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Background & motivation

LI Goals
• Design a vibrational absorber to control the motion of a structure under vortex-
induced vibrations

• Utilize an energy harvester as the vibrational absorber to generate useful energy
• Include amplitude stoppers for the energy harvester to generate a broadband

region of frequencies.

Li Vortex-induced Vibration occurs when the vortex sheading frequency of a

fluid flowing over a cylindrical bluff body matches the natural frequency of
the structure

Inertial nia:•6

Giosan, I., & Eng, P. (2013). Vortex shedding induced loads on free standing structures. Structural

Vortex Shedding Response Estimation Methodology and Finite Element Shnulation, 42.
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Reduced-order modeling
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Reduced-order modeling
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Reduced-order modeling
0.

Galerkin discretization: w2 = 1 (pi(x)ri(t)
• Energy harvesting absorber mode

shapes (pi(x)
i=1 • General coordinate ri(t)
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Reduced-order modeling
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1
o i(x)ri(t) —

2

00

i=1

-d 0
Energy Harvester Absorber displacement at Lf

o ,(x)r,(t) + d

1=>

00

g o 1 (x)ri(t) — d
i=i

D, M Lo

)13



Linear analysis

Imaginary eigenvalues analyzed to find parameters' values where the coupled
natural frequencies are close to each other to force control of the primary
structure
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Results Control of the structure

Parameter Values
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Results Stoppers' gap effects
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Results Stoppers' location effects
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Future Work

• Investigation of different stopper stiffnesses/materials

• Modal convergence study

• Different types of stoppers (mechanical, magnetic, etc.)

2D

Frequency

Zhou, K., Dai, H. L., Abdelkefi, A., Zhou, H. Y., & Ni, Q. (2019). Irnpacts of stopper type and material on the broadband characteristics and perforrnance of energy harvesters. AIP Advances, 9(3), 035228.



Acknowledgements

STATE
UNIVERSITY



Thank you for your attention.

Questions?


