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2 ‘ Motivation

= Noise in particle based simulations is still an important issue
= Low level/amplitude physics may be difficult to simulate

= Coupling between time dependent fluid and particles in §f methods becomes problematic because of high

levels of noise in the charge and current densities

" Noise becomes a worse problem in quasi-neutral plasmas

= Using the familiar scaling 1/,/N, to reduce noise quickly becomes computationally expensive/prohibitive
= No analytical method for noise and error estimation and control exists at present

= The total error in the estimated charge/current density is not just the variance (the1/1/N, term) but has

another, equally important but less familiar contribution, the bias



3 | Scope of analysis

= This analysis is restricted to:
" Periodic systems (on the interval [0,1])
= Blectrostatic (Vlasov-Poisson)
= Charge-neutral plasmas
" Mobile electrons and immobile 10ns
= Constant and equal weight computational particles
= Spatial analysis on uniform grid (non-Fourier models)

" Noise and error in the charge density and electric field



Density estimation by finite number of particles ®

= Write the density distribution function as

fe(z,v,t) un (x —&u,)0 (’U_gu)
=1
= Integrating we have at any spatial point, 1.e., continuous &

Np
- kG
=1
* In our analysis, the &erne/ K () is generally ot the familiar PIC particle shape; it satisfies these conditions:

e Normalized to unity,

1
/ deK(z)=1;
0
Symmetric, K(x) = K(—x), € [0,1];

[ J
e Translationally invariant, K (z,£) = K(z — &), z,£ € [0,1];
e Nonnegative, K(z) >0, x € [0,1];

e Has compact support.

" The normalization to unity assures conservation of total charge in the system.



s | Fundamental kernel

= We separate the kernel shape from width by working with a fundamental kernel of support one ([-1/2, 1/2]):

1 T

K(@) = 3% ()

= The following table shows some examples that are used in the following:

Kernel Definition .— — Boxcar
/7 \ .
1, o] < 3 204 . A = = Linear
Boxcar (top-hat) | K¢p(z) = _ ' / /N \ =+ Quadratic
0 otherwise . . 7 N\ . _
/ // O\ —=— Trapezoidal
2(1—2|z|), |=| < 3 0] J M - —e— Epanechnikov
Linear (tent) Kgr(x) = €15
0 otherwise. [}
~
1 2 < ©
7 —3z%, || < 1/6 40‘_:;
Quadratic Keo(z)=9 % (% - |:1:|)2, 1/6 < |z| <1/2 £ 1.0
©
0 otherwise . = ]
>
1, |z| <1/6 .
0.5 -
Trapezoidal Kir(z) =3¢ 3(3—1z),1/6 <|z| <1/2 "
0 otherwise.
3 (1-42?), x| < 1 0.0
Epanechnikov Kigp(z) = . . : ' '
0 otherwise, -0.4 -0.2 0.0 0.2 0.4




¢ | Statistical analysis in uniform density: variance

= We distinguish between #ue density, p(x), and estimated density pe(x) (estimated via the finite number of

computational particles).

"Using fOl p(x) =1 and p(z) > 0 (also assuming fol p(i)(:c)dx — 1), we can use p(x) as a probability
distribution and calculate ensemble averages for any f(x) as (f(x)) = fol dzx f(x)p(x).

= Thus, the ensemble average of the estimated over the true density is

1 h2 1/2
(pe()) = (Z Q;u> /O K(z —&)p(&)de = p(x) + —p" () Ky(m)n*dn+--- . |

2 —1/2
= For uniform densityp(z) = 1 (hence p”(z) = 0) and only the first term above remains. We have

Pe() = (pe(x)) + pe(z) = 1 + pe(x) and we can write the variance as |
V(@) = (5e(2)?) = (pe(@)2) — 1= Va(x) + V() — 1 = Va(z) — 1/N,. |

= Notice the negative contribution to the variance, which arise because of the finite number of particles



7 | Statistical analysis in uniform density: covariance matrix

® ‘The covariance matrix relates the density at two different points xz and ¥ and we calculate the density

correlations as
C(z,y) = (Pe()pe(y)) = (pe(@)pe(y)) — 1

* Detailed averaging calculations lead to

1
C(z,y) =C(z —y) = Calz —y) — N
p
= Notice again the negative term, which is the same as the one for the variance. For the special case of a o0-

function kernel K(z) we obtain |
Clao—y) = 3 Ble—y) -1 |

r—Y) = [0z —y)—1].

Yy N, Y

" The covariance matrix satisfies the general property (easily verified on the special case above) .

/dyC’(:c,y) = /dyC’(a:—y) =0.



s | Statistical analysis of the electric field )

" We use Gauss’s law to compute the electric field

db. )

dr

" The general solution for any density distribution (notice independence on the initial point of integration) is:

E(z) = /Oxdz pq(2) + /o drzp,(z) = Ei(x) + Eo

" The covariance matrix becomes (including variance, 1.e., the diagonal terms) 1s given by:

1 1 1 x
CE(z,y) :/ zdz/ wdwC(z,w) —l—/ wdw/ C(w, z)dz
0 0 0 0

1 Yy x Yy
—I—/ zdz/ C’(z,w)dw-l—/ dz/ dwC(z,w).
0 0 0 0

" For the special case of §-function kernel this reduces to the #ranslationally invariant form

1 1

C*(x,y) = 2N, [—|$ —yl+ (z—y)2+ 6]

= The E-field correlations also satisfy the general property [dz C¥(z,y) =0

— Pe = Pq- with fol dr E(x) =0 (charge neutrality condition)



o I Statistical analysis of the electric field: Ornstein-Uhlenbeck bridge

= The electric field correlations for the §-function case may be cast into the form

- == 0-U bridge, cusp
—e— 0O-U bridge, smooth

1 —1 —1 1
C’E(x, y) = Fp min(z,y) — zy + x(a:Q ) + y(y2 ) -+ T
0.25
; — Random Walk
0.20 i Brownian bridge
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10 I Statistical analysis in non-uniform density: bias-variance opt.

= Recall the general expansion
B2 1/2

(pe(@)) = p(z) + 50" (2) Ky(n)n?dn+--- . |
~1/2

= Now the second derivative 1s not zero, p”(zx) # 0; the total error (squared) in estimating the density is

Q= <(Pe(a:) - P(:B))2> =V +B?= —p(f\;pcl % + p”(:c4)2022 h*

1/2 1/2
with shape coefficients  C = K¢(¢)%d¢, Cy = / C*K¢(¢)d¢
—1/2 —-1/2
= We can extremize the total error Q with respect to the kernel width h (bias-variance optimization/ trade-of)): |

p(z)Ch )1/5,

- 1/5
h = hopt = h = hopt.av = - ,
Pt (Npp”(:l:)zC'22 Pt (Np ([ p"(x)?dx) C%)

1/2\ 4/° 4/5
Quin = > (f)(w)'f’”(x)'” GG ) Ominas = > ((f da |o"(2)?) " clc;/2>
min 4 Np min,av — 4 Np
(mean square error) (mean integrated square error)



11 ‘ Examples: bias-variance optimization curves

= The following table gives the values of the coefficients Cjand C3and sketches of the averaged BVO curves

for folda: p(xr) = folda: p(z) = 1.

V + B2

Squared error, Q

i/5
Kernel C1 c; | (¢i6y"?) (c1/C2)® | (c1c3)?/®
Boxcar 1 1/12 0.370 2.70 0.0507
Linear (tent) | 4/3 | 1/24 0.353 3.78 0.0248
Quadratic 33/20 | 1/36 0.356 4.63 0.0166
Trapezoidal 5/4 | 5/108 0.350 3.57 0.0274
Epanechnikov 6/5 1/20 0.349 3.44 0.0295
—— Boxcar

— == Quadr. spline
—-= Epanechnikov




Statistical analysis in non-uniform density: scaling arguments

"Some conclusions that can be drawn from the above results:
= 'The variance (1), 1s a finite number of particles effect
= 'The bias (B), 1s a finite size of particles effect
* ‘The bias-variance optimization process leads to a minimum of the total error in estimated density

—4/5

* The minimum of the total error minimum error Qmin scales as N, ', which is weaker than the variance scaling N 1

(i.e., the usual noise scalingas 1/,/N,, )

" The balance between variance and bias (squared) occurs when

4
L SR, (@)
p(z)Nph p(z)? l
where the typical gradient scale length is given byl = \/p(x)/|p" (z

" The quantity on the left 1s interpreted as the number of partlcles within a length h. We may say that the variance term
dominates if we have too few particles within [ while the bias term dominates when the kernel width A increases too
much relative to [

= The optimal width of the kernel scales as hopt ~ (- - )5 e, weakly depends on the total number of particles, etc.

* The width of the minimum curve scales as Q" (hopt) ~ (- - - )2/ ® therefore we expect a relatively broad minimum of
the curve Q(h), as seen in the figure



13 | Grid discretization: kernels vs. particle shapes and the sum rule

= The continuous variables formulas are “absolute” in the sense that they do not require or suppose the existence of a grid

"The discretization of the formulas 1s straightforward; the type and accuracy of discretization are dictated by choice and
need to resolve the simulated physics

*One important connection that must be made 1s between the Lagrangian particles and the Eulerian grid. This is done with
a charge deposition rule provided by a particle shape. The extact conservation of charge, after being deposited oz the grid is a
basic requirement in particle methods. The following suzz rule assures the latter:

NQ
Y AS(i—€) =1
=1

= The conventional particle shapes (splines) have two unnecessary restrictive properties:
= Width always being an integer number of cells

= Width always related to their smoothness

"These properties can also become computationally inefficient when the BVO width is larger than 4 cells, 1.e., require

higher than 4% order splines

= The distinction between kernels K () and particle shapes S(z) is at the heart of relaxing the above restrictions; notice
that S(x) satisfies all conditions that K(x) does plus the extra condition of the sum rule. Therefore, S(x) can always be use
as a kernel for the density estimate but K(x) in general cannot be used as a particle shape.



14 I Obtaining particle shapes by convolution

= The following convolution between a (known) particle shape (or finite element) and an arbitrary kernel
always produces a particle shape (satistying all kernel properties plus the sum rule):

S(z) = /dyK(y)So(fc — ) -

"Examples: Particle shape

Definition
1, 2] < 1
Boxcar (NGP) Sp(z) = —Al— { |A| -2
0 otherwise.
. . NINEE
Linear spline Sp(x) = % e
(- (R 1512
Quadratic spline | Sg(z) = % ¢ % (% - |%|)2, 1/2< | %] <3/2
[ 0 otherwise.
(5 [&] <172
Trapezoidal St(x) = %< %(%—|%|), 1/2< |%| <3/2
[ 0 otherwise,

*Obtaining shapes by convolution 1s only sufficient but not necessary, i.e., other methods may lead to
obtaining particle shapes (which by definition satisty the sum rule).



15 | Particle shapes of non-integer cell width

=]t is not necessary to use particles of integer width, as the following example shows the convolution between
a boxcar shape with a boxcar kernel of width 0 < § < A:

Savs(z) = / dy K5(4y)S5(z — y)

1
_ 1 ]-7 % S 2
(L 0<|z] < &5° where Kj(x) == | { .
1 1A48 |z N 15 d 0 otherwise.
_K< 52 — 1§l Y
| 0, otherwise .
| £ Charge deposition rule Range
: 6 3 A-6 - Si—1(§) =0
| ' Si(€) =1 0<|€—ai| < A58 |
Si+1(§) =0
S Si-1(6) = 25 252 - (6 -]
& Si(6) = A5 | 252 + (€ — )] —4<t-mc A5t
Si+1(§) =0
Si—1(§) =0
Sz(g):_l_g[%&_(g_xz)] T_Sgg_ng%




6 I Examples of uniform density correlations on a grid

"Density discretization (at cell centers) gives the following correlation formulas for familiar particle shapes

1 1
Cit1/2,5+1/2 = ]_V_p;éij A (Boxcar (NGP))

( -_— S 1 ..
v [AfS@E -1 =5 -1 =a,.~w (=0,

Cit1/2,5+1/2 = NLp [AfS(§ —1)5(§)d€ — 1] = GNlppc - 1\}1) (j=i%1), (Linear)

\ —N%, otherwise.

( 2011v1,,,,c - J\lf,, (j=1)

13 1 .
C. . = ¢ 60Nppe  Np (G=ixl) (Quadratic)
i+1/2,j+1/2 1 i L
120Nppe Ny (J=1%2)
\ _N%, otherwise.

*The sum rule is essential to have the discrete property Y Ciy1/2,541/2 = 0 (analogous to [dy C(z,y) = 0)



17 I Numerical results in uniform density: correlations on a grid
= We rewrite the correlations for the Znear charge deposition in normalized form:

~ 2
Cit1ir1 =01 41 X Nppe = 5 — A,

2=
~ 1
6

N

Ci+%,i+%:t1 = Ci+%,i+%:t1 X Nppe = = = A

*The table shows numerical simulations on a fixed grid with N, = 25 and varying particle numbers and samples:

N, M Citlitl Citlitis
theoretical numerical theoretical numerical
250 2.5 x 10 | 0.6266. .. 0.6269 0.1266. . . 0.1267
2500 2.5 x 10° 0.6256 0.1251
25,000 | 2.5 x 10* 0.6208 0.1252

= The sample number that yields satisfactory comparison with theory is about 10%; this number is used in all

foﬂowing simulations



18 I Numerical results in non-uniform density: setup ()

= As a true density we use:
p(x) =1+ acos(2rmzx), x€]0,1]
=*For all simulations we use a = 0.5 and m = 2. For most simulations we use N, = 10%.

= The scaling transform K (z) = K¢(z/h)/h is implemented by using the same particle shape but changing the
grid spacing. For example, three-cell-wide particles have a width A = 3A = 3/15 = 0.2 (withA = 1/N,) and
number of grid points V; = 15; for N, = 30 we have width h = 3/30 = 0.1, etc.

" We also use the Epanechnikov kernel (scaled to3A) for comparison since it provides the lowest minimum
error among all other kernel shapes (however, it does noz satisty the sum rule, 1.e., 1t 1s not a particle shape):

KE<:c>=l{ F(1-3(8)°). 1&l<3

A 0 otherwise.



19 I Numerical results in non-uniform density: scaling argument

"In non-uniform density, we are interested in the local error, i.e., at a fixed spatial location; we take x = 1/2

"At z = 1/2we have p(1/2) = 3/2 and p”'(1/2) = —8=?. The gradient scale length is| = /1.5/872 ~ 0.138.
Looking into a range N, € [16, 48] for a kernel of width h = A, we plot the bias and variance curves
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"We see that the curves cross and we expect to have a minimum of the total error in the range N, € [16, 48]




20 I Numerical results in non-uniform density: quantitative study

"At z =1/2 and N, € [16, 48] we compate numerically Q(h) for all four kernels. We observe a minimum for

all curves with excellent agreement with theory Owni h
Shape —— g ——opt :
theoretical | numerical | theoretical | numerical
Boxcar 0.00232 0.00206 0.0810 0.0833
Quadr. spline 0.00223 0.00198 0.139 0.136
Trapezoidal 0.00219 0.00194 0.107 0.107
Epanechnikov 0.00219 0.00194 0.103 0.107
0.0045
—4— Boxcar
—¥— Quadratic spline
T 0.0040- —<— Trapezoidal
¥ —@— Epanechnikov
>
II'0.0035
o
S
5 0.0030
D
S 0.0025 \ ]
o L\ :
n LN
S T
0.0020 g P -

0.06 0.08 0.10 0.12 0.14 0.16 0.18
Particle width, h



2 I Numerical results in non-uniform density: fractional cell width shape

~

"The fractional width particle shape can also be used to operate near the minimum of Q(h).

*With this shape, no change in the charge deposition scheme is necessary. However, changing its width A + §
is not a pure scaling but a parametric shape and width transform (therefore the previous formulas do not
directly apply).

= The results for two fixed grids are shown below at z = 1/2; the discontinuity is expected and is where the
grid changes size N, = 16 — 8 0.022] P

—— N, =
—— Ny=16
0.020
>
> 0.018
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I 0.016
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o
0.014
0.012

0.075 0.100 0.125 0.150 0.175 0.200 0.225 0.250
A+



22 ‘ Conclusions and future work

= Conclusions:

" The noise and error have been analyzed in uniform and non-uniform density distributions

= In uniform charge density the finite number of particles lead to a constant small but non-negligible negative
contribution to all covariance matrix elements (diagonal and off-diagonal)

= The negative contributions lead to correlations described by the Ornstein-Uhlenbeck bridge

" In non-uniform density there is an additional error contribution from the finite size of computational particles, the bias
" The process of bias-variance optimization leads to an optimal kernel/particle width that minimizes the total error

" The scaling of the minimum error with number of particles is weaker than the usual variance scaling

= On a discrete grid, particles of arbitrary (uncoupled) width and smoothness may be constructed by the convolution of
a kernel and a particle shape (or finite element)

= Numerical results and theory agree very well

=*Future work: ]

= Analyze the remaining two steps: (1) errors in the E-field leading to errors in the particle force; and (it) errors in the
particle trajectories leading to errors in the charge density, 1.e., closing the loop

= Generalization to electromagnetic models, where the current density must be analyzed; generalization to 2D and 3D



