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4 Problem Summary

■ Scientific computation often involves running computationally intense simulation on HPC

■ With the goal being the identification and detection of events of interest, the current strategies for
detection are lacking due to the I/0 overhead that prevents all data from being written out

■ Given that the current HPC Simulation strategy for event and anomaly detection involves saving
data at regular intervals, two primary problems surface as a result:

1. Writing at infrequent intervals leads to missed events and/or loss of critical information

2. When information is lost, it can only be regained by re-running the simulation and adjusting
the save intervals

■



Framework and Approach

Signatures, Measures, Decisions
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6 Framework — Signatures, Measures, Decisions
I

• Project: ASCR In-Situ Machine Learning for Intelligent Data Capture on Exascale
Platforms (ISML)

• The Signature-Measures-Decision framework is a generalized way of performing
unsupervised anomaly detection

• Data space is defined as the dimensional space that contains all points in the
dataset

• Partitions are defined as sections (typically equal sized) of the data space that may
or may not contain data points

• The goal of the approach is to detect events of interest any local (within a

II
partition) occurrences that differ significantly from the occurrences in other
partitions or in the same partition at different time steps

I



7 I Approach — Signatures, Measures, Decisions

Signatures are a compressed way of
representing the data in a partition;
the representation should contain
the crucial aspects of the data such
that spatial and/or temporal
changes can be detected

Examples:
• Mean

• Min-max

• SVD,



8 I Approach — Measures

Measures are functions applied to
signatures to detect changes across space
or time; spatial measures compare
signatures of different partitions at one
time and temporal measures compare
signatures of a single partition over time

Examples:
• Maximum change (temporal)

• SVD, (temporal)

• Mean squared distance (spatial)

• Signature scaling (spatial)

• DBSCAN



9 I Approach — Decisions

Decisions are functions that determine
whether the measure should be flagged
as anomalous

Examples:
■ Threshold

■ Compound threshold

■ Memory

■ Percentile



Data and Applications
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Spatial and Temporal



11 Data: Spatial and Temporal Event/Activity Detection

Simulation Case Description

Community
Earth System
Model (CESM)

Mantaflow

Climate model simulation with
events of interest being a set of
cyclones throughout the
simulation space

Fluid model simulation with
events of interest being the
activity/changes throughout
the simulation space

• Total Precipitation Rate
• Surface Pressure
• Lowest model level water vapor mixing ratio
• Atmospheric air temperature
• Lowest model level zonal wind
• Lowest model level meridional wind
• Atmospheric reference height

• Velocity X
• Velocity Y
• Density
• Pressure
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1 3 Results

Percentage of Data Saved Over Time
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14 Results: Spatial Event/Activity Detection — Cyclones (CESM)
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1 5 I Results

Percentage of Data Saved Over Time
all-svd-ratio-moving-window-svd-ratio-cornpound-threshold-small-plumes-depth-charges interesting partitions 25.1%
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1 6 Results:Temporal Event/Activity Detection — Smoke Plumes
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17 Conclusion

• The framework is capable of detecting events of interest with high and similar accuracy, whether
detecting events spatially or temporally

• Though the experiments have been run on simulation data so far, the approach can generalized to
other fields and application domains (cyber security, satellite image analysis)

• A major key in applying the framework to other areas is the ability to extract quantifiable features
from the data

• The in-situ detection is efficient and accurate
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