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Problem Statement

Abstract. Neural network models have attracted a lot of research attention in Scientific Machine
Learning (SciML) problems. However, they tend to be overconfident when reporting typical
point-estimate predictions in classification and regression problems. This could be very harmful
when dealing with costly numerical simulations or high-stakes decisions in national security
applications. In this work, we assess uncertainty quantification techniques for neural network
models. To understand their variability, we rely on different sources of randomness associated
with training samples, weight initialization, dropout methods, and ensemble formations.
Motivated by typical SciML situations, we assume a limited sample budget, noisy training data,
and suggest approaches for reporting and possibly reducing uncertainty.

Supervised Machine Learning: extract models from data and use them to make predictions.
For example, given data: D = {(X1,¥1), ., Xy, Yn)} € X XY
minimize avg squared error of a linear model: %Z ilyi — (x;W + b)||

For costly modeling and simulation domains: Machine and deep learning predictions need to
be accompanied by an accurate quantification of their uncertainty — in order to efficiently use the
sample budget and build confidence in the model predictions.




Problem Statement

Deep learning “black box” models are popular, yet are difficult to interpret and understand.

UQ in model-based Feature engineering in deep Variance as a measure of
critical decision making learning: rethinking architectures lack of confidence

The variance can be seen as a
measure of uncertainty — but
where is the neural network
uncertain or what is it uncertain
about?

UQ today underpins many decision
processes in nuclear security, our
risk management and associated
investments, which can be at the
scale of billions of dollars.
Predictions without UQ are neither
predictions nor actionable. The
data-rich world of ML, especially
the powerful deep learning (DL)
models, poses parallel challenges.

CNN illustration: Make3D
Depth regression (input, truth,
depth prediction, aleatoric,
epistemic)

224x224x3 224%x224%x64

112x[112x 128

X 56 x 256

_1x1x4096 _1x1x1000

To develop consequential decision support
from ‘learned’ models built on complex
datasets, there is an important need to co-

develop UQ for this domain.

@ convolution+ReLU
@ max pooling
(—) fully connected+ReLU

( ﬂ softmax

* Begoli E, Tanmoy B, and Dimitri K "The need for uncertainty quantification in machine-assisted medical decision making." Nature Machine Intelligence, 2019
* Mehta, Pankaj, et al. "A high-bias, low-variance introduction to machine learning for physicists." Physics reports 810 (2019): 1-124 4
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Predictive Uncertainty

Why do we need a measure of uncertainty or low-confidence?
Very limited, typically expensive, training data
Attempting to extrapolate far away from observed data

Value on incorporating UQ in ML

* Support and augment decision making processes, e.g., Cyber, MRI analysis, etc.

* Reinforcement learning, involves time and resources we wish not to waste, e.g., elf-
learning agents (autonomous robots/vehicles)

* Model explainability using sensitivity analysis measures — check out: Assessing the

Acenracy of M1 Explanations for Model Credibility (Mike R. Smith, day 2, session 1)

Human expert time is expensive. Many experiments are also “very” expensive!

Active Learning (human annotator)

* 'The model chooses which unlabeled data are most informative

Adaptive Sampling (design of experiment and sample design)

* An uncertainty estimator (e.g., variance) suggests points of highest value for model
accuracy improvement



Predictive Uncertainty

1. Aleatoric Uncertainty

* Input data corruption: noise levels, measurement errors, etc.
* Can not be reduced by the model designer
* (Can be reduced by increasing measurement precision

2. Epistemic Uncertainty

* Fidelity of the model (parameters and/or structure) when representing data
* Decreases as the training data size increases

o
95% prediction interval, | J/
F 4
Stmultaneons Quantile Regression M /
1 A et WY g
Orthonormal Certificates e - :
g ) Y 4
e,
14 aleatoric R
epistemic
) = . - . - - - - .
—-2.0 —-1.5 —-1.0 —0.5 0.0 0.5 1.0 1.5 2.0

Quantifying predictive uncertainty, methods need to consider both aleatoric and epistemic uncertainties.

Hillermeier E, and Willem W, "Aleatoric and epistemic uncertainty in machine learning: A tutorial introduction." arXiv preprint (2019).
Gal, Yarin. "Uncertainty in deep learning." University of Cambridge 1.3 (2016).
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Approach

We represent DL predictions as
distributions (, 02) rather than
softmax-based point estimates p.

Scientific Machine Learning

1. Training sample budget is limited,
causing Out of Distribution (OoD)
issues.

2. Ditferent types of noise, imposed
onto the input data and propagate

that noise into an uncertainty metric

in the resulting prediction.
Very few training samples Noisy training data

Quality of prediction measures: Our approach is to assign a numerical score to a prediction
o (V|X), rewarding better calibrated predictions over worse. We leverage randomness in Neural Networks’
initialization, weight learning, and backpropagation steps.




Approach — Methods

Bayesian NNs MC Dropout Deep Ensembles

Bayesian Neural Networks (BNNs): place a Neurons are randomly dropped in Estimate 2 outputs: mean and
prior distribution over the network weights cach iteration, with some variance
and use data to learn a posterior distribution. probability (p), often fixed at Modified loss function +
empirical values (e.g., 0.3). adversarial training
MLE
w = arg max log p(D|w * 2
gmaxlog p(Dw) Eq(y" ) O —logpg (yulxy) = 'BZX) 4 O-t(0)"
= argmax Y; log p(¥;|X;, w) T nisn 2 202(x)
w ~ 1 Ak K Wt Wt 0
MAP = ip Y&, Wy, -, W)
— t=1 ”
W arg max log p(w|D) Decomposed uncertainty
= argmax log p(D|w) + log p(w)
w
Average of T stochastic — 1yM 2 _
N P o He = 3 Xi=1 Mi and og =
Variational Inference (VI) approximation: orwatd passes through the 1yM 2 [1yM 2 2
9* = - network. yi=10; t MZi:l Hi — He
= argmin KL(qe (w|D)||p(w|D))
Aleatoric Epistemic
Graves, Alex. "Practical variational inference for Hinton, Geoffrey E., et al. "Improving neural Lal<shminarg)ranan, Balaji, Alexander Pritzel, and Charles
neural networks." Advances in neural information networks by prevent,in co-adaptation of Blundell. "Simple and scalable predictive uncertainty estimation
feature detectors." arXiv preprint using deep ensembles." Advances in neural information g

processing systems. 2011, arXin:1207.0580 (2012). processing systems. 2017.



Approach — Data

A library of high-dimensional analytical test functions, frequently used for
Qol experimental studies (optimization, numerical integration, uncertainty

quantification, and multi-fidelity analysis). DAKOTA
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* Dakota www.Dakota.sandia.gov. Adams, B.M., Bohnhoff, W.]., Dalbey, K.R., Ebeida, M.S. Eddy,] P., Eldred, M.S., Geraci, G. Hooper R. \X/ Hough P.D,
Hu, KT\, Jakeman, ].D., Khalil, M., Maupin, K.A., Monschke, J.A., Ridgway, E.M., Rushdi, A.A. Stephens J.A Swﬂer L.P., Vigil, D.M., Wildey, T.M., and
Winokur, J.G., "Dakota, A Multilevel Parallel Object—Oriented Framework for Design Optimization, Parameter Estimation, Uncertainty Quantiﬁcation, and
Sensitivity Analysis: Version 6.11 Uset’s Manual," Sandia Technical Report SAND2014-4633, July 2014; updated November 2019. 9

* Virtual Library of Simulation Experiments https://www.sfu.ca/~ssurjano/index.html
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Numerical Experiments ‘F‘

Data:
AWGN (0, 1)
AWGN (0, a,)

function samples +

Herbie

* Data
— truth
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Model:

input = Input (shape=(1,))
Dense (512, activation="relu") (input)
x = Dropout (0.5) (x, training=True)

X =

x = Dense (512, activation="relu") (x)
x = Dropout (0.5) (x, training=True)
output = Dense (1) (x)

Total params: 264,193

Shubert
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A model with 200K trainable parameters still needs an assessment of confidence/uncertainty.
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Model output f{x)

Numerical Experiments 1'\’

Uncertainty quantification at a new test point.
Overall model uncertainty/confidence within a test domain.
Guidance of adaptive sampling towards points/regions of high estimated variance.

Model: mean error Model: Predictive variance Model loss
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Numerical Experiments ‘F‘ .

Analytical
Functions
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Methods vary in terms of complexity, accuracy, scalability, and computational cost.
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Observations & Conclusions

* Ongoing work. No one solution fits all. Classes of functions vary in
terms of smoothness, oscillation, discontinuities, etc.

* Methods vary in terms of complexity, accuracy, scalability, and
computational cost.

* We use analytical test functions for comparisons, but in real-world
problems, no “ground truth” uncertainty estimates are available.

Preliminary Results:
* Deep ensembles
* Smoothed out by adversarial training
* Most conservative
* Low training cost (e.g., with M=5 models)
* Ongoing comparisons to:
* [Madras 2020] Detecting Extrapolation with Local Ensembles
* [Ashukha 2020] Pitfalls of In-Domain Uncertainty Estimation and
Ensembling in Deep Learning



Thank youl
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