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Creep of Argillaceous vs. Clean Salt




3‘ Legacy Clean vs. Argillaceous
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4‘ Joint Project lll Clean vs. Argillaceous
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5‘ Clean Salt: Legacy vs Joint Project Il (IfG)
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6 | Argillaceous Salt: Legacy vs Joint Project Il (IfG)
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7| Clean vs. Argillaceous Research Plan

1. Completed

a. Extracted new clean and argillaceous core from WIPP during
Summer, 2020.

2. To Do
a. Characterize creep behavior
b. Measure composition differences
I. Insoluble content
Il. Water content

c. Measure spatial distribution of impurities




Mechanism Change at
High Stresses and Strain Rates




9‘ Deformation Mechanism Map
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Modified after: Munson, D. (1979). Preliminary deformation-mechanism map for salt (with application to WIPP). Sandia National Laboratories. SAND79-0076




10‘ Legacy Creep Tests on Clean WIPP Salt
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11 | Constant Strain Rate Tests on Artificial Rock Salt
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Heard, H. (1972). Steady-state flow in polycrystalline
halite at pressure of 2 kilobars. Flow and fracture of
rocks. Vol 16. pp 191-209.

Fig. 1. Differential stress-strain curves for polycrystalline halite extended at 2 kb, é = 1.5 X 1073

to 1.5 X 108 sec™, and 100°C.




12

DIFFERENTIAL STRESS (MPa)

Constant Strain Rate Tests on Avery Island Salt
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Fig. 3. Stress—strain curves for specimens 46 and 47, deformed at a

strain rate of 107° s™! over a 3.5 year period. Earlier results of

Horseman & Handin (1990) at 10® s~! (dashed curves) are shown for
comparison.

Carter, NL, Horseman, ST, Russell, JE, and Handin, J (1993). Rheology of
rocksalt. Journal of Structural Geology. Vol 15. No 9-10. pp 1257-1271.




13‘ More Legacy Creep Tests on WIPP Salt
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121 Questions

1. Are these behaviors due to a mechanism change?

2. How best to model this apparent mechanism change?

3. What macroscopic and/or microscopic experiments would help
validate one modeling approach versus another?
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16‘ Constant Stress Tests
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17‘ Microstructural Observations
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(Still looking for
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18| Back Stress (Internal Stress) Measurements
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characteristic; the same also applies to the
18Cr-10Ni (AISI type 304) and 16Cr-13Ni-
2.5Mo (AISI type 316) austenitic stainless
steels dealt with in Section 4.) It can be seen
from Fig. 4 that the measured internal stress
increases non-linearly with the applied stress;
at a given applied stress, it decreases with
increasing temperature.

The steady state creep rate € of the alloy
under consideration varies with the applied
stress as (0/G)", where the stress exponent
n=5.4%0.1, and is obviously controlled by
lattice diffusion [19]. This is demonstrated in
Fig. 5 in which the normalized steady state
creep rate € b2k T/D,GS is plotted against

Cadek, J. (1987). The back stress concept in power law creep of metals: a review. Materials Science and Engineering. Vol 94. pp 79-92.




19‘ Back Stress (Internal Stress) Measurements

1D Model with Backstress
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Stress Dip Method Results on Rock Salt
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Fig. 4. The slow decrease of the o;/c ratio with the increase of stress, at steady-state;
V Avery Island salt (No. 4, 5, 6, 7); e artificial salt (No. 1, 2, 3); data are taken from Table 1
(see text for explanations)

Aubertin, M., Gill, DE, and Ladanyi, B. (1991) An internal variable model for the creep of rocksalt. Rock Mechanics and Rock Engineering. Vol 24. No 2. pp 81-97




Stress Drop Experiments

Hunsche, U. 1988. Measurement of creep in rock salt at small strain rates. Proceedings of the 2" Conference on the Mechanical
Behavior of Salt. Pg. 187-196 (Modified)




Bauschinger Effect

Yahya, O., Aubertin, M., and Julien, M. 2000. A unified representation of the plasticity, creep and relaxation behavior of rocksalt. International Journal of
Rock Mechanics and Mining Sciences. Vol. 37. No. 5. Pg. 787-800 (Modified)




22‘ Triaxial Compression / Extension Cycling
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