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41 3D Reconstruction & Characterization

3D reconstruction
of polycrystalline
brass from SNL
legacy SEM Data.

•#-tvIDL 
3D reconstruction
of ferrite stringers
in a PW laser weld
of 304L stainless
steel from EBSD
images.

Polycrystalline Brass

Ferrite Stringers in Welds

•

IMIFCracks in Glass-to-Metal Seals

0

Determination of crack size, severity
and depth in glass-to-metal seals for

connectors

Weld Porosity

Below, 3D reconstruction and
quantitative characterization of

porosity in a CW laser weld of 304L
stainless steel.
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5 Microstructure Evolution Modeling
SPPARKS

— STATIC RECRYSTALLIZATION

- Stochastic Parallel PARticle Kinetic Simulator

r • I
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J. Madison, V. Tikare, E. Holm, J. Nuc. Mater., vol. 425, (2012) pp. 173-180

Large columnar
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grains

Fine, curved
columnar grains

T. Rodgers, J. Madison, V. Tikare, JOM, vol. 68, no.
5, (2016) pp. 1419 - 1426
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T. Rodgers, J. Madison, V. Tikare, Comp. Mat. Sci., vol. 135,
(2017) pp. 78 - 89

Using kMC methods we can generate a
variety of synthetic microstructures by

simple grain growth, static
recrystallization, dynamic recrystallization

as well as anisotropic grain structures
resulting from interaction with a moving

heat source. The dynamic recrystallization
model exists as a hybrid in conjunction with

cellular automata. All microstructural
evolution models are performed in designed
and created SNL open-source code entitled

SPPARKS.

1
1



6 1

1

The Advanced Simulation and Computing (ASC) program develops, delivers

and supports an HPC-based modeling and simulation capability in support of
the NW mission, including design, qualification and surveillance.

Since its inception, ASC has created tremendous capabilities to simulate the
responses of NW components and structures to mechanical, thermal and other
loadings. However, authoritative knowledge of material properties for use in the
models, and capabilities to predict variabilities in the material properties, are still a
challenge. Inaccurate material properties result in inaccurate predictions. Lack of
knowledge of material variabilities prevents prediction of uncertainty in performance.

Advanced Simulation &
Computing (ASC)

N
National Nuclear Security Administration

U.S. DEPARTMENT OF

E N E RGY

1
1



7

The Advanced Simulation and Computing (ASC) program develops, delivers

and supports an HPC-based modeling and simulation capability in support of

the NW mission, including design, qualification and surveillance.

Since its inception, ASC has created tremendous capabilities to simulate the
1,6pones ,fif NW components and structures to meci....,al, thermal and other
loadinas . However, authoritative knowledge of material properties for use in the
models, and capabilities to predict variabilities in the material properties, are still a
challenge. Inaccurate material properties result in inaccurate predictions. Lack of
knowledge of material variabilities prevents prediction of uncertainty in performance.

►
FISC

Advanced Simulation &
Computing (ASC)

N
National Nuclear Security Administration

U.S. DEPARTMENT OF

E N E RGY
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The Advanced Simulation and Computing (ASC) program develops, delivers

and supports an HPC-based modeling and simulation capability in support of
the NW mission, including design, qualification and surveillance.

Since its inception, ASC has created tremendous capabilities to simulate the
lesponses of NW components and structures to mcLiiann..ai, thermal and other
loadings. However, authoritative knowledge of material properties for use in the
models, and capabilities to predict variabilities in the material properties, are still a
challenge. Inaccurate material properties result in inaccurate predictions. Lack of
knowledge of material variabilities prevents prediction of uncertainty in performance.

The Materials Margins Assurance program will build capabilities and expertise

that provide physics-based material performance and variability margins to
support NW component design, analysis and qualification. Since material

properties, in most instances, originate from phenomena at the microstructural level

a multi-scale approach with fundamental emphasis on microstructure will
remain a central focus

Advanced Simulation &
Computing (ASC)

National Nuclear Security Administration

U.S. DEPARTMENT OF

E N E RGY

Materials
Margins
Assurance

1



9 Materials Margins Assurance

How do we meaningfully and reasonably incorporate material

variability in our simulation tools and code?

Materials
Margins
Assurance



10 Materials Margins Assurance

How do we meaningfully and reasonably incorporate material

variability in our simulation tools and code?

Staff ( x 12 )
Post Docs ( x 2 )
Students ( x 2 )
Sites ( x 2 ) SNL NM &SNLCA
Exemplars ( x 4 )
Emphasis Areas ( x 5 )

5 year activity ~ $1.3M / year Materials
Margins
Assurance



Materials Margins Assurance

How do we meaningfully and reasonably incorporate material

variability in our simulation tools and code?

II
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12 1 Materials Margins Assurance

How do we meaningfully and reasonably incorporate material

variability in our simulation tools and code?

EMPHASIS I

SYNTHETIC
MICROSTRUCTURE

PREDICTION

ADDITIVE
MANUFACTURING

EMPHASIS II
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15 1

Y Plane

Sandia's kMC Suite

increasing scan speed

Rodgers et al., MSMSE (2018)
vol. 26, pp. 055010 1-23

YZ Plane XZ Plane

Rodgers et al., Comp Mater Sci (2017)
vol. 135, pp. 78-89

SPPARKS
Stochastic Parallel PARticle Kinetic Simulator

http://spparks.sandia.gov
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Popova et al. IMMI (2017) vol. 6, pp. 54-68

Holm Et Battaile, JOM (2001) vol. 53, pp. 20-23

fa>

,250 pn

Rodgers, Madison, Tikare Et Maguire, JOM (2016) vol. 68, pp. 1419-1426

• Open source kinetic Monte Carlo platform with user-editable
"apps" for specific applications

• Used to study several mesoscale phenomena including
sintering, recrystallization, vacancy diffusion, grain growth
and welding

• Problems are easily parallelized and a range of Monte Carlo
solvers are available Rodgers et al., MSMSE (2017) vol. 25, pp. 064006

Tikare

Wagner

Cardona et al. J. Am. Ceram. Soc.
(2012) pp. 1-12

1

Madison, Tikare 8 Holm, J. Nuc. Mat. (2012) vol. 425 pp. 173-180

-

Homer, Tikare Et Holm, Comp. Mat. Sci. (2013) vol.
69 pp. 414-423

•

1
1



ml Approximating Solidification

kMC &
Solidification
Structure

M(T) 
= iti°exp(RTQ)

Solidification
boundary (T = Tm)

Grain
growth
(T < Tm)

b) Mobility field

mobilityN_I
0.75

-0.5

0.25

LEA)

p M(T)exp(
kB

M(T),

Molten zone
(T > Tm)

if AE > 0

if M. 0

a) Microstructure

Spin
le+06

7.5e+5

_58+5

• 2.5e+5

II o

• The molten zone randomizes grain identities when it enters a region.

• Along the trailing surface, voxels either join existing columnar grains or form new grains.

• The temperature gradient creates a corresponding gradient of grain boundary
mobilities via an Arrhenius relationship.

1



17 1 Model Improvements

Incorporate more rigorous simulation of the molten
zone and solidification event

Include material specific parameters

Enable non-powder bed AM simulations

Large elements » Under predict of nucleation

20 pm

$4*

Small elements » Over predict nucleation

1
1



181 Thermofluid Powder Bed Simulations

• Highly detailed level-set simulation with extensive physics

• CD-FEM mesh, mapped to a cubic mesh

• Molten metal & gas flow

• Vapor recoil pressure

• Very expensive to run

• 0.75 pm mesh size
.0

ALORE 
;1

•••••••••• 6.0

M. Martinez, D. Moser, T. Rodgers



191 Nucleation Rate

Unconstrained nucleation rate

Prescribed nucleation rate
No = 1015

Effect of nucleation site density:

Particle-scale powder bed simulations used a much smaller
laffice size than previous work (0.75 pm vs —20 pm). With the old
nucleation approach, these led to a large overprediction of
nucleating grains, which resulted in a fine equiaxed structure
(top).

Introducing a No-dependent nucleation rule allowed only 1
nucleation site per 2,500 lattice sites and resulted in larger grains
that grew from the substrate structure.

M. Martinez, D. Moser, T. Rodgers



201 Application to LENS

• Large (-1 mm) molten pool leads
to mixed microstructures.

• Highly detailed level-set
simulations with extensive
physics.

• Molten metal & gas flow

• Incident powder jet momentum

• SPPARKS re-uses mesh created
for in-process plasticity
simulations.

• —20 pm mesh size
•

n •
•

• . •
• .

0•15. --1'Sr '''

•

e4.11;, 
';341.1*.. -

"

" • •

B. Trembecki, K. Ford, L. Beghini, M. Stender, T. Rodgers

1
1



21 1 Finite Difference Method on Complex Parts
Lattice Klein Bottle - 7.5 x 8 x 11.6 mm domain

I
1

1
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1
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23 AWord on Distributions

11
Properties of a normal distribution: Properties of a bimodal distribution: Properties of a log-normal distribution:

• the mean, median and mode are all equal • Has two distinct and identifiable modes • the mean and median are by definition different and both
• bell-shaped and symmetric about the mean • Individual peaks do not have to exhibit typically differ from the mode
• total area under the curve is equal to one an equivalent magnitude or population • the lognormal distribution is asymmetric about the mean

1 1 ,1 \ 1 1,

Canton* Ihrls available at Sciyarse SticoreDmar

International Journal of Fatigue
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Demonstration of an in situ microscale fatigue testing technique on a titanium alloy
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Determining phase volume fraction in steels by electron
backscattered diffraction
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Extreme-Value Statistics Reveal Rare Failure-Critical
Defects in Additive Manufacturing**

By Brad L. Boyce, • Brodley C. Salzbrenner, Jeffrey M. Rodelas, Loura P. Swiler,
Jonathon D. Madison, Brodley H. Jared arid Yu-Lin Shen

28 MAY 2010 VOL 328 SCIENCE www.sciencemag.org

How Grain Growth Stops: A
Mechanism for Grain-Growth
Stagnation in Pure Materials
Elizabeth A. Holin• and Stephen M. Foiles

Means ft modes of distributions
are useful, but the really

interesting things occur at the
tails ...

1



24 Current STEM Diversity Distributions

84%

73%

Io%

12%

50% vs. 30%

Percentage of working professionals in science and engineering jobs in the U.S. that are
white OR Asian males

Over 70% of scientists and engineers are white

Only 1 in every 10 persons working in STEM are minority women

African-Americans, American-Indians and Hispanics between the ages of 18 and 24 account
for 34% of the U.S. population but earn only 12% of all undergraduate degrees in
engineering

Half of all Asian workers with STEM degrees have STEM jobs, compared to 30% of Hispanics,
African Americans and American Indians

Sources: U.S. News & World Report
Economics Et Statistics Administration, U.S. Department of Commerce
U.S. Department of Education, National Assessment of Educational Progress in Math Et Science, 2003 - 2013
Women, Minorities, and Persons with Disabilities in Science and Engineering: 2013, National Center for Science & Engineering, National Science Foundation
"5 Numbers that Explain Why STEM Diversity Matters to All of Us", WIRED,

I
.
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2, The Power of the Diversity Distribution

"There is a pure and simple business case for diversity: Companies that are more diverse are
more successful."
- Mindy Grossman -

#22 on Fortune's Top People in Business (2014)

"We have no hope of solving our problems without harnessing the diversity, the energy, and the creativity of
all our people."
- Roger Wilkins -

1.5th U.S. Assistant Attorney General Et Civil Rights Leader

"ln most cases, you can't realize the full power of a distribution apart from the contribution of the tails"
- Jonathan Madison, Ph.D. -

Research Scientist
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