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2 Motivation

• Noise in particle based simulations is still an important issue

• Low level/amplitude physics may be difficult to simulate

• Coupling between time dependent fluid and particles in (Sf methods becomes problematic because of high

levels of noise in the charge and current densities

• Noise becomes a worse problem in quasi-neutral plasmas

• Using the familiar scaling 1/ -\/N, to reduce noise quickly becomes computationally expensive/prohibitive

• No analytical method for noise and error estimation and control exists at present

• The total error in the estimated charge/current density is not just the variance (the 1/Viv„ term) but has

another, equally important but less familiar contribution, the bias



3 Scope of analysis

■ This analysis is restricted to:

■ Periodic systems (on the interval [0,1])

■ Electrostatic (Vlasov-Poisson)

■ Charge-neutral plasmas

■ Mobile electrons and immobile ions

Constant and equal weight computational particles

Spatial analysis on uniform grid (non-Fourier models)

■ Noise and error in the charge density and electric field

o



4 Density estimation by finite number of particles

• Write the density distribution function as

Ni,

fe(x, v, t) = E q„K(x - -,,,),,5(v - .ii, )
pi= 1

• Integrating we have at any spatial point, i.e., continuous x

N,

pe(x) = E q,K(x _ ii)
bt=i

• In our analysis, the kernel K(x) is generally not the familiar PIC particle shape; it satisfies these conditions:

• Normalized to unity,

11
dx K (x) = 1;

• Symmetric, K (x) = K (—x), x E [0, 1];

• Translationally invariant, K (x, 0 = K(x — e), x,e e [0,1];

• Nonnegative, K (x) > 0, x E [0, 1];

• Has compact support.

• The normalization to unity assures conservation of total charge in the system.



5 I Fundamental kernel

• We separate the kernel shape from width by working with afundamental kernel of support one ([-1 /2, 1 /2]):

K (x) = -hi K f (—Xh)

• The following table shows some examples that are used in the following:

Kernel Definition

Boxcar (top-hat) Kn3(x) = 
1, lxl <{ 

0 otherwise .

Linear (tent) K f L (x) = 
2(1— 21xl), lx1 <{ 

0 otherwise.

Quadratic KfQ(x) = 9

I — 3x2, lxl < 1/6
4

q — lx02, 1/6 < lx1 < 1/2

0 otherwise .

Trapezoidal KfT(x) = 2

1, lxl < 1/6

3 (2 — Ixl), 1/6 < lxl < 1/2

0 otherwise .

Epanechnikov
3 X 

KfE(X) - { 
2 (1 - 4X2 )7 l l < - 2

0 otherwise ,

2.0 -

0.0 -

-0.4 —0.2 0:0

x

0:2

Boxcar

— — Linear

• Quadratic

— Trapezoidal

—•— Epanechnikov

0:4



6  Statistical analysis in uniform density: variance

• We distinguish between true density, p(x) , and estimated density p,(x) (estimated via the finite number of

computational particles).

•Using f p(x) = 1 and p(x) > 0 (also assuming fol p(i) (x)dx = 1), we can use p(x) as a probability
1

distribution and calculate ensemble averages for any f (x) as (f (x)) = fo dx f (x) p(x).

• Thus, the ensemble average of the estimated over the true density is

1
(pe(x)) = (Eqpt) f K(x—)p(Ocle = p(x) + —h2 pi ' (x) fil2 Kf (77)7726117 + • • • •

ii 
2 -1/2

• For uniform densityp(x) = 1 (hence p"(x) = 0) and only the first term above remains. We have

pe(x) = (NW) + - fi e(x) = 1 + fie(x) and we can write the variance as

V (x) = (fie(x)2) = (Pe(x)2) — 1= Vd(x) + V0(x) — 1 = Vd(x) — 11 Np.

• Notice the negative contribution to the variance, which arise because of the finite number of particles



7 I Statistical analysis in uniform density: covariance matrix

• The covariance matrix relates the density at two different points x and y and we calculate the density

correlations as

C(x, y) = (i5e(x)pe(Y)) = (pe(x) NO)) —

• Detailed averaging calculations lead to

1

1
C (x , y) = C (x — y) = Cd(x — y) — Np .

• Notice again the negative term, which is the same as the one for the variance. For the special case of a (5-

function kernel K (x) we obtain

C (x — y) =N[6(x — y) — 1] •

• The covariance matrix satisfies the general property (easily verified on the special case above)

fdy C (x, y) = f dy C (x — y) = 0 .



8 • Statistical analysis of the electric field

• We use Gauss's law to compute the electric field

dE — (i)— P — Pe = Pq with fol
dx 

dx h; (x) = 0 (charge neutrality condition)

• The general solution for any density distribution (notice independence on the initial point of integration) is:
1

E(x) = x dz pq(z) + fo dx xpq(x) Ei(x) + E0fo 

- The covariance matrix becomes (including variance, i.e., the diagonal terms) is given by:

1 1 1 x
CE(x,y) = zdz wdwC(z, w) + wdw C(w, z)dz

o o 0 0
1 Y x Y

+ zdz C(z, w)dw + dz dwC(z, w).
o o o o

• For the special case of 6-function kernel this reduces to the translational/y invariant form

E 1 (x, y) =   [—lx — yl + (x — 2 1y) 6+ 
C ]2Np 

• The E-field correlations also satisfy the general property f dx CE (x,y) = 0



9  Statistical analysis of the electric field: Ornstein-Uhlenbeck bridge

• The electric field correlations for the 6-function case may be cast into the form

C
E(

x,
 y
 =
 0
.
2
5
)
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10 I Statistical analysis in non-uniform density: bias-variance opt.

• Recall the general expansion

h2
(Pe(x)) = p(x) + Tp"(x)

/1/2

J-1/2

K f (n)T12 dil + • • • .

• Now the second derivative is not zero, p" (x) / 0; the total error (squared) in estimating the density is

Q = ((pe(x)- p(x )) 2 )= V + B2 = IOW x)
2 

4
1 1 + p

II( 

Np h 
It

4

1/2

f
— 

1/2

with shape coefficients C1 = K f (02 c1( 1 C2 = f (2K f (()d(
1/2 —1/2

• We can extremize the total error Q with respect to the kernel width h (bias-variance optim4ation/ trade-offi:

h = hopt =

Qmin =

( P(x)Cl  1/5

Npp" (x)2C } '

5 P(x)1P"(x)11/2c1c r 4/5

4 Np

(mean square error)

h hopt,av

Qmin,av

1/5

Ci 

(Np (f p" (x)2 dx) C 22

5 (  (fdx lp"(x) 2)
1/4 

Ci C2  )

4 NP 

1/2 4/5

(mean integrated square error)

1



11 Examples: bias-variance optimization curves

• The following table gives the values of the coefficients C1 and C2 and sketches of the averaged BVO curves

for foldx p(x) = f01 dx p" (x) = 1.

0.006-
N
Ca

+ 0.005 -
.

° 

II
0.004-

L:
Lc2 0.003 -
C 15

7.
0 002 -

L"i' (CI
FT 0.001-
V)

0.000 
0.00 0.25 0.50

Kernel C1 C2 (C1C21/2 )4/5 (Ci/q)1/5 (C1C1)2/5

Boxcar 1 1/12 0.370 2.70 0.0507

Linear (tent) 4/3 1/24 0.353 3.78 0.0248

Quadratic 33/20 1/36 0.356 4.63 0.0166
Trapezoidal 5/4 5/108 0.350 3.57 0.0274

Epanechnikov 6/5 1/20 0.349 3.44 0.0295

0.75 1.00

h
1.25

Boxcar

--- Quadr. spline

—•- Epanechnikov

1.50 1.75 2.00



12 Statistical analysis in non-uniform density: scaling arguments

Some conclusions that can be drawn from the above results:

• The variance (V), is a finite number of particles effect

• The bias (B), is a finite size of particles effect

• The bias-variance optimization process leads to a minimum of the total error in estimated density

• The minimum of the total error minimum error Qmin scales as Np 415, which is weaker than the variance scaling Np71
(i.e., the usual noise scaling as 1/ \t/Vp )

• The balance between variance and bias (squared) occurs when

1 p"(x)2 h4 ( 11)4

p(x)Nph t-i p(x)2 r-1 1

where the typical gradient scale length is given by l = V p(xVie(x)l
• The quantity on the left is interpreted as the number of particles within a length h. We may say that the variance term

dominates if we have too few particles within l while the bias term dominates when the kernel width h increases too
much relative to l

• The optimal width of the kernel scales as hopt ,--) (- - • )1/5, i.e., weakly depends on the total number of particles, etc.

• The width of the minimum curve scales as Q"(h0p-t) — (• • •)2/5, therefore we expect a relatively broad minimum of
the curve Q (h), as seen in the figure



1 3 Grid discretization: kernels vs. particle shapes and the sum rule
• The continuous variables formulas are "absolute" in the sense that they do not require or suppose the existence of a grid

•The discretization of the formulas is straightforward; the type and accuracy of discretization are dictated by choice and
need to resolve the simulated physics

•One important connection that must be made is between the Lagrangian particles and the Eulerian grid. This is done with
a charge deposition rule provided by a particle shape. The extact conservation of charge, after being deposited on the grid is a
basic requirement in particle methods. The following sum rule assures the latter:

o

Ng

E A S(xi - 0 = 1
i=i

• The conventional particle shapes (splines) have two unnecessary restrictive properties:
• Width always being an integer number of cells

• Width always related to their smoothness

•These properties can also become computationally inefficient when the BVO width is larger than 4 cells, i.e., require
higher than 4th order splines

• The distinction between kernels K(x) and particle shapes S(x) is at the heart of relaxing the above restrictions; notice
that S(x) satisfies all conditions that K(x) does plus the extra condition of the sum rule. Therefore, S(x) can always be use
as a kernel for the density estimate but K(x) in general cannot be used as a particle shape.



14 Obtaining particle shapes by convolution
• The following convolution between a (known) particle shape (or finite element) and an arbitrary kernel

always produces a particle shape (satisfying all kernel properties plus the sum rule):

S(x) = tidy K(y)so(x — y) .

oExamples: Particle shape Definition

Boxcar (NGP) SB(x) = i
t 1, I i I

0 otherwise .

Linear spline 1SL (x) = ,T,
1- 1i1, 1i1 1

0 otherwise .

Quadratic spline SQ (x) = i

I — (./)2, IV

(1 — 1,11)2, 1/2

0 otherwise .

1/2

Ili 3/2

Trapezoidal ST(x) = I

1, lil C 1/2

1 q — Ii1), 1/2

0 otherwise ,

lil 3/2

•Obtaining shapes by convolution is only sufficient but not necessary, i.e., other methods may lead to
obtaining particle shapes (which by definition satisfy the sum rule).

o



1,

1 5  Particle shapes of non-integer cell width
°It is not necessary to use particles of integer width, as the following example shows the convolution between
a boxcar shape with a boxcar kernel of width 0 < 6 < A:

SA+6(x) = PY Kö(Y)SB(x y)

1

— A{ < x1 < A6

1X1 <
 02

6

otherwise .

where K6(x) =1,5 1, IV

0 otherwise .

Charge deposition rule Range

Si-1(e) = 0

Si(e) = 1

Si+1 (0 = 0

0 < < 'V— xi l

Si_i A2

< '6'6'4 <

(0 = ,th
Si(0

(e[ — xi)]

= Po

Si+1 (0 = 0

[APS + (e — xi)] — — xi

Si_i(e) = 0

Si(0 A2 
6 < . A= Po

Si+1

['6.(5 (e xi)]

'6‘6

e — x
/— — 2

(0 = OS + (e — xi)][



16  Examples of uniform density correlations on a grid

oDensity discretization (at cell centers) gives the following correlation formulas for familiar particle shapes

1

i+112,j+1 / 2 = °id

ppc

ci+1/2,j+1/2 =

Ci+1/2,j+1/2 =

1

{ il [A f ,S(e)2< — I] = Ap [32
0

Np [A f s(e — 1),S(Ock — 1] =

l
Np

11 1
20Nppc Np

13 1
60Nppc Np

1213Nppe Np

1
- Np

(j = i 1)

(j=i±2)

otherwise.

— 1] 2 
3Npp,c

1 
6Nppc Np

oThe sum rule is essential to have the discrete property Ei C2+112,J+112

= i),NP

(j = ±1),

otherwise.

(Boxcar (NGP))

(Linear) •

(Quadratic)

= 0 (analogous to fdy C(x, y) = 0)



17 I Numerical results in uniform density: correlations on a grid
• We rewrite the correlations for the linear charge deposition in normalized form:

_
C 1 1 =i+ ,i+ Cid- 1 ,z-i-• • 1 1 x Nppc

C2+4. ,2_F .+1 _.= Ci+ .,214. +1 X Nppc

2

3
1

6

A ,

A

•The table shows numerical simulations on a fixed grid withN g = 25 and varying particle numbers and samples:

Np M
C 1 1
i+ ,i+

C 1 1
i+ ,i+ +1

theoretical numerical theoretical numerical

250 2.5 x 106 0.6266... 0.6269 0.1266... 0.1267
2500 2.5 x 105 0.6256 0.1251

25,000 2.5 x 104 0.6208 0.1252

• The sample number that yields satisfactory comparison with theory is about 106; this number is used in all
following simulations



18 I Numerical results in non-uniform density: setup

• As a true density we use:

p(x) = 1 + a cos(271-mx) , x c [0, 1]

oFor all simulations we use a = 0.5 and rn = 2. For most simulations we use Np = 104.

• The scaling transform K(x) = Kf(x1h)lh is implemented by using the same particle shape but changing the

grid spacing. For example, three-cell-wide particles have a width h = 30 = 3/15 = 0.2 (with A = 1INg) and

number of grid points Ng = 15; for Ng = 30 we have width h = 3/30 = 0.1, etc.

• We also use the Epanechnikov kernel (scaled to 30) for comparison since it provides the lowest minimum

error among all other kernel shapes (however, it does not satisfy the sum rule, i.e., it is not a particle shape):

KE (x) = 
1

0

1
2

0
(1 4

9 (Ax)2) 7 1 A - 1  2

otherwise .



19 I Numerical results in non-uniform density: scaling argument

mIn non-uniform density, we are interested in the local error, i.e., at a fixed spatial location; we take x = 1/2

mAt x = 1/2 we have p(1/2) = 3/2 and p"(1/2) = —872. The gradient scale length is l = V1.5/872 E-' 0.138.
Looking into a range Ng E [16, 48] for a kernel of width h = A , we plot the bias and variance curves

0.010 0.010

0.008-

Z
u
C
(0 0.006-_l_
a,
>

8 0.004-

w

0.002-

0.000 .
0.02 0.03 0.04

h
0.05 0.06

-0.008

--3-0.006 ii)

La
-0.004 t

w

-0.002

0.000

mWe see that the curves cross and we expect to have a minimum of the total error in the range Ng E [16, 48]



20 Numerical results in non-uniform density: quantitative study
NAt x = 1/2 and Ng E [16, 48] we compare numerically Q(h) for all four kernels. We observe a minimum for

all curves with excellent agreement with theory

0.0045

(Ntil 0.0040

II 0.0035
o

L- •0 0030a) 
-o
22
g 0.0025
o-
tr)

0.0020

Shape Qmin hopt
theoretical numerical theoretical numerical

Boxcar 0.00232 0.00206 0.0810 0.0833
Quadr. spline 0.00223 0.00198 0.139 0.136
Trapezoidal 0.00219 0.00194 0.107 0.107
Epanechnikov 0.00219 0.00194 0.103 0.107

Boxcar

—V— Quadratic spline

  Trapezoidal

Epanechnikov

-

0:06 0:08 0.10 0:12 0.14
Particle width, h

0.16 0.18



21  Numerical results in non-uniform density: fractional cell width shape
•The fractional width particle shape can also be used to operate near the minimum of Q(h).

oWith this shape, no change in the charge deposition scheme is necessary. However, changing its width + 6
is not a pure scaling but a parametric shape and width transform (therefore the previous formulas do not

directly apply).

• The results for two fixed grids are shown below at x = 1/2; the discontinuity is expected and is where the

grid changes size Ng = 16 8 0.022-

0.020-

0.018-

esclo

II 0.016-c

o
0.014-

0.012-

—e— Ng = 8

Ng = 16

0.075 0.100 0.125 0.150 0.175 0.200 0.225 0.250
+6



22 Conclusions and future work

■ Conclusions:

■ The noise and error have been analyzed in uniform and non-uniform density distributions

■ In uniform charge density the finite number of particles lead to a constant small but non-negligible negative
contribution to all covariance matrix elements (diagonal and off-diagonal)

■ The negative contributions lead to correlations described by the Ornstein-Uhlenbeck bridge

■ In non-uniform density there is an additional error contribution from the finite size of computational particles, the bias

■ The process of bias-variance optimization leads to an optimal kernel/particle width that minimizes the total error

■ The scaling of the minimum error with number of particles is weaker than the usual variance scaling

■ On a discrete grid, particles of arbitrary (uncoupled) width and smoothness may be constructed by the convolution of
a kernel and a particle shape (or finite element)

■ Numerical results and theory agree very well

oFuture work:

■ Analyze the remaining two steps: (i) errors in the E-field leading to errors in the particle force; and (ii) errors in the
particle trajectories leading to errors in the charge density, i.e., closing the loop

■ Generalization to electromagnetic models, where the current density must be analyzed; generalization to 2D and 3D


