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Problem Statement
luta

Abstract. Neural network models have attracted a lot of research attention in Scientific Machine
Learning (SciML) problems. However, they tend to be overconfident when reporting typical

point-estimate predictions in classification and regression problems. This could be very harmful
when dealing with costly numerical simulations or high-stakes decisions in national security

applications. In this work, we assess uncertainty quantification techniques for neural network
models. To understand their variability, we rely on different sources of randomness associated
with training samples, weight initialization, dropout methods, and ensemble formations.
Motivated by typical SciML situations, we assume a limited sample budget, noisy training data,
and suggest approaches for reporting and possibly reducing uncertainty.

Supervised Machine Learning: extract models from data and use them to make predictions.

For example, given data: D = (x1, , (xN, yN)} c X x

minimize avg squared error of a linear model: NEillyi - (xilv+ b) 11

For costly modeling and simulation domains: Machine and deep learning predictions need to
be accompanied by an accurate quantification of their uncertainty — in order to efficiently use the
sample budget and build confidence in the model predictions.
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Problem Statement
luta

Deep learning "black box" models are popular, yet are difficult to interpret and understand.

UQ in model-based

critical decision making

UQ today underpins many decision

processes in nuclear security, our
risk management and associated

investments, which can be at the

scale of billions of dollars.

Predictions without UQ are neither

predictions nor actionable. The

data-rich world of ML, especially

the powerful deep learning (DL)

models, poses parallel challenges.

To develop consequential decision support

from 'learned' models built on complex

datasets, there is an important need to co-

develop I.J,Q for this domain.
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Feature engineering in deep

learning: rethinking architectures
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ffl fully connected+ReLU

ffl softmax

Variance as a measure of

lack of confidence
The variance can be seen as a
measure of uncertainty — but
where is the neural network

uncertain or what is it uncertain

about?

CNN illustration: MakeiD

Depth regression (input, truth,

depth prediction, aleatoric,
epistemic)

c ,

• Begoli E, Tanmoy B, and Dimitri K "The need for uncertainty quantification in machine-assisted medical decision making " Nature Machine Intelligence, 2019
• Mehta, Pankaj, et al. "A high-bias, low-variance introduction to machine learning for physicists." Physics reports 810 (2019): 1-124

4



Predictive Uncertainty

Why do we need a measure of uncertainty or low-confidence?

Very limited, typically expensive, training data

Attempting to extrapolate far away from observed data

Value on incorporating UQ in ML

• Support and augment decision making processes, e.g., Cyber, MRI analysis, etc.
• Reinforcement learning, involves time and resources we wish not to waste, e.g., elf-

learning agents (autonomous robots/vehicles)
• Model explainability using sensitivity analysis measures — check out: Assessing the

Accuray of ML hxplanations for Model Credibilio (Mike R. Smith, day 2, session 1)

Human expert time is expensive. Many experiments are also "very" expensive!

Active Learning (human annotator)

• The model chooses which unlabeled data are most informative
Adaptive Sampling (design of experiment and sample design)

• An uncertainty estimator (e.g., variance) suggests points of highest value for model

accuracy improvement



Predictive Uncertainty

1. Aleatoric Uncertainty
• Input data corruption: noise levels, measurement errors, etc.
• Can not be reduced by the model designer
• Can be reduced by increasing measurement precision

2. Epistemic Uncertainty
• Fidelity of the model (parameters and/or structure) when representing data
• Decreases as the training data size increases

95% prediction interval,

Simultaneous uantile Regression

Orthonormal CertUicates
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Quantifying predictive uncertainty, methods need to consider both aleatoric and epistemic uncertainties.

Hiillermeier E, and Willem W, "Aleatoric and epistemic uncertainty in machine learning: A tutorial introduction." arXiv preprint (2019).

Gal, Yarin. "Uncertainty in deep learning." University of Cambridge 1.3 (2016).
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Approach

We represent DL predictions as

distributions (µ,a2) rather than
softmax-based point estimates fi.

Scientific Machine Learning
1. Training sample budget is limited,

causing Out of Distribution (OoD)
issues.

2. Different types of noise, imposed
onto the input data and propagate
that noise into an uncertainty metric

in the resulting prediction.

Very few training samples

10

-10

luta

• • ,
. A.** c„

-7.1 .• 6
• f: •

-3 2

Noisy training data

Quality of prediction measures: Our approach is to assign a numerical score to a prediction

Pe(ylx), rewarding better calibrated predictions over worse. We leverage randomness in Neural Networks'
initialization, weight learning, and backpropagation steps.
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Approach Methods

Bayesian NNs

Bayesian Neural Networks (BNNs): place a
prior distribution over the network weights
and use data to learn a posterior distribution.

wMLE = arg max log p (D lw)
= arg max Ei log p (Yi IX„ w)

wMAP = arg max log p (wl D)

= arg max log p (D + log p (w)
w

Variational Inference (VI) approximation:

0* = arg min KL(q9(wID)llp(wID))

Graves, Alex. "Practical variational inference for
neural networks." Advances in neural information
processing outems. 2011.

MC Dropout

Neurons are randomly dropped in

each iteration, with some
probability (p), often fixed at
empirical values (e.g, 0.3).

Eq(y*p)(y*)
(x *, wit, • • • ,

t =1

Average of T stochastic
forward passes through the
network.

Hinton Geoffrey E., et al. "Improving neural
networks by preventipg co-adaptation of
feature detectors." arXtv preprint
arXiv:1 207.0580 (2012).

NUM

Deep Ensembles

Estimate 2 outputs: mean and
variance

Modified loss function +
adversarial training

— 
log o-4 (x) (y—µ,e(x))2 — log p 9 xn)

2 2 0-1, (x)

Decomposed uncertainty

= LEir1 Pi and 6e =
1 vM „2 _L v

171 L
M „2 „ 

2 
1

1_1=1 i4e 

Aleatoric E

Lakshminarayanan, Balaji, Alexander Pritzel, and Charles
Blundell. "Simple and scalable predictive uncertainty estimation
using deep ensembles." Advances in neural information
processing systems. 2017. 8



Approach Data

A library of high-dimensional analytical test functions, frequently used for

QoI experimental studies (optimization, numerical integration, uncertainty

quantification, and multi-fidelity analysis).
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• Dakota www.Dakota.sandia.gov. Adams, B.M., Bohnhoff, W J., Dalbey, K.R., Ebeida, M.S., Eddy, J.P., Eldred, M.S., Geraci, G., Hooper, R.W., Hough, P.D.,
Hu, K.T., Jakeman, J.D., Khalil, M., Maupin, K.A., Monschke, J.A., Ridgway, E.M., Rushdi, A.A., Stephens, J.A., Swiler, L.P., Vigil, D.M., Wildey, T.M., and
Winokur, J.G., "Dakota, A Multilevel Parallel Object-Oriented Framework for Design Optimization, Parameter Estimation, Uncertainty Quantification, and
Sensitivity Analysis: Version 6.11 User's Manual," Sandia Technical Report SAND2014-4633, July 2014; updated November 2019.

• Virtual Library of Simulation Experiments https.//www.sfu.ca/—ssurjano/index.html
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x = Dense(512, activation="relu")(input)

x = Dropout(0.5)(x, training=True)

x = Dense(512, activation="relu")(x)
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Total params: 264,193
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A model with 200K trainable parameters still needs an assessment of confidence/uncertainty.
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Numerical Experiments K

Uncertainty quantification at a new test point.

Overall model uncertainty/confidence within a test domain.

Guidance of adaptive sampling towards points/regions of high estimated variance.
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Numerical Fxperiments
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Methods vary in terms of complexity, accuracy, scalability, and computational cost.
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Observations & Conclusions

• Ongoing work. No one solution fits all. Classes of functions vary in

terms of smoothness, oscillation, discontinuities, etc.

• Methods vary in terms of complexity, accuracy, scalability, and

computational cost.

• We use analytical test functions for comparisons, but in real-world

problems, no "ground truth" uncertainty estimates are available.

Preliminary Results:

• Deep ensembles

• Smoothed out by adversarial training

• Most conservative

• Low training cost (e.g., with M=5 models)

• Ongoing comparisons to:

• [Madras 2020] Detecting Extrapolation with Local Ensembles

• [Ashukha 2020] Pitfalls of In-Domain Uncertainty Estimation and

Ensembling in Deep Learning
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