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@ Radiation-induced photocurrent in semiconductor devices has
traditionally been simulated using complex physics-based models,
which are accurate, but often computationally expensive to solve
numerically.

o We want to develop compact photocurrent models that are efficient
for use in large-scale circuit simulators, but remain faithful to the
underlying physics.

@ We approach this problem by using Dynamic Mode Decomposition
(DMD) to model the internal device dynamics derived from
physics-based simulations. We use the simulated state as training
data, instead of raw experimental measurements.

@ This allows us to reproduce the accuracy of the physics-based models,
but with the run-time efficiency of machine learning models.
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Brief intro to Koopman operator theory

@ Consider a discrete-time dynamical system

X1 = f(xp)
X, € M — R"
h:M—R

@ Learning the transition map f can be difficult for nonlinear dynamics.

o ldea: "lift" the dynamics from the manifold M to a Hilbert space
O(M) of observables. Want the lifted dynamics to be linear.

@ Definition: The Koopman operator is the infinite-dimensional linear
map given by

K:0(M)— O(M)
h+— hof

Joshua Hanson Compact Photocurrent Models with DMD August 3, 2020 3/18



Brief intro to Koopman operator theory

Koopman Operator
observable space Ut '/( I.) =go F’( l‘)

— T

Figure 0.1: Koopman viewpoint lifts the dynamics from state space to the observable
the dynamics is linear but infinite dimensional.

space, where

Figure: Hassan Arbabi, Intro. to Koopman operator theory of dynamical systems, 2018
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Approximating the Koopman operator

Under certain assumptions, K is a compact operator. Let (g;, \;)
represent the eigenfunction/eigenvalue pairs (i.e. Kg; = \;g;).

@ We can approximate I by restricting to a finite-dimensional
observable subspace

Hy :=span{hi,...,hn} C O(M)

Let h(x) := Zf\il ¢ihi(x). Then

N

h(xker1) = KFh(x0) & > eidHhs(xo)
=1

@ We can recover x by applying h~!. The approximation error will
depend on how "expressive” Hy is.
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Dynamic mode decomposition (DMD)

@ Suppose we have samples of the state vector

X=|x1  Xmal|l; X' =|x2 -+ xm
| | | |
o If the dynamics are linear, we have X’ = AX for some A € R"*™,

@ We can construct a data-driven model by approximating the transition
map via A ~ A := X'XT (1 = Moore-Penrose pseudoinverse).

@ The pseudoinverse is best approximated (in spectral norm) via
truncated SVD:

L Y0 VT 5 o

= 2 T: ~ ~ ~ T

X =USV [U Umm] 0 Sou| |71 | FOEV
XTzVi_IfJT

e Rnxn’ Ye Rnxm~1' VT c Rm—lxm—ll U c R"XP, i: = Rp)(pv ‘7T c RPXm—1
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Dynamic mode decomposition (DMD)

o If the dynamics are nonlinear, can use K to lift to a high-dimensional
approximate linear model, then apply DMD as before:

hi(x1) -+ hi(Xm-1) ha(x2) -+ hi(xm)
h(X) = | | ; h(X') = | |
hN(Xl) hN(Xm71) hN(X2) hN(Xm)

h(X'") = Kh(X)
K~K:=hX)h(X) ~hX\VE 0T

@ To reduce the model order, transform into normal dynamic mode
coordinates:

h(xg11) = Kh(xz), K eRVY
%+ UTh(x)
Xp1 = Kxp,, K=UTKU eR™"
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Dynamic mode decomposition with control (DMDc)

o If the state space model has an exogeneous input, we can accomodate
it by augmenting the sample matrix:

| | | | ! |
X = |:)(1 i Xm_l] ; Xl — |:X2 e Kini : G = |g1 - gm_ll
| | | | l |
X' = AX + BG = [A B} i [A B]S
G

[4 B|~|4 B|=x'st
@ Let the truncated SVD of S and X’ be denoted by
St=VETIUT, X' ~USVT
0=[07 7], Oh e RO, Oy c R
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Dynamic mode decomposition with control (DMDc)

@ The transition and input maps of the reduced-order model can now
be approximated by

A~ An X'VE, e RV
B~ B~ X’f/i_llng e R

A= 0TA0 = 0TX'VE0, U e R¥"
B=0TB =0XVEW0, eR*"
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Application: photocurrent in PN diode

Light or radiation

0 6w ¢

Figure: PN diode

@ The delayed photocurrent in n region can be modeled by the
ambipolar diffusion equation

0 1
T DoV — pE - Vu— —u+tg
ot Ta
@ Can discretize to a system of ODEs by partitioning the region into a
finite number of elements and approximating the solution by
u(z,t) =~ SN ¢i(t)pi(x) where ¢;, are called shape functions.
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Physics-based model development outline

© Experimental measurements girain — Jieft, Jright
@ Discretize physics-based model (FEM)

ou 1
— :DaV2u—,uaE-Vu——u+g
ot Ta
— Mx+Kx=g
© Numerically compute interal state (i.e. excess carrier density)

Mx + Kx = Strain
— X, X, G

@ Train reduced-order model (DMD)

X, X, G

— X1 = A%y + Bg
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Simulation details

@ Excess carrier density was simulated using

o 1024 mesh elements with linear shape functions (triangle "hats”
centered at each node).

e 2000 time steps, corresponding to a sampling interval of 1.25 ns and
horizon of 2.5 ps.

@ Independent models must be trained for each electric field strength.

@ Simulated carrier density and flux can be reconstructed by multiplying
the state of the of DMD model by the finite element shape functions
or their gradients.
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Model training

Singular value decay
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Figure: Training input and test input Figure: Singular values for decomposed
functions (uniform in space). sample matrices S (red) and X’ (blue).
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Figure: Simulated excess carrier density Figure: Simulated excess carrier density
u(z,t) due to girain With no E field. u(x,t) due to grest With no E field.
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Figure: Simulated carrier flux J(t) at ~ Figure: Simulated carrier flux J(t) at
boundaries due to girain With no E field. boundaries due to giest With no E field.
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Figure: Simulated excess carrier density Figure: Simulated excess carrier density
u(z,t) due to giain With E field. u(x,t) due to grest with E field.
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Figure: Simulated carrier flux J(t) at
boundaries due to girain with E field.
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@ We can accomodate variable electric field strengths by training a
bilinear model. This can still be done using DMD, but requires some
care in designing the training input.

@ The same modeling scheme can be applied to more accurate
nonlinear physics-based models, such as the drift-diffusion equations,
with an appropriate dictionary of observables.

@ DMD generates a discrete-time model, but this should be converted
to a continuous-time model for use in ODE solvers and circuit
simulators (transform poles via complex logarithmic map).
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