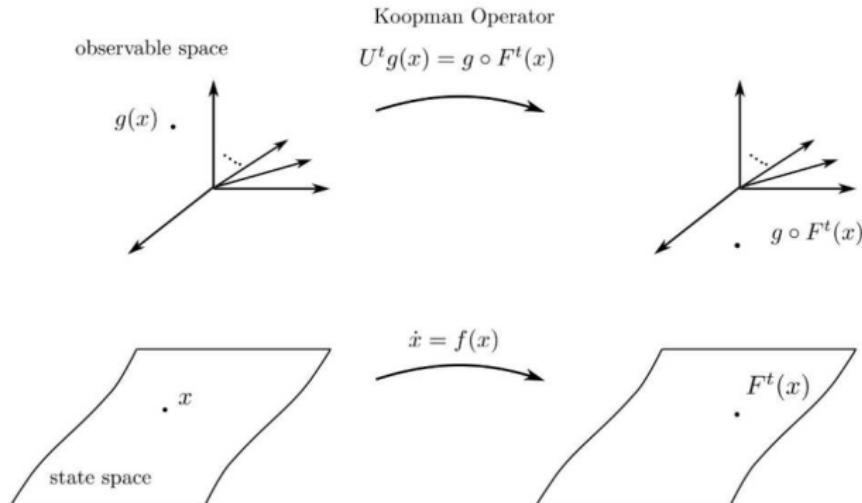


Figure 0.1: Koopman viewpoint lifts the dynamics from state space to the observable space, where the dynamics is linear but infinite dimensional.

Figure: Hassan Arbabi, Intro. to Koopman operator theory of dynamical systems, 2018

# Approximating the Koopman operator

- Under certain assumptions,  $\mathcal{K}$  is a compact operator. Let  $(g_i, \lambda_i)$  represent the eigenfunction/eigenvalue pairs (i.e.  $\mathcal{K}g_i = \lambda_i g_i$ ).
- We can approximate  $\mathcal{K}$  by restricting to a finite-dimensional observable subspace

$$H_N := \text{span}\{h_1, \dots, h_N\} \subset \mathcal{O}(M)$$

- Let  $h(\mathbf{x}) := \sum_{i=1}^N c_i h_i(\mathbf{x})$ . Then

$$h(\mathbf{x}_{k+1}) = \mathcal{K}^{k+1} h(\mathbf{x}_0) \approx \sum_{i=1}^N c_i \lambda_i^{k+1} h_i(\mathbf{x}_0)$$

- We can recover  $\mathbf{x}$  by applying  $h^{-1}$ . The approximation error will depend on how "expressive"  $H_N$  is.

# Dynamic mode decomposition (DMD)

- Suppose we have samples of the state vector

$$X = \begin{bmatrix} | & & | \\ \mathbf{x}_1 & \cdots & \mathbf{x}_{m-1} \\ | & & | \end{bmatrix}; \quad X' = \begin{bmatrix} | & & | \\ \mathbf{x}_2 & \cdots & \mathbf{x}_m \\ | & & | \end{bmatrix}$$

- If the dynamics are linear, we have  $X' = AX$  for some  $A \in \mathbb{R}^{n \times n}$ .
- We can construct a data-driven model by approximating the transition map via  $A \approx \bar{A} := X'X^\dagger$  ( $\dagger$  = Moore-Penrose pseudoinverse).
- The pseudoinverse is best approximated (in spectral norm) via truncated SVD:

$$X = U\Sigma V^\top = \begin{bmatrix} \tilde{U} & \tilde{U}_{\text{trun}} \end{bmatrix} \begin{bmatrix} \tilde{\Sigma} & 0 \\ 0 & \tilde{\Sigma}_{\text{trun}} \end{bmatrix} \begin{bmatrix} \tilde{V}^\top \\ \tilde{V}_{\text{trun}}^\top \end{bmatrix} \approx \tilde{U}\tilde{\Sigma}\tilde{V}^\top$$
$$X^\dagger \approx \tilde{V}\tilde{\Sigma}^{-1}\tilde{U}^\top$$

$$U \in \mathbb{R}^{n \times n}, \Sigma \in \mathbb{R}^{n \times m-1}, V^\top \in \mathbb{R}^{m-1 \times m-1}, \tilde{U} \in \mathbb{R}^{n \times p}, \tilde{\Sigma} \in \mathbb{R}^{p \times p}, \tilde{V}^\top \in \mathbb{R}^{p \times m-1}$$



# Dynamic mode decomposition (DMD)

- If the dynamics are nonlinear, can use  $\mathcal{K}$  to lift to a high-dimensional approximate linear model, then apply DMD as before:

$$\mathbf{h}(X) = \begin{bmatrix} h_1(\mathbf{x}_1) & \cdots & h_1(\mathbf{x}_{m-1}) \\ | & & | \\ h_N(\mathbf{x}_1) & \cdots & h_N(\mathbf{x}_{m-1}) \end{bmatrix}; \quad \mathbf{h}(X') = \begin{bmatrix} h_1(\mathbf{x}_2) & \cdots & h_1(\mathbf{x}_m) \\ | & & | \\ h_N(\mathbf{x}_2) & \cdots & h_N(\mathbf{x}_m) \end{bmatrix}$$

$$\mathbf{h}(X') = \mathcal{K}\mathbf{h}(X)$$

$$\mathcal{K} \approx \bar{\mathcal{K}} := \mathbf{h}(X')\mathbf{h}(X)^\dagger \approx \mathbf{h}(X')\tilde{V}\tilde{\Sigma}^{-1}\tilde{U}^\top$$

- To reduce the model order, transform into normal dynamic mode coordinates:

$$\mathbf{h}(\mathbf{x}_{k+1}) = \bar{\mathcal{K}}\mathbf{h}(\mathbf{x}_k), \quad \bar{\mathcal{K}} \in \mathbb{R}^{N \times N}$$

$$\tilde{\mathbf{x}} \leftarrow \tilde{U}^\top \mathbf{h}(\mathbf{x})$$

$$\tilde{\mathbf{x}}_{k+1} = \tilde{\mathcal{K}}\tilde{\mathbf{x}}_k, \quad \tilde{\mathcal{K}} = \tilde{U}^\top \bar{\mathcal{K}} \tilde{U} \in \mathbb{R}^{r \times r}$$

# Dynamic mode decomposition with control (DMDc)

- If the state space model has an exogenous input, we can accommodate it by augmenting the sample matrix:

$$X = \begin{bmatrix} | & & | \\ \mathbf{x}_1 & \cdots & \mathbf{x}_{m-1} \\ | & & | \end{bmatrix}; \quad X' = \begin{bmatrix} | & & | \\ \mathbf{x}_2 & \cdots & \mathbf{x}_m \\ | & & | \end{bmatrix}; \quad G = \begin{bmatrix} | & & | \\ \mathbf{g}_1 & \cdots & \mathbf{g}_{m-1} \\ | & & | \end{bmatrix}$$

$$X' = AX + BG = \begin{bmatrix} A & B \end{bmatrix} \begin{bmatrix} X \\ G \end{bmatrix} =: \begin{bmatrix} A & B \end{bmatrix} S$$
$$\begin{bmatrix} A & B \end{bmatrix} \approx \begin{bmatrix} \bar{A} & \bar{B} \end{bmatrix} := X' S^\dagger$$

- Let the truncated SVD of  $S$  and  $X'$  be denoted by

$$S^\dagger \approx \tilde{V} \tilde{\Sigma}^{-1} \tilde{U}^\top, \quad X' \approx \hat{U} \hat{\Sigma} \hat{V}^\top$$

$$\tilde{U} = \begin{bmatrix} \tilde{U}_1^\top & \tilde{U}_2^\top \end{bmatrix}^\top, \quad \tilde{U}_1 \in \mathbb{R}^{n \times p}, \quad \tilde{U}_2 \in \mathbb{R}^{n \times p}$$

- The transition and input maps of the reduced-order model can now be approximated by

$$A \approx \bar{A} \approx X' \tilde{V} \tilde{\Sigma}^{-1} \tilde{U}_1^T \in \mathbb{R}^{n \times n}$$

$$B \approx \bar{B} \approx X' \tilde{V} \tilde{\Sigma}^{-1} \tilde{U}_2^T \in \mathbb{R}^{n \times n}$$

$$\tilde{A} := \hat{U}^T \bar{A} \hat{U} = \hat{U}^T X' \tilde{V} \tilde{\Sigma}^{-1} \tilde{U}_1^T \hat{U} \in \mathbb{R}^{r \times r}$$

$$\tilde{B} := \hat{U}^T \bar{B} = \hat{U}^T X' \tilde{V} \tilde{\Sigma}^{-1} \tilde{U}_2^T \in \mathbb{R}^{r \times n}$$

# Application: photocurrent in PN diode

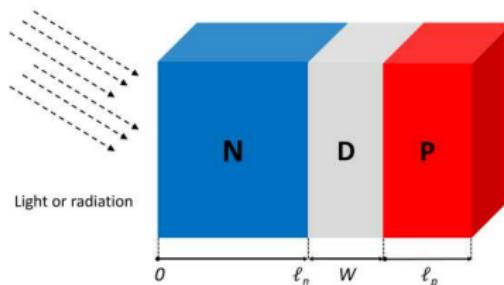


Figure: PN diode

- The delayed photocurrent in  $n$  region can be modeled by the ambipolar diffusion equation

$$\frac{\partial u}{\partial t} = D_a \nabla^2 u - \mu_a \mathbf{E} \cdot \nabla u - \frac{1}{\tau_a} u + g$$

- Can discretize to a system of ODEs by partitioning the region into a finite number of *elements* and approximating the solution by  $u(x, t) \approx \sum_{i=1}^N c_i(t) \phi_i(x)$  where  $\phi_i$ , are called *shape functions*.

# Physics-based model development outline

- ① Experimental measurements  $g_{\text{train}} \rightarrow J_{\text{left}}, J_{\text{right}}$
- ② Discretize physics-based model (FEM)

$$\frac{\partial u}{\partial t} = D_a \nabla^2 u - \mu_a \mathbf{E} \cdot \nabla u - \frac{1}{\tau_a} u + g$$
$$\rightarrow M \dot{\mathbf{x}} + K \mathbf{x} = \mathbf{g}$$

- ③ Numerically compute interal state (i.e. excess carrier density)

$$M \dot{\mathbf{x}} + K \mathbf{x} = \mathbf{g}_{\text{train}}$$
$$\rightarrow X, X', G$$

- ④ Train reduced-order model (DMD)

$$X, X', G$$
$$\rightarrow \tilde{\mathbf{x}}_{k+1} = \tilde{A} \tilde{\mathbf{x}}_k + \tilde{B} \mathbf{g}$$

## Simulation details

- Excess carrier density was simulated using
  - 1024 mesh elements with linear shape functions (triangle "hats" centered at each node).
  - 2000 time steps, corresponding to a sampling interval of 1.25 ns and horizon of 2.5  $\mu$ s.
- Independent models must be trained for each electric field strength.
- Simulated carrier density and flux can be reconstructed by multiplying the state of the DMD model by the finite element shape functions or their gradients.

# Model training

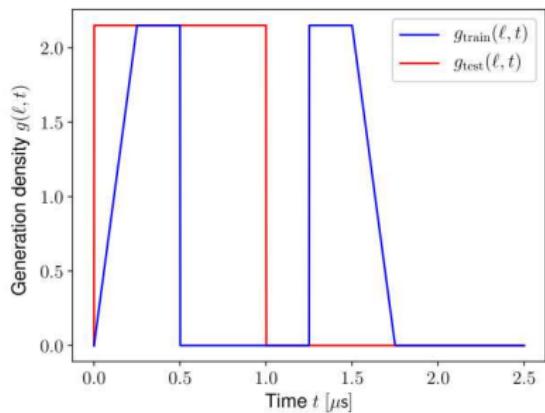


Figure: Training input and test input functions (uniform in space).

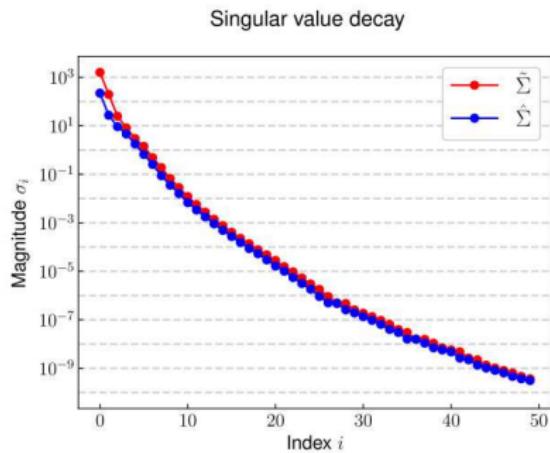
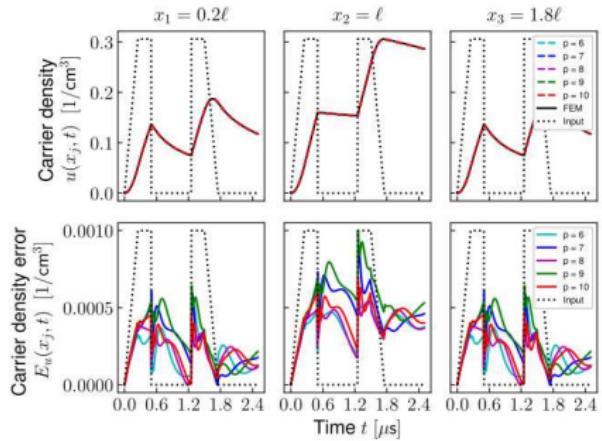
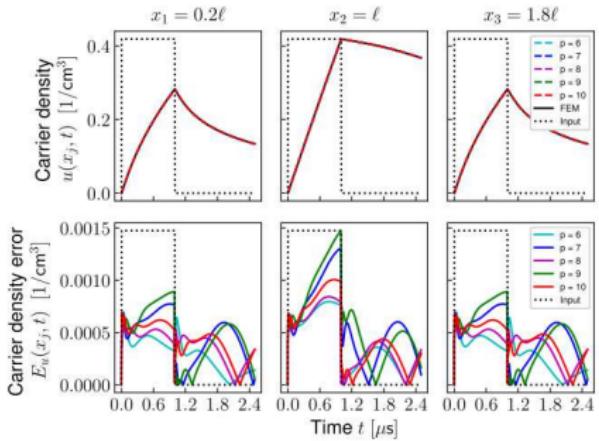


Figure: Singular values for decomposed sample matrices  $S$  (red) and  $X'$  (blue).

# Results

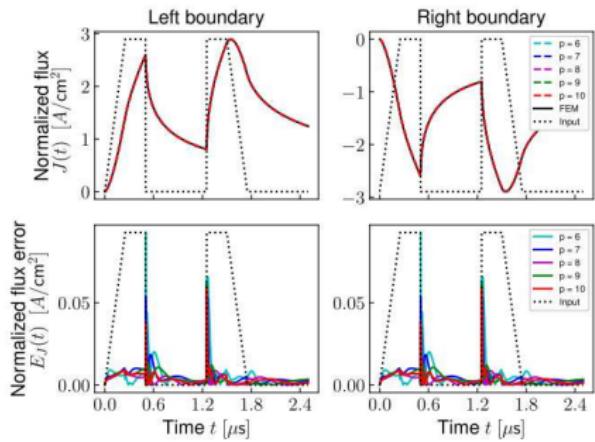


**Figure:** Simulated excess carrier density  $u(x, t)$  due to  $g_{\text{train}}$  with no  $E$  field.

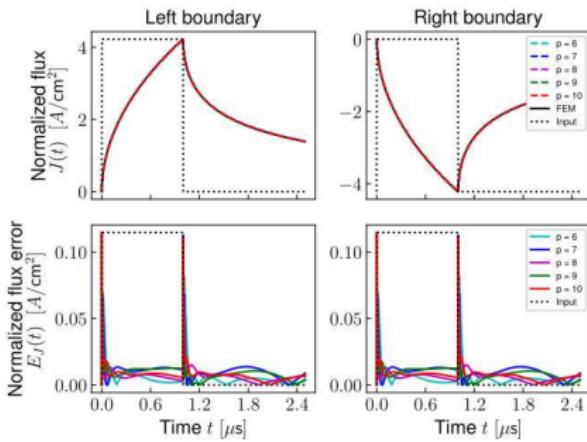


**Figure:** Simulated excess carrier density  $u(x, t)$  due to  $g_{\text{test}}$  with no  $E$  field.

# Results

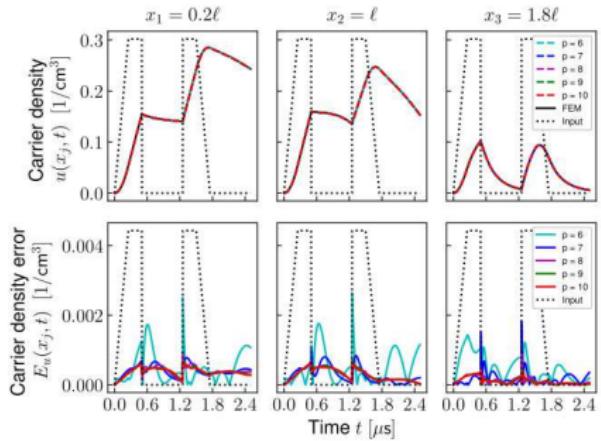


**Figure:** Simulated carrier flux  $J(t)$  at boundaries due to  $g_{\text{train}}$  with no  $E$  field.

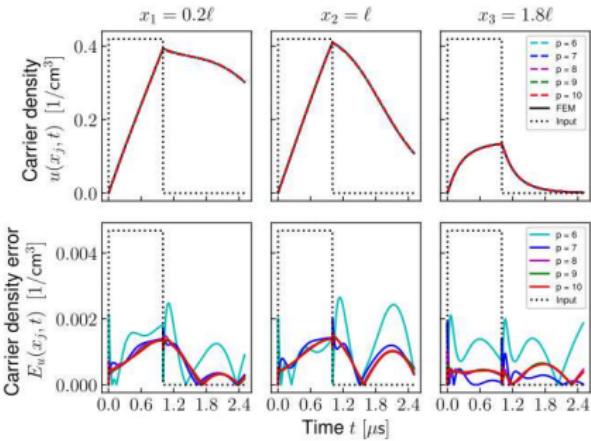


**Figure:** Simulated carrier flux  $J(t)$  at boundaries due to  $g_{\text{test}}$  with no  $E$  field.

# Results



**Figure:** Simulated excess carrier density  $u(x, t)$  due to  $g_{\text{train}}$  with  $E$  field.



**Figure:** Simulated excess carrier density  $u(x, t)$  due to  $g_{\text{test}}$  with  $E$  field.

# Results

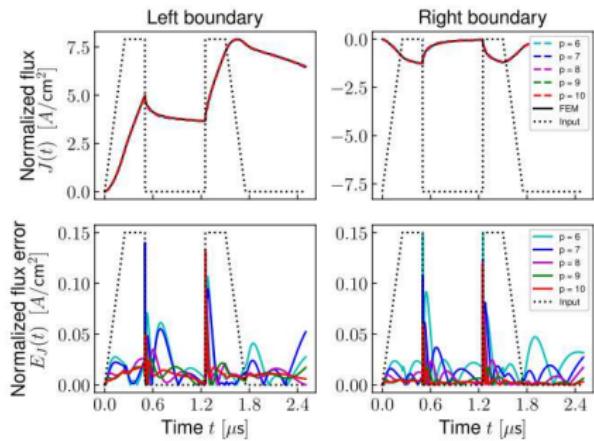


Figure: Simulated carrier flux  $J(t)$  at boundaries due to  $g_{\text{train}}$  with  $E$  field.

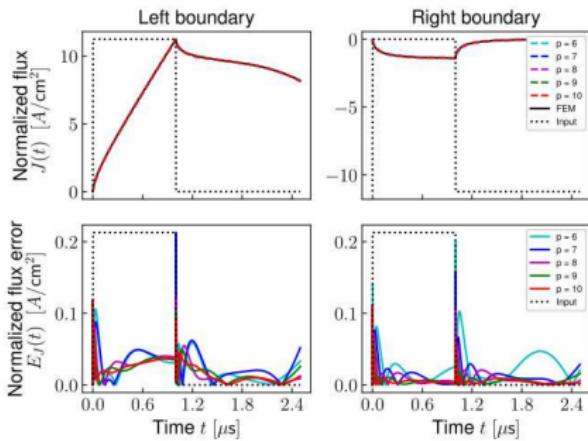


Figure: Simulated carrier flux  $J(t)$  at boundaries due to  $g_{\text{test}}$  with  $E$  field.

## Future work

- We can accommodate variable electric field strengths by training a *bilinear model*. This can still be done using DMD, but requires some care in designing the training input.
- The same modeling scheme can be applied to more accurate nonlinear physics-based models, such as the drift-diffusion equations, with an appropriate dictionary of observables.
- DMD generates a discrete-time model, but this should be converted to a continuous-time model for use in ODE solvers and circuit simulators (transform poles via complex logarithmic map).