

LAWRENCE
LIVERMORE
NATIONAL
LABORATORY

LLNL-CONF-814666

Calibrate and Prune: Improving Reliability of Lottery Tickets Through Prediction Calibration

B. Venkatesh, J. J. Thiagarajan, K. Thopalli, P. Sattigeri

September 17, 2020

AAAI 2021
Virtual, United States
February 2, 2021 through February 9, 2021

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

Calibrate and Prune: Improving Reliability of Lottery Tickets Through Prediction Calibration

Bindya Venkatesh*, Jayaraman J. Thiagarajan⁺, Kowshik Thopalli*, Prasanna Sattigeri[†]

*Arizona State University, ⁺Lawrence Livermore National Labs, [†]IBM Research AI

Abstract

The hypothesis that sub-network initializations (lottery) exist within the initializations of over-parameterized networks, which when trained in isolation produce highly generalizable models, has led to crucial insights into network initialization and has enabled efficient inferencing. Supervised models with uncalibrated confidences tend to be overconfident even when making wrong prediction. In this paper, for the first time, we study how explicit confidence calibration in the over-parameterized network impacts the quality of the resulting lottery tickets. More specifically, we incorporate a suite of calibration strategies, ranging from mixup regularization, variance-weighted confidence calibration to the newly proposed likelihood-based calibration and normalized bin assignment strategies. Furthermore, we explore different combinations of architectures and datasets, and make a number of key findings about the role of confidence calibration. Our empirical studies reveal that including calibration mechanisms consistently lead to more effective lottery tickets, in terms of accuracy as well as empirical calibration metrics, even when retrained using data with challenging distribution shifts with respect to the source dataset.

1 Introduction

With an over-parameterized neural network, pruning or compressing its layers, while not compromising performance, can significantly improve the computational efficiency of the inference step (Dettmers and Zettlemoyer 2019). However, until recently, training such sparse networks directly from scratch has been challenging, and most often they have been found to be inferior to their dense counterparts. Frankle and Carbin (Frankle and Carbin 2018), in their work on lottery ticket hypothesis (LTH), showed that one can find sparse sub-networks embedded in over-parameterized networks, which when trained using the same initialization as the original model can achieve similar or sometimes even better performance. Surprisingly, even aggressively pruned networks ($> 95\%$ weights pruned) were showed to be comparable to the original network, as long as they were initialized appropriately. Such a well-performing sub-network is often referred as a *winning lottery ticket* or simply a *winning ticket*.

Following this pivotal work, several studies have been carried out to understand the role of initialization, the effect of the pruning criterion used and the importance of retraining the sub-networks (Zhou et al. 2019; Evcı et al. 2019; Morcos et al. 2019; Desai, Zhan, and Aly 2019; Gohil, Narayanan, and Jain 2019; Ramanujan et al. 2019) for the success of lottery tickets. In (Desai, Zhan, and Aly 2019), Desai *et al.* evaluated winning tickets under data distribution shifts, and found that the tickets demonstrated strong generalization capabilities. Similarly, in (Morcos et al. 2019), the authors reported that the winning tickets generalized reasonably across changes in the training configuration.

In this paper, the focus on the fundamental problem of winning ticket selection from an over-parameterized network and the role confidence calibration plays in it. A common pitfall with supervised models in practice is that, despite achieving high accuracy on the validation data, tend to be over-confident even while making wrong predictions, and this can lead to unexpected model behavior on unseen test data. In such cases, prediction calibration strategies are used to improve the reliability of models by penalizing over-confident or under-confident predictions (Berthelot et al. 2019b,a). Broadly, calibration is the process of adjusting predictions to improve the error distribution of a predictive model. For the first time, we propose to study the impact of confidence calibration on the quality of the resulting lottery tickets. To this end, we explore a suite of calibration strategies, and evaluate the performance of lottery tickets, in terms of accuracy and calibration metrics, on several dataset/model combinations. In addition to studying popular calibration mechanisms from the literature, we also introduce two novel strategies namely likelihood weighted confidence calibration with stochastic inferencing, and a normalized bin assignment strategies. Finally, we investigate the generalization performance of those tickets when retrained using data characterized by real-world distribution shifts, and find that confidence calibration provides significant performance gains over the standard LTH.

2 Lottery Ticket Hypothesis

Formally, the process of lottery ticket training in (Frankle and Carbin 2018) can be described as follows: (i) train an over-parameterized model with initial parameters θ_i to infer final parameters θ_f ; (ii) prune the model by applying a

mask $z \in \{0, 1\}^{|\theta_f|}$ identified using a masking criterion, e.g. LTH uses weight magnitudes; (iii) Reinitialize the sparse sub-network by resetting the non-zero weights to its original initial values, i.e., $z \odot \theta_i$ and retrain. These steps are repeated until a desired level of pruning is achieved.

Why Does LTH Work? The work by Zhou et. al. (Zhou et al. 2019) sheds light into reasons for the success of LTH training. The authors generalized the iterative magnitude pruning in (Frankle and Carbin 2018), and proposed several other choices for the pruning criterion and the initialization strategy. Most importantly, they reported that retaining the signs from the original initialization is the most crucial, and also argued that zeroing out certain weights is a form of training and hence accelerates convergence. However, these variants still require training the over-parameterized model and this does not save training computations. Consequently, in (Wang, Zhang, and Grosse 2019), Wang *et al.* computed the gradient flows of a network, and performed pruning prior to training, such that the gradient flows are preserved. Note, alternate pruning approaches exist in the literature – in (Molchanov, Ashukha, and Vetrov 2017), the authors adopted variational dropout for sparsifying networks. Lee *et al.* (Lee et al. 2018) improved upon this by using a sparsity inducing Beta-Bernoulli prior.

Is Retraining Required? Another key finding from LTH studies is that randomly initialized, over-parameterized networks contain sub-networks that lead to good performance without updating its weights (Ramanujan et al. 2019). Similar results were reported with Weight Agnostic Networks (Gaier and Ha 2019). These works disentangle weight values from the network structure, and show that structure alone can encode sufficient discriminatory information. Another intriguing observation from (Ramanujan et al. 2019) is that certain distributions such as *Kaiming Normal* and *Scaled Kaiming Normal* are considerably superior to other choices.

Transfer Learning using LTH: Pruning and transfer learning have been studied before (Molchanov et al. 2016; Zhu and Gupta 2017), however there are only a handful of works so far that have explored the connection between transfer learning and LTH. For example, in (Gohil, Narayanan, and Jain 2019) the authors investigate the transfer of initializations instead of transferring learned representations. In particular, it was found that winning tickets from large datasets transferred well to small datasets, when the datasets were assumed to be drawn from similar distributions. This empirical result hints at the potential existence of a distribution of tickets that can generalize across datasets. In this spirit, Mehta (Mehta 2019) introduced the *Ticket Transfer Hypothesis* – there exists a sparse sub-network ($z \odot \theta_f^s$) of a model trained on the source data, which when fine-tuned to the target data will perform comparably to a model that is obtained by fine-tuning the dense model θ_f^s directly.

3 Improving Winning Tickets using Prediction Calibration

In this paper, we use the term calibration to refer to any strategy that is utilized to adjust the model predictions to match any prior on the model’s behavior, e.g., error distri-

bution. Formally, we consider a K -way classification problem, where $x \in \mathcal{X}$ and $y \in \mathcal{Y} = \{1, 2, \dots, K\}$ denote the input data and its corresponding label respectively. We assume that the observed samples are drawn from the unknown joint distribution $p(x, y)$. The task of classifying any sample x_n amounts to predicting the tuple (\hat{y}_n, \hat{p}_n) , where \hat{y}_n represents the predicted label and \hat{p}_n is the likelihood of the prediction. In other words, \hat{p}_n is a sample from the unknown likelihood $p(y_n|x_n)$, which represents the associated uncertainties in the prediction, and the label \hat{y}_n is derived based on \hat{p}_n . While approximating these likelihoods has been the focus of deep uncertainty quantification techniques (Gal 2016), prediction calibration has been adopted to improve model reliability.

In this paper, we study the impact of prediction calibration during model training on the inferred tickets (Frankle and Carbin 2018) and their generalization. It is well known that supervised models with uncalibrated confidences tend to be overconfident even while making wrong predictions (Guo et al. 2017). This observation is highly relevant to LTH methods, where the most popular strategy used for selecting winning tickets is to rank the network weights based on their magnitudes. We hypothesize that, while neurons with the largest magnitude are the most useful for sub-network selection, they also present the highest risk for causing overconfidences in model predictions. Consequently, including confidence calibration as an explicit training objective will temper the influence of neurons that can eventually lead to miscalibration, as they continue to be updated in the gradient descent process. For the first time, we show that pruned tickets obtained via confidence calibration, though retrained using the same initialization as the standard LTH, leads to improved performance. While calibration is specific to a task, i.e., the calibration is not guaranteed to be preserved under transfer learning to a new task, in this paper, we show that our tickets can effectively generalize under challenging distribution shifts, for the same task. More specifically, we consider the following calibration methods in our study:

- **No Calibration:** This is the baseline approach where we utilize only the standard cross-entropy loss for training the model. We refer to this as *Basic*.
- **Mixup:** Mixup is a popular augmentation strategy (Zhang et al. 2017) that generates additional synthetic training samples by convexly combining random pairs of images and their corresponding labels, in order to temper overconfidence in predictions. Recently, in (Thulasidasan et al. 2019), it was found that mixup regularization led to improved calibration. Formally, mixup training is designed based on Vicinal Risk Minimization, wherein the model is trained not only on the training data, but also using samples in the vicinity of each training sample. The vicinal points are generated as follows:

$$x = \lambda x_i + (1 - \lambda) x_j; \quad y = \lambda y_i + (1 - \lambda) y_j, \quad (1)$$

where x_i and x_j are two randomly chosen samples with their associated labels y_i and y_j . The parameter λ , drawn from a symmetric Beta distribution sets the mixing ratio.

- **Variance Weighted Confidence Calibration (VWCC):** This

approach uses stochastic inferences to calibrate the confidence of deep networks. More specifically, we utilize the loss function in (Seo, Seo, and Han 2019), which augments a confidence-calibration term to the standard cross-entropy loss and the two terms are weighted using the variance measured via multiple stochastic inferences. Mathematically, this can be written as:

$$\begin{aligned}\mathcal{L}_{vwcc} &= \sum_{i=1}^N (1 - \alpha_i) \mathcal{L}_{ce}^i + \mathcal{L}_U^i & (2) \\ &= \sum_{i=1}^N -(1 - \alpha_i) \log(p(\hat{y}_i | x_i)) \\ &\quad + \alpha_i D_{KL}(\mathcal{U}(y) || p(\hat{y}_i | x_i)). & (3)\end{aligned}$$

Here \mathcal{L}_{ce}^i denotes the standard cross-entropy loss for sample x_i , and the predictions $p(\hat{y}_i | x_i)$ are inferred using T stochastic inferences for each sample x_i , while the variance in the predictions is used to balance the loss terms. More specifically, we perform T forward passes with dropout in the network and promote the softmax probabilities to be closer to an uniform distribution, when the variance is large. The normalized variance α_i is given by the mean of the Bhattacharyya coefficients between each of the T predictions and the mean prediction.

- *Likelihood Weighted Confidence Calibration with Stochastic Inferences (LWCC-SI):* We propose a new calibration strategy that utilizes the estimated likelihoods, in lieu of the variance weighting, to define the confidence calibration objective. More specifically, similar to VWCC, we apply dropout and obtain T different predictions for each sample. In particular,

$$\begin{aligned}\mathcal{L}_{lwcc} &= \sum_{i=1}^N \mathcal{L}_{ce}^i + \lambda \beta_i D_{KL}(\mathcal{U}(y) || p(\hat{y}_i | x_i)), \\ \text{where } \beta_i &= \left(1 - \max(\hat{y}_i)\right)^{\mathbb{I}(y_i = \hat{y}_i)}. & (4)\end{aligned}$$

The indicator function $\mathbb{I}(y_i = \hat{y}_i)$ ensures that the weight β_i is at the maximum value of 1 when the prediction is wrong, i.e., enforces the softmax probabilities towards a high-entropy uniform distribution. On the other hand, when the prediction is correct, the term penalizes cases when the likelihood is low. The loss function in equation (4) is computed using the average prediction $p(\hat{y}_i | x_i)$ across the T realizations.

- *Marginal Distribution Alignment (MDA):* When a classifier model is biased and assigns non-trivial probabilities towards a single class for all samples, the resulting predictions are often unreliable. In such scenarios, we can adopt a calibration strategy wherein we discourage assignment of all samples to a single class.

$$\mathcal{L}_{mda} = \sum_{i=1}^N \mathcal{L}_{ce}^i + \gamma_d \sum_{k=1}^K p_k \log\left(\frac{p_k}{\bar{h}_k}\right) & (5)$$

where p_k is the prior probability distribution for class k and \bar{h}_k denotes the mean softmax probability for class k

across all samples in the dataset. Similar to (Arazo et al. 2019), we assume a uniform prior distribution, and approximate \bar{h}_k using mini-batches.

- *Normalized Bin Assignment (NBA):* A popular metric used for evaluating calibration of classifier models is the *empirical calibration error* (ECE) (definition can be found in Section 4). This metric measures the discrepancy between the average confidences and the accuracies of a model. In practice, we first bin the maximum softmax probabilities (a.k.a confidence) for each of the samples and then measure bin-wise discrepancy scores. Finally, we compute a weighted average of the scores, where the weights correspond to ratio of samples in each bin. Intuitively, assigning all samples to a high-confidence bin can lead to overconfidence compared to the accuracy of the model, while assigning all samples to a low-confidence bin will produce a under-confident model even when the accuracy is reasonable. To discourage either of these cases, we propose the following regularization:

$$\mathcal{L}_{nba} = \sum_{i=1}^N \mathcal{L}_{ce}^i + \gamma_n \sum_{b=1}^B w_b \left| \frac{N_b}{N} - \frac{1}{B} \right|, & (6)$$

where B is the total number of bins considered, N_b denotes the number of samples in bin b and w_b is the bin-level weighting. Since the operation of counting the number of samples in each bin is not differentiable, we use a soft histogram function, and we assign larger weights to lower/higher confidence bins to avoid under-confidence/overconfidence.

4 Empirical Studies

We perform empirical studies with different dataset/model architecture combinations to understand the impact of prediction calibration on the winning tickets. A key design choice to be made while implementing LTH is whether to prune a fixed ratio of parameters in each layer, often referred to as local pruning, as opposed to pruning a fixed ratio of all parameters of the network, i.e. global pruning. We follow the standard experiment setup used in previous works, for each of the datasets. The other crucial component in LTH is the initialization scheme used for the weights in the pruned sub-networks. More specifically, we investigated two popular strategies namely rewinding weights to the initializations of the over-parameterized network and randomly re-initializing the tickets in every iteration. In all our experiments, we found the former strategy to produce better performance and hence we report the results for only that case. Furthermore, following the recommendation in (Morcos et al. 2019; Franke and Carbin 2018), we used late-resetting of one epoch, i.e., using the weight states after training the model for one epoch to initialize the pruned tickets in lieu of the original random initialization, for all the experiments.

Though standard classification metrics such as accuracy are routinely used to evaluate the performance of lottery tickets, their reliability is not usually quantified. In a well-calibrated classifier, we expect the predictive scores to match actual likelihood of correctness (Quinonero-Candela et al.

2005; Guo et al. 2017; DeGroot and Fienberg 1983).. We use three popular calibration metrics for this evaluation, namely (i) empirical calibration error (ECE), (ii) negative log likelihood (NLL) and (iii) Brier score. We present comparisons for winning tickets obtained using different prediction calibration strategies (discussed in Section 3) while training the over-parameterized model and we report averages obtained using three different trials (random seeds). The hyperparameters used for the different calibration strategies in each of the experiments are listed in the appendix.

Metrics. We now formally define the calibration metrics used in our evaluation:

Empirical Calibration Error: This is the most widely used metric to evaluate the predictions. Since ECE takes only prediction confidence into account and not the complete prediction probability, it is often considered as an insufficient metric (Guo et al. 2017). Consequently, variants of this metric have been considered (Nixon et al. 2019). In our setup, we adopt the following strategy: we bin the maximum softmax probability (confidence) from each of the samples into B bins and compute calibration error as the discrepancy between the average confidence and average accuracy in each of these bins:

$$\text{ECE} = \sum_{b=1}^B \frac{N_b}{N} |\text{acc}(\mathcal{B}_b) - \text{conf}(\mathcal{B}_b)|, \quad (7)$$

where N_b represents the number of predictions falling in bin b and $\text{acc}(\mathcal{B}_b)$ is the accuracy and $\text{conf}(\mathcal{B}_b)$ the average confidence of the samples in bin b .

Negative Log Likelihood: Given the prediction likelihoods, the negative log likelihood metric can be used to obtain a notion of calibration as showed in (Guo et al. 2017; Gneiting and Raftery 2007). For a set of predictions on given N samples, NLL is defined as follows: $\sum_{i=1}^N -\log p(\hat{y}_i | x_i)$.

Brier Score: The Brier score computes the ℓ_2 metric between the predicted likelihoods and the true labels (DeGroot and Fienberg 1983; Gneiting and Raftery 2007):

$$\text{BS} = \frac{1}{N} \sum_{n=1}^N \sum_{k=1}^K [p_\theta(\hat{y}_n = k | x_n) - \mathbb{I}(y_n = k)]^2 \quad (8)$$

4.1 Impact of Calibration on Ticket Performance

(i) MNIST and Fashion-MNIST with a Fully Connected Network We conducted an initial investigation on the MNIST digit recognition (LeCun, Cortes, and Burges 2010) and the Fashion-MNIST (Xiao, Rasul, and Vollgraf 2017) datasets using simple, fully connected networks (FCN). We adopt the architecture and hyper-parameters from (Frankle and Carbin 2018), i.e., we use a LeNet-300-100 (LeCun et al. 1998) as our base architecture for this experiment. The two layers in the network contained 300 and 100 neurons respectively. In the case of MNIST, we used a learning rate of $1e-3$ with the Adam optimizer (Kingma and Ba 2014) for 80 epochs and using mini-batches of 60. In the case of Fashion MNIST, we used mini-batches of size 128 and trained for 90 epochs. Following (Frankle and Carbin 2018), we adopted the local pruning strategy for both these datasets.

In particular, we performed magnitude-based weight pruning to select the sparse sub-networks, and the pruning ratio was set to 20% in each iteration except for the last layer, which is pruned at 10%.

Figures 1(a), 1(b) show the results of different calibration strategies, in comparison to the standard LTH, on these two datasets. In particular, we report the accuracy and the three calibration metrics, averaged across three random trials. We find that all prediction calibration methods perform comparatively to the basic LTH; however with marginal improvements for tickets obtained with an explicit confidence calibration at lower pruning iterations. We surmise this is due to the low complexity of both the datasets and architecture considered. With simpler model architectures and classification tasks, it is highly likely the trained models are inherently well-calibrated and including an additional calibration objective does not lead to significant improvements. Interestingly, arbitrarily increasing the dropout rate for *LWCC-SI* and *VWCC* in this case led to a drop in the accuracies. However, the gains achieved by tickets from well-calibrated models on more complex models/data are non-trivial and can be evidenced from CIFAR-10 with ResNet-18 experiment.

(iii) CIFAR-10 with ResNet-18 In this experiment, we used the CIFAR-10 (Krizhevsky and Hinton 2010) with a ResNet-18 (He et al. 2016) model. Following (Frankle and Carbin 2018), in this case, we performed global pruning at the ratio of 20% in each iteration, and we did not prune the parameters used for downsampling outputs from residual blocks or the final fully-connected layer. We trained the networks using the SGD optimizer at the learning rate of 0.01, weight decay of 0.0001 and a momentum of 0.9, for 130 epochs. We annealed the learning rate by 0.1 after 80 and 120 epochs.

Figure 1(c) plot the performance of the lottery tickets obtained from models with difference calibration strategies. The first striking observation is that, unlike the MNIST/Fashion MNIST datasets, calibrated networks provide better performing sub-networks. With increased model complexity, we also observe consistent improvements in calibration at all compression ratios thus hinting that the structure of the sub-network plays a critical role in the generalization of tickets, in addition to the initialization strategy in LTH. We note that strategies that explicitly promote confidence calibration, namely *VWCC* and *LWCC-SI*, and augmentation strategies such as *Mixup* provide maximal benefits, while approaches that adjust the softmax probabilities with simplistic priors, e.g. uniform marginal distribution in *MDA*, provide only marginal improvements.

4.2 Ticket Reusability under Distribution Shifts

Prediction calibration in supervised learning is known to provide improved robustness under distribution shifts. In this section, we investigate if tickets from a source dataset are retrained using another target dataset, characterized by unknown shifts, will lead to improved performance than the standard LTH. Note that, we do not consider change in the task as assumed in the transfer learning experiments with LTH in previous works (Morcos et al. 2019). Given the abil-

ity of confidence calibration to temper the influence of neurons that can potentially cause miscalibration, we expect our winning tickets to increasingly outperform LTH, as the degree of discrepancy between the source and target datasets increase. In order to test this hypothesis, we consider the two following experiments: (i) CIFAR-10a to CIFAR-10b benchmark (Morcos et al. 2019), where the distribution shift caused only by sampling biases; (ii) CIFAR-10 to CIFAR-10C benchmarks, where the distribution shifts are caused by severe natural image corruptions. Similar to the empirical studies in the previous section, we evaluate the prediction performance and reliability of the resulting models through the three calibration metrics.

(i) CIFAR-10a to CIFAR-10b Following the experimental setup in (Morcos et al. 2019), we divide the CIFAR-10 dataset into two equal training splits namely CIFAR-10a and CIFAR-10b with 25k training samples in each, with 2.5k samples in each class. The source model was trained on the CIFAR-10a split and the CIFAR-10b set was treated as the target. Note that the distribution shift between the source and target datasets are solely due to sampling biases and is a relatively simpler shift to handle in practice. Following the CIFAR-10 experiment, we used the ResNet-18 architecture for both source and target models, and the hyperparameter settings for training both models were adopted from (Frankle and Carbin 2018). In this case, we used the SGD optimizer with learning rate 0.01, momentum 0.9 and weight decay 0.0001 and batch size 128. As mentioned earlier, we do not prune the fully connected layers and perform global pruning. Given the winning tickets from the source dataset, we retrain the model for the target dataset and evaluate the performance on the test set from CIFAR-10b.

From Figure 2, we observe that the proposed approaches provide a bigger margin of improvement over basic LTH (1%) at all compression ratios, when compared to the (0.3% to 0.5%) accuracy improvement in the case of CIFAR-10. This clearly indicates that, even with moderately severe distribution shift, the choice of the sub-network plays a very critical role in determining its effectiveness. In particular, we find that *Mixup* and *VWCC* calibration strategies provide the maximal gain.

(ii) CIFAR-10 to CIFAR-10-C In this experiment, we retrain tickets from the clean CIFAR-10 source dataset to retrain on the challenging CIFAR-10C benchmark. Note that, the CIFAR-10-C dataset (Hendrycks and Dietterich 2019) was created by applying 15 different natural image corruptions such as Gaussian noise, snow, fog, blur etc., to the CIFAR-10 test set. This dataset consists of 50k samples, wherein each corruption is applied with five levels of severity. For our experiment, we considered a subset of 12 corruptions including brightness, contrast, Gaussian noise, shot noise, glass blur etc.. We used the 10k samples of CIFAR-10-C dataset, corresponding to level 5 corruption, and created random train-test splits of 9K and 1K respectively. Following the CIFAR-10a to CIFAR-10b experiment, we used the same architecture and hyperparameter settings.

For the sake of clarity, we only illustrate the best performing calibration methods, namely *Mixup*, *VWCC* and *LWCC*.

SI. As observed from Figure 3, the source winning tickets obtained from calibrated networks generalize significantly better in almost all cases, except under the *Contrast* corruption. Interestingly, compared to CIFAR-10a to CIFAR-10b experiment, the distribution shifts here are significantly more severe and confidence calibration leads to orders of magnitude improvements in the performance. For example, in the cases of fog, frost or snow corruptions, we observe even 10% – 12% improvements over the standard LTH tickets (even at higher compression ratios). In addition to analyzing the accuracies of the target models trained using the source tickets, we evaluated the reliability of the resulting models. Similar to our previous empirical studies, we find that our approach leads to much improved calibration scores in all cases. These results clearly evidence the importance of including confidence calibration into the model training process, particularly when retrained under challenging distribution shifts. In the next section, we summarize all our key findings and provide recommendations for improving lottery tickets in practice.

5 Key Findings

- While different pruning strategies have been explored in existing works (Zhou et al. 2019), the common conclusion has been that weight magnitude based pruning is the most effective, and hence the research focus has shifted towards investigating better initialization strategies for the sub-networks. However, our results clearly show that using prediction calibration during the training of the over-parameterized model can produce sub-networks that demonstrate improved generalization (under distribution shifts) and produce consistently reliable models (showed using calibration metric evaluations on different dataset/model combinations). This is an interesting result in that we have resorted to the vanilla initialization strategy adopted by LTH (Frankle and Carbin 2018) and the performance improvements are solely from more effective sub-networks. This motivates further research to better understand the role of the sub-network selection, not by merely adjusting the pruning criterion, but by designing networks that are not just accurate but also better calibrated to meaningful priors.
- In cases of simpler classification tasks such as Fashion-MNIST or MNIST, we find that using confidence calibration provided only minor improvements over tickets from models with no explicit calibration. Interestingly, we also noticed that, strengthening the regularization (e.g., increasing the dropout rate in *VWCC*) on already well-calibrated models led to inferior performance, implying effects over-regularization. In contrast, with challenging tasks such as CIFAR-10 classification, prediction calibration consistently led to improved tickets.
- The most important observation is that even under challenging distribution shifts, i.e. CIFAR-10 to CIFAR-10-C experiment, the tickets obtained from models with an explicit calibration objective showed consistently superior performance when compared to the source tickets obtained using standard LTH, clearly evidencing the vulner-

abilities of miscalibrated models and tickets inferred from them.

- Our results are particularly important in the context of recent efforts that attempt to design randomly initialized neural networks that can be utilized for a given dataset, without even carrying out model training (Ramanujan et al. 2019; Gaier and Ha 2019). While sufficiently over-parameterized random networks will most likely contain sub-networks that achieve reasonable accuracy without training, calibration strategies can help identify the most effective, in terms of both generalization and reliability.

6 Acknowledgements

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

References

Arazo, E.; Ortego, D.; Albert, P.; O'Connor, N. E.; and McGuinness, K. 2019. Pseudo-labeling and confirmation bias in deep semi-supervised learning. *arXiv preprint arXiv:1908.02983* .

Berthelot, D.; Carlini, N.; Cubuk, E. D.; Kurakin, A.; Sohn, K.; Zhang, H.; and Raffel, C. 2019a. ReMixMatch: Semi-Supervised Learning with Distribution Alignment and Augmentation Anchoring. *arXiv preprint arXiv:1911.09785* .

Berthelot, D.; Carlini, N.; Goodfellow, I.; Papernot, N.; Oliver, A.; and Raffel, C. A. 2019b. Mixmatch: A holistic approach to semi-supervised learning. In *Advances in Neural Information Processing Systems*, 5050–5060.

DeGroot, M. H.; and Fienberg, S. E. 1983. The comparison and evaluation of forecasters. *Journal of the Royal Statistical Society: Series D (The Statistician)* 32(1-2): 12–22.

Desai, S.; Zhan, H.; and Aly, A. 2019. Evaluating Lottery Tickets Under Distributional Shifts. *arXiv preprint arXiv:1910.12708* .

Dettmers, T.; and Zettlemoyer, L. 2019. Sparse networks from scratch: Faster training without losing performance. *arXiv preprint arXiv:1907.04840* .

Evci, U.; Gale, T.; Menick, J.; Castro, P. S.; and Elsen, E. 2019. Rigging the Lottery: Making All Tickets Winners. *arXiv preprint arXiv:1911.11134* .

Frankle, J.; and Carbin, M. 2018. The lottery ticket hypothesis: Finding sparse, trainable neural networks. *arXiv preprint arXiv:1803.03635* .

Gaier, A.; and Ha, D. 2019. Weight Agnostic Neural Networks. *arXiv preprint arXiv:1906.04358* .

Gal, Y. 2016. Uncertainty in deep learning. *University of Cambridge* 1: 3.

Gneiting, T.; and Raftery, A. E. 2007. Strictly proper scoring rules, prediction, and estimation. *Journal of the American statistical Association* 102(477): 359–378.

Gohil, V.; Narayanan, S. D.; and Jain, A. 2019. One ticket to win them all: generalizing lottery ticket initializations across datasets and optimizers .

Guo, C.; Pleiss, G.; Sun, Y.; and Weinberger, K. Q. 2017. On calibration of modern neural networks. In *Proceedings of the 34th International Conference on Machine Learning-Volume 70*, 1321–1330. JMLR. org.

He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep Residual Learning for Image Recognition. In *CVPR*, 770–778.

Hendrycks, D.; and Dietterich, T. 2019. Benchmarking Neural Network Robustness to Common Corruptions and Perturbations. *Proceedings of the International Conference on Learning Representations* .

Kingma, D. P.; and Ba, J. 2014. Adam: A Method for Stochastic Optimization. *CoRR* abs/1412.6980.

Krizhevsky, A.; and Hinton, G. 2010. Convolutional deep belief networks on cifar-10. *Unpublished manuscript* 40(7): 1–9.

LeCun, Y.; Bottou, L.; Bengio, Y.; and Haffner, P. 1998. Gradient-based learning applied to document recognition. *Proceedings of the IEEE* 86(11): 2278–2324.

LeCun, Y.; Cortes, C.; and Burges, C. 2010. MNIST handwritten digit database. *ATT Labs [Online]. Available: http://yann.lecun.com/exdb/mnist* 2.

Lee, J.; Kim, S.; Yoon, J.; Lee, H. B.; Yang, E.; and Hwang, S. J. 2018. Adaptive Network Sparsification with Dependent Variational Beta-Bernoulli Dropout. *arXiv preprint arXiv:1805.10896* .

Mehta, R. 2019. Sparse Transfer Learning via Winning Lottery Tickets. *arXiv preprint arXiv:1905.07785* .

Molchanov, D.; Ashukha, A.; and Vetrov, D. 2017. Variational dropout sparsifies deep neural networks. In *Proceedings of the 34th International Conference on Machine Learning-Volume 70*, 2498–2507. JMLR. org.

Molchanov, P.; Tyree, S.; Karras, T.; Aila, T.; and Kautz, J. 2016. Pruning convolutional neural networks for resource efficient inference. *arXiv preprint arXiv:1611.06440* .

Morcos, A.; Yu, H.; Paganini, M.; and Tian, Y. 2019. One ticket to win them all: generalizing lottery ticket initializations across datasets and optimizers. In *Advances in Neural Information Processing Systems*, 4933–4943.

Nixon, J.; Dusenberry, M.; Zhang, L.; Jerfel, G.; and Tran, D. 2019. Measuring calibration in deep learning. *arXiv preprint arXiv:1904.01685* .

Quinonero-Candela, J.; Rasmussen, C. E.; Sinz, F.; Bousquet, O.; and Schölkopf, B. 2005. Evaluating predictive uncertainty challenge. In *Machine Learning Challenges Workshop*, 1–27. Springer.

Ramanujan, V.; Wortsman, M.; Kembhavi, A.; Farhadi, A.; and Rastegari, M. 2019. What’s Hidden in a Randomly Weighted Neural Network? *arXiv preprint arXiv:1911.13299* .

Seo, S.; Seo, P. H.; and Han, B. 2019. Learning for single-shot confidence calibration in deep neural networks through stochastic inferences. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, 9030–9038.

Thulasidasan, S.; Chennupati, G.; Bilmes, J.; Bhattacharya, T.; and Michalak, S. 2019. On Mixup Training: Improved Calibration and Predictive Uncertainty for Deep Neural Networks. *arXiv preprint arXiv:1905.11001* .

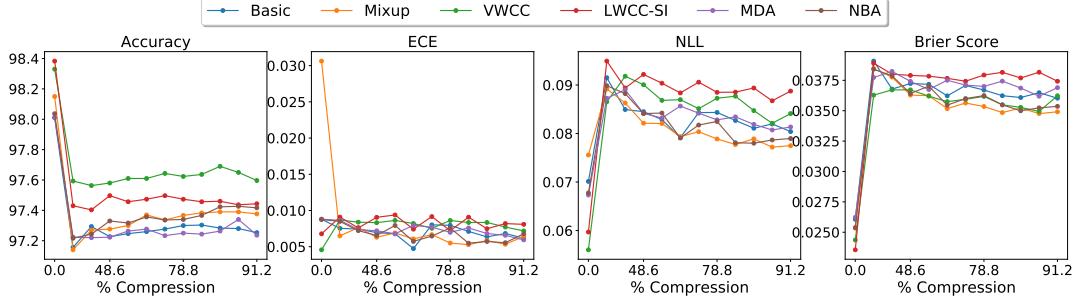
Wang, C.; Zhang, G.; and Grosse, R. 2019. Picking Winning Tickets Before Training by Preserving Gradient Flow .

Xiao, H.; Rasul, K.; and Vollgraf, R. 2017. Fashion-mnist: a novel image dataset for benchmarking machine learning algorithms. *arXiv preprint arXiv:1708.07747* .

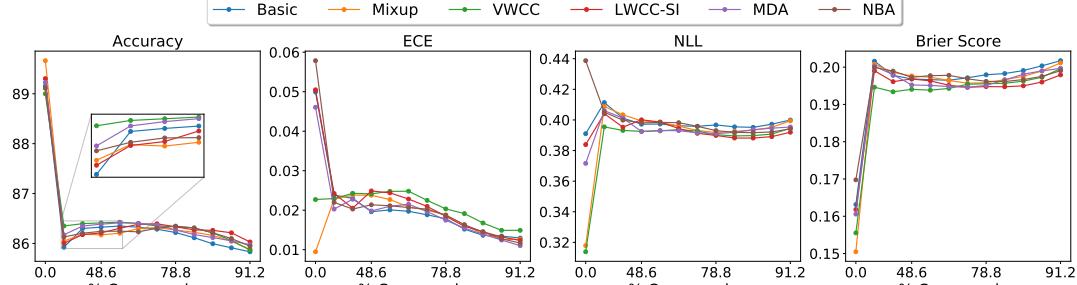
Zhang, H.; Cisse, M.; Dauphin, Y. N.; and Lopez-Paz, D. 2017. mixup: Beyond empirical risk minimization. *arXiv preprint arXiv:1710.09412* .

Zhou, H.; Lan, J.; Liu, R.; and Yosinski, J. 2019. Deconstructing lottery tickets: Zeros, signs, and the supermask. *arXiv preprint arXiv:1905.01067* .

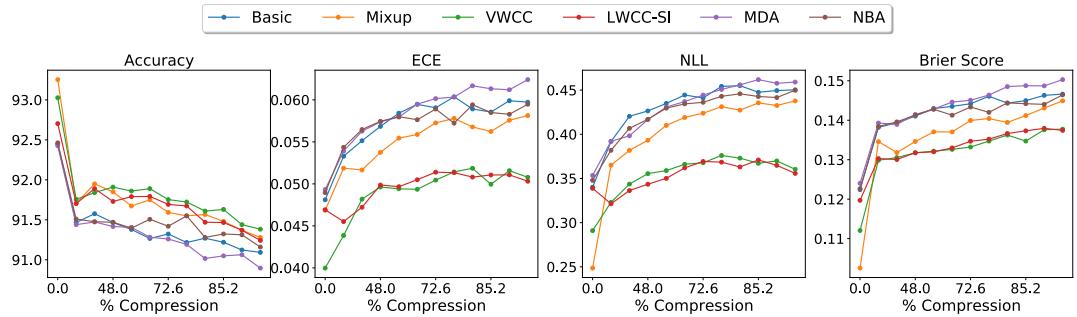
Zhu, M.; and Gupta, S. 2017. To prune, or not to prune: exploring the efficacy of pruning for model compression. *arXiv preprint arXiv:1710.01878* .



(a) MNIST



(b) Fashion-MNIST



(c) CIFAR-10

Figure 1: Generalization and calibration performance of winning tickets obtained with and without an explicit calibration objective during training, for different dataset and architecture combinations - (a) A LeNet-300-100 model trained on Fashion-MNIST data; (b) A LeNet-300-100 model training on MNIST digits; (c) A ResNet-18 model trained for CIFAR-10 classification.

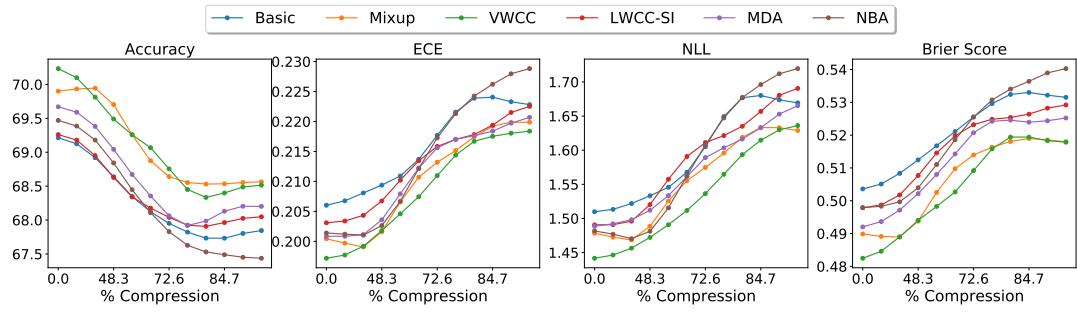


Figure 2: Ticket transfer performance on a target dataset (CIFAR-10a) from the same distribution as the source data (CIFAR-10b). Both models were implemented using the ResNet-18 architecture and we show the performance for test data in the target.

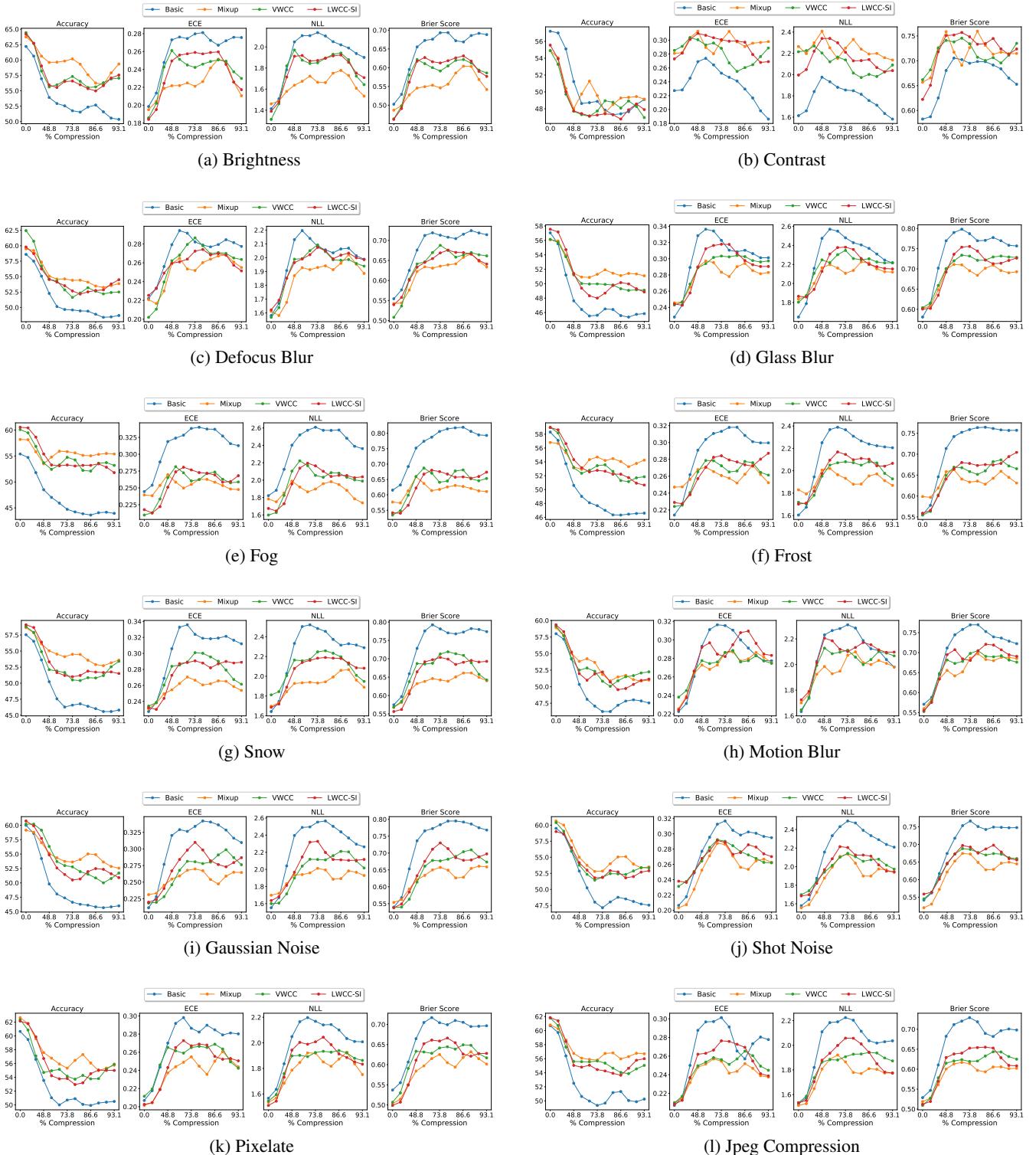


Figure 3: Ticket transfer performance on target datasets (CIFAR-10-C) that are characterized by distribution shifts when compared to the source data (standard CIFAR-10). The shifts were created using natural image corruptions, and we used ResNet-18 models for this experiment. We show the performance on the held-out test set for each of the corruptions.