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Motivation

fa Radiation-induced photocurrent in semiconductor devices has
traditionally been simulated using complex physics-based models,

which are accurate, but often computationally expensive to solve
numerically.

o We want to develop compact photocurrent models that are efficient
for use in large-scale circuit simulators, but remain faithful to the
underlying physics.

o We approach this problem by using Dynamic Mode Decomposition
(DMD) to model the internal device dynamics derived from

physics-based simulations. We use the simulated state as training
data, instead of raw experimental measurements.

fa This allows us to reproduce the accuracy of the physics-based models,
but with the run-time efficiency of machine learning models.
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Brief intro to Koopman operator theory

e Consider a discrete-time dynamical system

)ck+1 = f (3(k)
e M RTh

h: M

fa Learning the transition map f can be difficult for nonlinear dynamics.

• Idea: "lift" the dynamics from the manifold M to a Hilbert space

(9(M) of observables. Want the lifted dynamics to be linear.

• Definition: The Koopman operator is the infinite-dimensional linear

map given by

/C : (9(M) —> (9(M)

ho f
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Brief intro to Koopman operator theory

observable space

g(x)

Koopman Operator

Ut9(x) g o P(x)

th = f (x)

g o Fqx)

Figure 0.1: Koopman viewpoint lifts the dynamics from state space to the observable
space, where the dynamics is linear but infinite dimensional.

Figure: Hassan Arbabi, intro. to Koopman operator theory of dynamical systems, 2018
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Approximating the Koopman operator

• Under certain assumptions, K is a compact operator. Let (gi , Xi)
represent the eigenfunction/eigenvalue pairs (i.e. kg?, = Aigi) .

o We can approximate K by restricting to a finite-dimensional
observable subspace

HN := , h c (9(M)

fa Let h(x) := czhi(x). Then

N
h 

= ick+1 xo‘
(Xk+1) ) >_,CiAk+1 hi (xo)

j=1

• We can recover x by applying h-1. The approximation error will
depend on how "expressive" H N is.
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Dynamic mode decomposition (DMD)

o Suppose we have samples of the state vector

X = [X1 Xrn-11 ; X1 = [X2

• If the dynamics are linear, we have X' = AX for some A E Rnxn.

o We can construct a data-driven model by approximating the transition
map via A ti A := Xt = Moore-Penrose pseudoinverse).

• The pseudoinverse is best approximated (in spectral norm) via
truncated SVD:

= uEvT = Utrun] "
U z-,trun VtTun

1

Xt fit-10T

U E E E Rnxm-1, vT e Rm-lxm-1, U E Rnxp, E G Rpxp, 17-1- e Rpxm-1
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Dynamic mode decomposition (DMD)

• If the dynamics are nonlinear, can use IC to lift to a high-dimensional
approximate linear model, then apply DMD as before:

h(X) =

hi(xi) • • • hi (xm— 1)

; hP(') =

hi (x2) • • • hi (xm)

hN (xi) hN(x.,,,,_1)

h(X')= ICh(X)

hN(x2) hN ()cm)

IC IC := h(V)h(X)t h(X')17

o To reduce the model order, transform into normal dynamic mode

coordinates:

h(xk+l) = ICh(xk) , K E 
RNxN

<— CIT h(x)

54+1 — = Cirk0 cRrxr
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Dynamic mode decomposition with control (DMDc)

o If the state space model has an exogeneous input, we can accomodate
it by augmenting the sample matrix:

X= xl Xm-1 = [X2 ; G = gi gm~-i

 = AX + B G = [A B] [XG1 =: [A B] S

[A B] [A 13] := X St

o Let the truncated SVD of S and X' be denoted by

St fit-107, X'

= [OT f/j1T , -01 E Rn", U2 E
rt xp
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Dynamic mode decomposition with control (DMDc)

o The transition and input maps of the reduced-order model can now

be approximated by

A A xlVE-101T E Rnxn

B B XtfiE-102T e Rnxn

0-rAt = ty-rx.pcit_lcjiTo. c rxr

:= OTB = OTX1fit-102T E RrXn
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Application: photocurrent in PN diode

Light or radiation

Figure: PN diode

• The delayed photocurrent in n region can be modeled by the
ambipolar diffusion equation

au 1
= DaV2u //,,,,E • Vu —u+g

o Can discretize to a system of ODEs by partitioning the region into a
finite number of elements and approximating the solution by
u(x, t) ',--JE,1\1_1 c,(t)cbi(x) where 0,, are called shape functions.
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Physics-based model development outline

O Experimental measurements o,train Jright

• Discretize physics-based model (FEM)

au 1
= DaV2u, µ,,,E • 'Yu —u+g

at Tc,

M5( Kx = g

fa Numerically compute interal state (i.e. excess carrier density)

MX Kx = gtra in

 > X, X', G

O Train reduced-order model (DMD)

X, X', G

= AXk ng
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Simulation details

o Excess carrier density was simulated using

o 1024 mesh elements with linear shape functions (triangle "hats"
centered at each node).

o 2000 time steps, corresponding to a sampling interval of 1.25 ns and
horizon of 2.5 ps.

o Independent models must be trained for each electric field strength.

o Simulated carrier density and flux can be reconstructed by multiplying

the state of the of DMD model by the finite element shape functions
or their gradients.
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Model training
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Figure: Training input and test input Figure: Singular values for decomposed
functions (uniform in space). sample matrices S (red) and X' (blue).
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Results
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Figure: Simulated excess carrier density Figure: Simulated excess carrier density
u(x,t) due to atra i n with no E field. u(x, t) due to gtest with no E field.
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Results
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Figure: Simulated carrier flux J(t) at Figure: Simulated carrier flux J(t) at
boundaries due to ,train with no E field. boundaries due to gtest with no E field.
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Results
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Figure: Simulated excess carrier density Figure: Simulated excess carrier density
u(x,t) due to atra i n with E field. u(x, t) due to gtest with E field.
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Results
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Figure: Simulated carrier flux J(t) at Figure: Simulated carrier flux J(t) at
boundaries due to gtrain with E field. boundaries due to gtest with E field.
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Future work

fa We can accomodate variable electric field strengths by training a
bilinear model. This can still be done using DMD, but requires some

care in designing the training input.

o The same modeling scheme can be applied to more accurate
nonlinear physics-based models, such as the drift-diffusion equations,
with an appropriate dictionary of observables.

o DMD generates a discrete-time model, but this should be converted
to a continuous-time model for use in ODE solvers and circuit
simulators (transform poles via complex logarithmic map).
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