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Abstract

The hypothesis that sub-network initializations (lottery) ex-
ist within the initializations of over-parameterized networks, 
which when trained in isolation produce highly generalizable 
models, has led to crucial insights into network initializa-
tion and has enabled efficient inferencing. Supervised mod-
els with uncalibrated confidences t end t o b e overconfident 
even when making wrong prediction. In this paper, for the 
first t ime, w e s tudy h ow e xplicit c onfidence ca libration in 
the over-parameterized network impacts the quality of the 
resulting lottery tickets. More specifically, we incorporate a 
suite of calibration strategies, ranging from mixup regulariza-
tion, variance-weighted confidence c alibration t o t he newly 
proposed likelihood-based calibration and normalized bin as-
signment strategies. Furthermore, we explore different com-
binations of architectures and datasets, and make a number of 
key findings about the role of confidence calibration. Our em-
pirical studies reveal that including calibration mechanisms 
consistently lead to more effective lottery tickets, in terms of 
accuracy as well as empirical calibration metrics, even when 
retrained using data with challenging distribution shifts with 
respect to the source dataset.

1 Introduction
With an over-parameterized neural network, pruning or 
compressing its layers, while not compromising perfor-
mance, can significantly i mprove t he c omputational effi-
ciency of the inference step (Dettmers and Zettlemoyer 
2019). However, until recently, training such sparse net-
works directly from scratch has been challenging, and most 
often they have been found to be inferior to their dense 
counterparts. Frankle and Carbin (Frankle and Carbin 2018), 
in their work on lottery ticket hypothesis (LTH), showed 
that one can find s parse s ub-networks e mbedded i n over-
parameterized networks, which when trained using the same 
initialization as the original model can achieve similar or 
sometimes even better performance. Surprisingly, even ag-
gressively pruned networks (> 95% weights pruned) were 
showed to be comparable to the original network, as long as 
they were initialized appropriately. Such a well-performing 
sub-network is often referred as a winning lottery ticket or 
simply a winning ticket.

Following this pivotal work, several studies have been car-
ried out to understand the role of initialization, the effect of
the pruning criterion used and the importance of retraining
the sub-networks (Zhou et al. 2019; Evci et al. 2019; Morcos
et al. 2019; Desai, Zhan, and Aly 2019; Gohil, Narayanan,
and Jain 2019; Ramanujan et al. 2019) for the success of
lottery tickets. In (Desai, Zhan, and Aly 2019), Desai et al.
evaluated winning tickets under data distribution shifts, and
found that the tickets demonstrated strong generalization ca-
pabilities. Similarly, in (Morcos et al. 2019), the authors re-
ported that the winning tickets generalized reasonably across
changes in the training configuration.

In this paper, the focus on the fundamental problem of
winning ticket selection from an over-parameterized net-
work and the role confidence calibration plays in it. A com-
mon pitfall with supervised models in practice is that, de-
spite achieving high accuracy on the validation data, tend
to be over-confident even while making wrong predictions,
and this can lead to unexpected model behavior on un-
seen test data. In such cases, prediction calibration strate-
gies are used improve the reliability of models by penaliz-
ing over-confident or under-confident predictions (Berthelot
et al. 2019b,a). Broadly, calibration is the process of adjust-
ing predictions to improve the error distribution of a predic-
tive model. For the first time, we propose to study the im-
pact of confidence calibration on the quality of the resulting
lottery tickets. To this end, we explore a suite of calibra-
tion strategies, and evaluate the performance of lottery tick-
ets, in terms of accuracy and calibration metrics, on several
dataset/model combinations. In addition to studying popular
calibration mechanisms from the literature, we also intro-
duce two novel strategies namely likelihood weighted confi-
dence calibration with stochastic inferencing, and a normal-
ized bin assignment strategies. Finally, we investigate the
generalization performance of those tickets when retrained
using data characterized by real-world distribution shifts,
and find that confidence calibration provides significant per-
formance gains over the standard LTH.

2 Lottery Ticket Hypothesis
Formally, the process of lottery ticket training in (Frankle
and Carbin 2018) can be described as follows: (i) train an
over-parameterized model with initial parameters θi to in-
fer final parameters θf ; (ii) prune the model by applying a



mask z ∈ {0, 1}|θf | identified using a masking criterion, e.g.
LTH uses weight magnitudes; (iii) Reinitialize the sparse
sub-network by resetting the non-zero weights to its orig-
inal initial values, i.e., z � θi and retrain. These steps are
repeated until a desired level of pruning is achieved.
Why Does LTH Work? The work by Zhou et. al. (Zhou
et al. 2019) sheds light into reasons for the success of LTH
training. The authors generalized the iterative magnitude
pruning in (Frankle and Carbin 2018), and proposed sev-
eral other choices for the pruning criterion and the initializa-
tion strategy. Most importantly, they reported that retaining
the signs from the original initialization is the most crucial,
and also argued that zeroing out certain weights is a form
of training and hence accelerates convergence. However,
these variants still require training the over-parameterized
model and this does not save training computations. Con-
sequently, in (Wang, Zhang, and Grosse 2019), Wang et al.
computed the gradient flows of a network, and performed
pruning prior to training, such that the gradient flows are pre-
served. Note, alternate pruning approaches exist in the liter-
ature – in (Molchanov, Ashukha, and Vetrov 2017), the au-
thors adopted variational dropout for sparsifying networks.
Lee et al. (Lee et al. 2018) improved upon this by using a
sparsity inducing Beta-Bernoulli prior.
Is Retraining Required? Another key finding from LTH
studies is that randomly initialized, over-parameterized net-
works contain sub-networks that lead to good performance
without updating its weights (Ramanujan et al. 2019). Sim-
ilar results were reported with Weight Agnostic Networks
(Gaier and Ha 2019). These works disentangle weight val-
ues from the network structure, and show that structure alone
can encode sufficient discriminatory information. Another
intriguing observation from (Ramanujan et al. 2019) is that
certain distributions such as Kaiming Normal and Scaled
Kaiming Normal are considerably superior to other choices.
Transfer Learning using LTH: Pruning and transfer learn-
ing have been studied before (Molchanov et al. 2016; Zhu
and Gupta 2017), however there are only a handful of works
so far that have explored the connection between transfer
learning and LTH. For example, in (Gohil, Narayanan, and
Jain 2019) the authors investigate the transfer of initializa-
tions instead of transferring learned representations. In par-
ticular, it was found that winning tickets from large datasets
transferred well to small datasets, when the datasets were
assumed to be drawn from similar distributions. This empir-
ical result hints at the potential existence of a distribution
of tickets that can generalize across datasets. In this spirit,
Mehta (Mehta 2019) introduced the Ticket Transfer Hypoth-
esis – there exists a sparse sub-network (z � θsf ) of a model
trained on the source data, which when fine-tuned to the tar-
get data will perform comparably to a model that is obtained
by fine-tuning the dense model θsf directly.

3 Improving Winning Tickets using
Prediction Calibration

In this paper, we use the term calibration to refer to any
strategy that is utilized to adjust the model predictions to
match any prior on the model’s behavior, e.g., error distri-

bution. Formally, we consider a K-way classification prob-
lem, where x ∈ X and y ∈ Y = {1, 2, . . . ,K} denote
the input data and its corresponding label respectively. We
assume that the observed samples are drawn from the un-
known joint distribution p(x, y). The task of classifying any
sample xn amounts to predicting the tuple (ŷn, p̂n), where
ŷn represents the predicted label and p̂n is the likelihood
of the prediction. In other words, p̂n is a sample from the
unknown likelihood p(yn|xn), which represents the associ-
ated uncertainties in the prediction, and the label ŷn is de-
rived based on p̂n. While approximating these likelihoods
has been the focus of deep uncertainty quantification tech-
niques (Gal 2016), prediction calibration has been adopted
to improve model reliability.

In this paper, we study the impact of prediction calibration
during model training on the inferred tickets (Frankle and
Carbin 2018) and their generalization. It is well known that
supervised models with uncalibrated confidences tend to be
overconfident even while making wrong predictions (Guo
et al. 2017). This observation is highly relevant to LTH
methods, where the most popular strategy used for select-
ing winning tickets is to rank the network weights based on
their magnitudes. We hypothesize that, while neurons with
the largest magnitude are the most useful for sub-network
selection, they also present the highest risk for causing over-
confidences in model predictions. Consequently, including
confidence calibration as an explicit training objective will
temper the influence of neurons that can eventually lead to
miscalibration, as they continue to be updated in the gradient
descent process. For the first time, we show that pruned tick-
ets obtained via confidence calibration, though retrained us-
ing the same initialization as the standard LTH, leads to im-
proved performance. While calibration is specific to a task,
i.e., the calibration is not guaranteed to be preserved under
transfer learning to a new task, in this paper, we show that
our tickets can effectively generalize under challenging dis-
tribution shifts, for the same task. More specifically, we con-
sider the following calibration methods in our study:
• No Calibration: This is the baseline approach where we

utilize only the standard cross-entropy loss for training
the model. We refer to this as Basic.

• Mixup: Mixup is a popular augmentation strategy (Zhang
et al. 2017) that generates additional synthetic training
samples by convexly combining random pairs of im-
ages and their corresponding labels, in order to temper
overconfidence in predictions. Recently, in (Thulasidasan
et al. 2019), it was found that mixup regularization led
to improved calibration. Formally, mixup training is de-
signed based on Vicinal Risk Minimization, wherein the
model is trained not only on the training data, but also us-
ing samples in the vicinity of each training sample. The
vicinal points are generated as follows:

x = λxi + (1− λ)xj ; y = λyi + (1− λ)yj , (1)

where xi and xj are two randomly chosen samples with
their associated labels yi and yj . The parameter λ, drawn
from a symmetric Beta distribution sets the mixing ratio.

• Variance Weighted Confidence Calibration (VWCC): This



approach uses stochastic inferences to calibrate the con-
fidence of deep networks. More specifically, we utilize
the loss function in (Seo, Seo, and Han 2019), which
augments a confidence-calibration term to the standard
cross-entropy loss and the two terms are weighted using
the variance measured via multiple stochastic inferences.
Mathematically, this can be written as:

Lvwcc =

N∑
i=1

(1− αi)Lice + LiU (2)

=

N∑
i=1

−(1− αi) log(p(ŷi|xi))

+ αiDKL(U(y)||p(ŷi|xi)). (3)

Here Lice denotes the standard cross-entropy loss for sam-
ple xi, and the predictions p(ŷi|xi) are inferred using T
stochastic inferences for each sample xi, while the vari-
ance in the predictions is used to balance the loss terms.
More specifically, we perform T forward passes with
dropout in the network and promote the softmax proba-
bilities to be closer to an uniform distribution, when the
variance is large. The normalized variance αi is given by
the mean of the Bhattacharyya coefficients between each
of the T predictions and the mean prediction.

• Likelihood Weighted Confidence Calibration with
Stochastic Inferences (LWCC-SI): We propose a new
calibration strategy that utilizes the estimated likelihoods,
in lieu of the variance weighting, to define the confidence
calibration objective. More specifically, similar to VWCC,
we apply dropout and obtain T different predictions for
each sample. In particular,

Llwcc =

N∑
i=1

Lice + λβiDKL(U(y)||p(ŷi|xi)),

where βi =

(
1−max(ŷi)

)I(yi=ŷi)

. (4)

The indicator function I(yi = ŷi) ensures that the weight
βi is at the maximum value of 1 when the prediction is
wrong, i.e., enforces the softmax probabilities towards
a high-entropy uniform distribution. On the other hand,
when the prediction is correct, the term penalizes cases
when the likelihood is low. The loss function in equa-
tion (4) is computed using the average prediction p(ŷi|xi)
across the T realizations.

• Marginal Distribution Alignment (MDA): When a classi-
fier model is biased and assigns non-trivial probabilities
towards a single class for all samples, the resulting predic-
tions are often unreliable. In such scenarios, we can adopt
a calibration strategy wherein we discourage assignment
of all samples to a single class.

Lmda =

N∑
i=1

Lice + γd

K∑
k=1

pk log

(
pk
h̄k

)
(5)

where pk is the prior probability distribution for class k
and h̄k denotes the mean softmax probability for class k

across all samples in the dataset. Similar to (Arazo et al.
2019), we assume a uniform prior distribution, and ap-
proximate h̄k using mini-batches.

• Normalized Bin Assignment (NBA): A popular metric
used for evaluating calibration of classifier models is
the empirical calibration error (ECE) (definition can be
found in Section 4). This metric measures the discrep-
ancy between the average confidences and the accura-
cies of a model. In practice, we first bin the maximum
softmax probabilities (a.k.a confidence) for each of the
samples and then measure bin-wise discrepancy scores.
Finally, we compute a weighted average of the scores,
where the weights correspond to ratio of samples in each
bin. Intuitively, assigning all samples to a high-confidence
bin can lead to overconfidence compared to the accu-
racy of the model, while assigning all samples to a low-
confidence bin will produce a under-confident model even
when the accuracy is reasonable. To discourage either of
these cases, we propose the following regularization:

Lnba =

N∑
i=1

Lice + γn

B∑
b=1

wb

∣∣∣∣NbN − 1

B

∣∣∣∣ , (6)

where B is the total number of bins considered, Nb de-
notes the number of samples in bin b and wb is the
bin-level weighting. Since the operation of counting the
number of samples in each bin is not differentiable,
we use a soft histogram function, and we assign larger
weights to lower/higher confidence bins to avoid under-
confidence/overconfidence.

4 Empirical Studies
We perform empirical studies with different dataset/model
architecture combinations to understand the impact of pre-
diction calibration on the winning tickets. A key design
choice to be made while implementing LTH is whether to
prune a fixed ratio of parameters in each layer, often referred
to as local pruning, as opposed to pruning a fixed ratio of all
parameters of the network, i.e. global pruning. We follow the
standard experiment setup used in previous works, for each
of the datasets. The other crucial component in LTH is the
initialization scheme used for the weights in the pruned sub-
networks. More specifically, we investigated two popular
strategies namely rewinding weights to the initializations of
the over-parameterized network and randomly re-initializing
the tickets in every iteration. In all our experiments, we
found the former strategy to produce better performance and
hence we report the results for only that case. Furthermore,
following the recommendation in (Morcos et al. 2019; Fran-
kle and Carbin 2018), we used late-resetting of one epoch,
i.e., using the weight states after training the model for one
epoch to initialize the pruned tickets in lieu of the original
random initialization, for all the experiments.

Though standard classification metrics such as accuracy
are routinely used to evaluate the performance of lottery
tickets, their reliability is not usually quantified. In a well-
calibrated classifier, we expect the predictive scores to match
actual likelihood of correctness (Quinonero-Candela et al.



2005; Guo et al. 2017; DeGroot and Fienberg 1983).. We use
three popular calibration metrics for this evaluation, namely
(i) empirical calibration error (ECE), (ii) negative log like-
lihood (NLL) and (iii) Brier score. We present comparisons
for winning tickets obtained using different prediction cali-
bration strategies (discussed in Section 3) while training the
over-parameterized model and we report averages obtained
using three different trials (random seeds). The hyperparam-
eters used for the different calibration strategies in each of
the experiments are listed in the appendix.
Metrics. We now formally define the calibration metrics
used in our evaluation:
Empirical Calibration Error: This is the most widely used
metric to evaluate the predictions. Since ECE takes only pre-
diction confidence into account and not the complete pre-
diction probability, it is often considered as an insufficient
metric (Guo et al. 2017). Consequently, variants of this met-
ric have been considered (Nixon et al. 2019). In our setup,
we adopt the following strategy: we bin the maximum soft-
max probability (confidence) from each of the samples into
B bins and compute calibration error as the discrepancy be-
tween the average confidence and average accuracy in each
of these bins:

ECE =

B∑
b=1

Nb
N
|acc (Bb)− conf (Bb)| , (7)

whereNb represents the number of predictions falling in bin
b and acc(Bb) is the accuracy and conf(Bb) the average con-
fidence of the samples in bin b.
Negative Log Likelihood: Given the prediction likelihoods,
the negative log likelihood metric can be used to obtain a
notion of calibration as showed in (Guo et al. 2017; Gneit-
ing and Raftery 2007). For a set of predictions on given N
samples, NLL is defined as follows:

∑N
i=1− log p (ŷi|xi).

Brier Score: The Brier score computes the `2 metric between
the predicted likelihoods and the true labels (DeGroot and
Fienberg 1983; Gneiting and Raftery 2007):

BS =
1

N

N∑
n=1

K∑
k=1

[pθ (ŷn = k|xn)− I (yn = k)]
2 (8)

4.1 Impact of Calibration on Ticket Performance
(i) MNIST and Fashion-MNIST with a Fully Connected
Network We conducted an initial investigation on the
MNIST digit recognition (LeCun, Cortes, and Burges 2010)
and the Fashion-MNIST (Xiao, Rasul, and Vollgraf 2017)
datasets using simple, fully connected networks (FCN). We
adopt the architecture and hyper-parameters from (Frankle
and Carbin 2018), i.e., we use a LeNet-300-100 (LeCun
et al. 1998) as our base architecture for this experiment. The
two layers in the network contained 300 and 100 neurons re-
spectively. In the case of MNIST, we used a learning rate of
1e− 3 with the Adam optimizer (Kingma and Ba 2014) for
80 epochs and using mini-batches of 60. In the case of Fash-
ion MNIST, we used mini-batches of size 128 and trained
for 90 epochs. Following (Frankle and Carbin 2018), we
adopted the local pruning strategy for both these datasets.

In particular, we performed magnitude-based weight prun-
ing to select the sparse sub-networks, and the pruning ratio
was set to 20% in each iteration except for the last layer,
which is pruned at 10%.

Figures 1(a), 1(b) show the results of different calibration
strategies, in comparison to the standard LTH, on these two
datasets. In particular, we report the accuracy and the three
calibration metrics, averaged across three random trials. We
find that all prediction calibration methods perform compar-
atively to the basic LTH; however with marginal improve-
ments for tickets obtained with an explicit confidence cali-
bration at lower pruning iterations. We surmise this is due
to the low complexity of both the datasets and architecture
considered. With simpler model architectures and classifica-
tion tasks, it is highly likely the trained models are inher-
ently well-calibrated and including an additional calibration
objective does not lead to significant improvements. Inter-
estingly, arbitrarily increasing the dropout rate for LWCC-SI
and VWCC in this case led to a drop in the accuracies. How-
ever, the gains achieved by tickets from well-calibrated mod-
els on more complex models/data are non-trivial and can be
evidenced from CIFAR-10 with ResNet-18 experiment.

(iii) CIFAR-10 with ResNet-18 In this experiment, we
used the CIFAR-10 (Krizhevsky and Hinton 2010) with a
ResNet-18 (He et al. 2016) model. Following (Frankle and
Carbin 2018), in this case, we performed global pruning at
the ratio of 20% in each iteration, and we did not prune
the parameters used for downsampling outputs from resid-
ual blocks or the final fully-connected layer. We trained the
networks using the SGD optimizer at the learning rate of
0.01, weight decay of 0.0001 and a momentum of 0.9, for
130 epochs. We annealed the learning rate by 0.1 after 80
and 120 epochs.

Figure 1(c) plot the performance of the lottery tickets
obtained from models with difference calibration strate-
gies. The first striking observation is that, unlike the
MNIST/Fashion MNIST datasets, calibrated networks pro-
vide better performing sub-networks. With increased model
complexity, we also observe consistent improvements in cal-
ibration at all compression ratios thus hinting that the struc-
ture of the sub-network plays a critical role in the general-
ization of tickets, in addition to the initialization strategy in
LTH. We note that strategies that explicitly promote confi-
dence calibration, namely VWCC and LWCC-SI, and aug-
mentation strategies such as Mixup provide maximal bene-
fits, while approaches that adjust the softmax probabilities
with simplistic priors, e.g. uniform marginal distribution in
MDA, provide only marginal improvements.

4.2 Ticket Reusability under Distribution Shifts
Prediction calibration in supervised learning is known to
provide improved robustness under distribution shifts. In this
section, we investigate if tickets from a source dataset are
retrained using another target dataset, characterized by un-
known shifts, will lead to improved performance than the
standard LTH. Note that, we do not consider change in the
task as assumed in the transfer learning experiments with
LTH in previous works (Morcos et al. 2019). Given the abil-



ity of confidence calibration to temper the influence of neu-
rons that can potentially cause miscalibration, we expect our
winning tickets to increasingly outperform LTH, as the de-
gree of discrepancy between the source and target datasets
increase. In order to test this hypothesis, we consider the
two following experiments: (i) CIFAR-10a to CIFAR-10b
benchmark (Morcos et al. 2019), where the distribution shift
caused only by sampling biases; (ii) CIFAR-10 to CIFAR-
10C benchmarks, where the distribution shifts are caused by
severe natural image corruptions. Similar to the empirical
studies in the previous section, we evaluate the prediction
performance and reliability of the resulting models through
the three calibration metrics.

(i) CIFAR-10a to CIFAR-10b Following the experimen-
tal setup in (Morcos et al. 2019), we divide the CIFAR-10
dataset into two equal training splits namely CIFAR-10a and
CIFAR-10b with 25k training samples in each, with 2.5k
samples in each class. The source model was trained on the
CIFAR-10a split and the CIFAR-10b set was treated as the
target. Note that the distribution shift between the source
and target datasets are solely due to sampling biases and is
a relatively simpler shift to handle in practice. Following the
CIFAR-10 experiment, we used the ResNet-18 architecture
for both source and target models, and the hyperparameter
settings for training both models were adopted from (Fran-
kle and Carbin 2018). In this case, we used the SGD op-
timizer with learning rate 0.01, momentum 0.9 and weight
decay 0.0001 and batch size 128. As mentioned earlier, we
do not prune the fully connected layers and perform global
pruning. Given the wining tickets from the source dataset,
we retrain the model for the target dataset and evaluate the
performance on the test set from CIFAR-10b.

From Figure 2, we observe that the proposed approaches
provide a bigger margin of improvement over basic LTH
( 1%) at all compression ratios, when compared to the
( 0.3% to 0.5%) accuracy improvement in the case of
CIFAR-10. This clearly indicates that, even with moderately
severe distribution shift, the choice of the sub-network plays
a very critical role in determining its effectiveness. In par-
ticular, we find that Mixup and VWCC calibration strategies
provide the maximal gain.

(ii) CIFAR-10 to CIFAR-10-C In this experiment, we re-
train tickets from the clean CIFAR-10 source dataset to re-
train on the challenging CIFAR-10C benchmark. Note that,
the CIFAR-10-C dataset (Hendrycks and Dietterich 2019)
was created by applying 15 different natural image corrup-
tions such as Gaussian noise, snow, fog, blur etc., to the
CIFAR-10 test set. This dataset consists of 50k samples,
wherein each corruption is applied with five levels of sever-
ity. For our experiment, we considered a subset of 12 cor-
ruptions including brightness, contrast, Gaussian noise, shot
noise, glass blur etc.. We used the 10k samples of CIFAR-
10-C dataset, corresponding to level 5 corruption, and cre-
ated random train-test splits of 9K and 1K respectively. Fol-
lowing the CIFAR-10a to CIFAR-10b experiment, we used
the same architecture and hyperparameter settings.

For the sake of clarity, we only illustrate the best perform-
ing calibration methods, namely Mixup, VWCC and LWCC-

SI. As observed from Figure 3, the source winning tickets
obtained from calibrated networks generalize significantly
better in almost all cases, except under the Contrast cor-
ruption. Interestingly, compared to CIFAR-10a to CIFAR-
10b experiment, the distribution shifts here are significantly
more severe and confidence calibration leads to orders of
magnitude improvements in the performance. For example,
in the cases of fog, frost or snow corruptions, we observe
even 10%−12% improvements over the standard LTH tick-
ets (even at higher compression ratios). In addition to ana-
lyzing the accuracies of the target models trained using the
source tickets, we evaluated the reliability of the resulting
models. Similar to our previous empirical studies, we find
that our approach leads to much improved calibration scores
in all cases. These results clearly evidence the importance
of including confidence calibration into the model training
process, particularly when retrained under challenging dis-
tribution shifts. In the next section, we summarize all our key
findings and provide recommendations for improving lottery
tickets in practice.

5 Key Findings
• While different pruning strategies have been explored

in existing works (Zhou et al. 2019), the common con-
clusion has been that weight magnitude based pruning
is the most effective, and hence the research focus has
shifted towards investigating better initialization strate-
gies for the sub-networks. However, our results clearly
show that using prediction calibration during the train-
ing of the over-parameterized model can produce sub-
networks that demonstrate improved generalization (un-
der distribution shifts) and produce consistently reliable
models (showed using calibration metric evaluations on
different dataset/model combinations). This is an interest-
ing result in that we have resorted to the vanilla initializa-
tion strategy adopted by LTH (Frankle and Carbin 2018)
and the performance improvements are solely from more
effective sub-networks. This motivates further research to
better understand the role of the sub-network selection,
not by merely adjusting the pruning criterion, but by de-
signing networks that are not just accurate but also better
calibrated to meaningful priors.

• In cases of simpler classification tasks such as Fashion-
MNIST or MNIST, we find that using confidence cali-
bration provided only minor improvements over tickets
from models with no explicit calibration. Interestingly, we
also noticed that, strengthening the regularization (e.g.,
increasing the dropout rate in VWCC) on already well-
calibrated models led to inferior performance, implying
effects over-regularization. In contrast, with challenging
tasks such as CIFAR-10 classification, prediction calibra-
tion consistently led to improved tickets.

• The most important observation is that even under chal-
lenging distribution shifts, i.e. CIFAR-10 to CIFAR-10-
C experiment, the tickets obtained from models with an
explicit calibration objective showed consistently supe-
rior performance when compared to the source tickets ob-
tained using standard LTH, clearly evidencing the vulner-



abilities of miscalibrated models and tickets inferred from
them.

• Our results are particularly important in the context of
recent efforts that attempt to design randomly initialized
neural networks that can be utilized for a given dataset,
without even carrying out model training (Ramanujan
et al. 2019; Gaier and Ha 2019). While sufficiently over-
parameterized random networks will most likely contain
sub-networks that achieve reasonable accuracy without
training, calibration strategies can help identify the most
effective, in terms of both generalization and reliability.
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Figure 1: Generalization and calibration performance of winning tickets obtained with and without an explicit calibration objec-
tive during training, for different dataset and architecture combinations - (a) A LeNet-300-100 model trained on Fashion-MNIST
data; (b) A LeNet-300-100 model training on MNIST digits; (c) A ResNet-18 model trained for CIFAR-10 classification.
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Figure 2: Ticket transfer performance on a target dataset (CIFAR-10a) from the same distribution as the source data (CIFAR-
10b). Both models were implemented using the ResNet-18 architecture and we show the performance for test data in the target.
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Figure 3: Ticket transfer performance on target datasets (CIFAR-10-C) that are characterized by distribution shifts when com-
pared to the source data (standard CIFAR-10). The shifts were created using natural image corruptions, and we used ResNet-18
models for this experiment. We show the performance on the held-out test set for each of the corruptions.


