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4 | Problem Summary

= Scientific computation often involves running computationally intense simulation on HPC

= With the goal being the identification and detection of events of interest, the current strategies for
detection are lacking due to the I/O overhead that prevents all data from being written out

= Given that the current HPC Simulation strategy for event and anomaly detection involves saving
data at regular intervals, two primary problems surface as a result:

1. Writing at infrequent intervals leads to missed events and/or loss of critical information

2. When information is lost, it can only be regained by re-running the simulation and adjusting
the save intervals
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¢ I Framework — Signatures, Measures, Decisions

* Project: ASCR In-Situ Machine Learning for Intelligent Data Capture on Exascale
Platforms (ISML)

* The Signature-Measures-Decision framework 1s a generalized way of performing
unsupervised anomaly detection

* Data space 1s defined as the dimensional space that contains all points in the
dataset

* Partitions are defined as sections (typically equal sized) of the data space that may
or may not contain data points

* The goal of the approach is to detect events of interest—any local (within a
partition) occurrences that differ significantly from the occurrences in other
partitions or in the same partition at different time steps



7 I Approach — Signatures, Measures, Decisions

Signatures are a compressed way of
representing the data in a partition;
the representation should contain
the crucial aspects of the data such
that spatial and/or temporal
changes can be detected

Examples:
= Mean
" Min-max

" SVD,



s | Approach — Measures

Measures are functions applied to Examples:

sighatures to detect changes across space = Maximum change (temporal)
or time; spatial measures compare SVD, (temporal)

signatures of different partitions at one Mean squared distance (spatial)
time and temporal measures compare
signatures of a single partition over time

Signature scaling (spatial)
DBSCAN




9 I Approach — Decisions

Decisions are functions that determine Examples:

whether the measure should be flagged = Threshold

as anomalous = Compound threshold
= Memory

= Percentile




Data and Applications
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11 | Data: Spatial and Temporal Event/Activity Detection

Simulation Case

Community
Earth System
Model (CESM)

Mantaflow

Climate model simulation with
events of interest being a set of
cyclones throughout the
simulation space

Fluid model simulation with
events of interest being the
activity/changes throughout
the simulation space

Total Precipitation Rate

Surface Pressure

Lowest model level water vapor mixing ratio
Atmospheric air temperature

Lowest model level zonal wind

Lowest model level meridional wind
Atmospheric reference height

Velocity X
Velocity Y
Density
Pressure
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13 | Results

Percentage of Data Saved Over Time
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Results: Spatial Event/Activity Detection — Cyclones (CESM)
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Results

Percentage of Data Saved Over Time
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Results: Temporal Event/Activity Detection — Smoke Plumes

all-svd-ratio-moving-window-svd-ratio-compound-threshold-small-plumes-depth-charges
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17 I Conclusion

" The framework 1s capable of detecting events of interest with high and similar accuracy, whether
detecting events spatially or temporally

" Though the experiments have been run on simulation data so far, the approach can generalized to
other fields and application domains (cyber security, satellite image analysis)

= A major key in applying the framework to other areas 1s the ability to extract quantifiable features
from the data

* The in-situ detection is efficient and accurate




Questions?
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