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Advantages/Disadvantages

Advantages:

• optimize with uncertainty consideration

• active machine learning (accumulate history)

• derivative free (avoid computing Jacobian)

• global optimization (convergence in probability)

• good convergence rate (provably asymptotic regret)

Disadvantages:

• high-dimensionality

• scalability: computational bottleneck 0(n3) when the number
of observations n > 0(103)
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BO features

very versatile (adaptive for methodological extensions)
• acquisition functions: PI, El, UCB, Thompson sampling, entropy-based, knowledge-gradient, and much

more,

• constrained on objectives (known + unknown constraints) V

• multi-objective (Pareto frontier/optimal, domination) V

• multi-output X

• multi-fidelity (couple multiple low-, high-fidelity models) V

• batch parallelization V—> asynchronous parallel ✓

• stochastic X

• time-series (forecasting, e.g. causal kernel) X

• mixed-integer (discrete/categorical + continuous) V

• scalable V

• latent variable model X

• gradient-enhanced V

• physics-constrained: monotonic, discontinuous, symmetry, bound X

• outlier: student-t distribution X

• non-stationary X
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Methodology:
• Anh Tran et al. "srMO-B0-3GP: A sequential regularized multi-objective constrained Bayesian

optimization for design applications". In: Proceedings of the ASME 2020 IDETC/CIE. vol. Volume 1: 40th
Computers and Information in Engineering Conference. International Design Engineering Technical
Conferences and Computers and Information in Engineering Conference. American Society of Mechanical
Engineers. Aug. 2020

• Anh Tran et al. "aphB0-2GP-3B: A budgeted asynchronously-parallel multi-acquisition for
known/unknown constrained Bayesian optimization on high-performing computing architecture". In: arXiv
preprint arXiv:2003.09436 (2020)

• Anh Tran, Tim Wildey, and Scott McCann. "sMF-B0-2CoGP: A sequential multi-fidelity constrained
Bayesian optimization for design applications". In: Journal of Computing and lnformation Science in
Engineering 20.3 (2020), pp. 1-15

• Anh Tran, Tim Wildey, and Scott McCann. "sBF-B0-2CoGP: A sequential bi-fidelity constrained Bayesian
optimization for design applications". In: Proceedings of the ASME 2019 IDETC/CIE. vol. Volume 1: 39th
Computers and Information in Engineering Conference. International Design Engineering Technical
Conferences and Computers and Information in Engineering Conference. V001T02A073. American Society
of Mechanical Engineers. Aug. 2019

• Anh Tran, Minh Tran, and Yan Wang. "Constrained mixed-integer Gaussian mixture Bayesian optimization
and its applications in designing fractal and auxetic metamaterials". In: Structural and Multidisciplinary
Optimization (2019), pp. 1-24

• Anh Tran et al. "pB0-2GP-3B: A batch parallel known/unknown constrained Bayesian optimization with
feasibility classification and its applications in computational fluid dynamics". In: Computer Methods in
Applied Mechanics and Engineering 347 (2019), pp. 827-852
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Applications:
■ Anh Tran et al. "Multi-fidelity machine-learning with uncertainty quantification and Bayesian optimization

for materials design: Application to ternary random alloys". In: arXiv preprint arXiv:2006.00139 (2020)

■ Anh Tran et al. "An active-learning high-throughput microstructure calibration framework for
process-structure linkage in materials informatics". In: Acta Materialia 194 (2020), pp. 80-92

■ Stefano Travaglino et al. "Computational optimization study of transcatheter aortic valve leaflet design
using porcine and bovine leaflets". In: Journal of Biomechanical Engineering 142 (1 2020)

■ Anh Tran et al. "WearGP: A computationally efficient machine learning framework for local erosive wear
predictions via nodal Gaussian processes". In: Wear 422 (2019), pp. 9-26

■ Anh Tran, Lijuan He, and Yan Wang. "An efficient first-principles saddle point searching method based on
distributed kriging metamodels". In: ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems,
Part B. Mechanical Engineering 4.1 (2018), p. 011006
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Classical GP

Let D, = {xi, yi}ti"1 denote the set of observations and x denote
an arbitrary test points

itn(x) = Po(x) + k(x)T (K + a2 I)-1(y — m) (1)

o -,;(x) = k(x, x) — k(x)T (K o-2/)-1k(x) (2)

where k(x) is a vector of covariance terms between x and xi:n.
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Classical GP

7/27/20

Formulation:

• stationary: only depends on r = I I X — x/11

• the covariance matrix: symmetric positive-semidefinite matrix

made up of pairwise inner products

Ku = k(x1, xj) (3)

• unknown function is presumably smooth

• variables are presumably continuous, i.e. f : Rd —>

Implementation:

• MLE to estimate the hyper-parameter 0 E Rd: compute K-1
at the cost of 0 (n3)

•sizeofK=nxn

Ingredients: some data, GP kernel, acquisition function. 8



Classical GP

Common kernels:

• kmatérn1 (X, Xi) = Bp exp (— r)

• kMatérn3 (X, Xi) = 06 exp (-00 (1+ Or)

• kMatérn5 (X, Xi) = eg exp (— \r) (1 + r 3r2)
• ksq_exp (x, x') = OF) exp r2)

Log-likelihood function:

log P(Y 0) = — log (27r) — 2 log I K° 0-211
(y mo 7-(Ke +0_2!)-1(y

7/27/20

(4)
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Formulation & Implementation: multi-objective GP

Let:

• x = {Xi}iCi_i E X C Rd be input in d-dimensional space,

• y = fyjI1=1 as s outputs.

argmax(fi(x), • • • , fs(x)) (5)
xEX

subjected to c(x) < O.
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Formulation & Implementation: multi-objective GP Cr=

Pareto definition:

• xl is said to dominate x2, denoted as xl x2, if and only if
V1 < j < s, such that yi(xi) < yi(x2), and 31 < j < s, such that
yi(xi) < yj(k)•

• x1 is said to strictly dominate x2, denoted as x1 -< x2, if and only if
V1 < j < s, such that yi(xi) < yj(k).

Scalarization: multi-objective —> single-objective

1. weighted Tchebycheff y = max1<1<5 w16/1(x)-

2. weighted sum Y = wiyi(x),

3. augmented Tchebycheff
y = max1<i<5 1441(x) — zi) + p EL, wo,;(x),

where z7 denotes the ideal value for the i-th objective, the weights
0 < < 1, Er,n „ = 1, p is a small positive constant (p = 0.05).
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Formulation & Implementation: multi-objective GP

What is the idea?

• learn Pareto frontier through a uncertain binary classifier

• GP comes out naturally as an uncertain classifier

• push the learned Pareto frontier to the true Pareto frontier

• use acquisition function in BO to promote richness
(exploration) and diversity (exploitation)

• once learned Pareto frontier true Pareto frontier: the
uncertain classifier stabilizes

• some regularization to help (a) fitting objective GP and (b)
reduce noise in stochastic settings

7/27/20
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Formulation & Implementation: multi-objective GP

Acquisition function:

a(x) = aobj(x)

objective GP

Senii9
atonal

• apareto(x) • Pr(xlc(x) = 1) • 1(x)

uncertain Pareto unknown constraints known constraints

(6)

• aobj(x): objective GP fitted through augmented Tchebycheff
with random weights

• apareto(x): Pareto GP classifier (Pareto/non-Pareto)

• Pr(xlc(x) = 1): constrained classifier (feasible/infeasible)

• 1(x): indicator function if c(x) < 0
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Formulation & Implementation: multi-objective GP Cr=

7/27/20

Algorithm 1 srMO-BO-3GP algorithm

Input: dataset Dr, consisting of input, observation, feasibility (x, y, 07=1
Input: multi-objective (xi, yi)7_1, constraint GP (x, ci)7=1,

1: for n = do

2: randomize a weight vector w

3 combine fyjll=i to y

4 construct single-objective GP

5 construct Pareto front

6 find current Pareto front
7 construct Pareto classifier GP
8 construct constraints classifier GP

9 locate the next sampling point x„+1

10: query for yn_pj. = {yj}I=1, feasibility cr,+j.

11: augment dataset n+i = ID n,(Xn+11 Yn+1, co-F1)1
12: end for

t• multi- to single-objective

h, GP #1: Aobj(x), crlj (X)

D GP #2: PPareto(x), 'ILeto(x)

r> GP #3: Pleasible(X), °.f2easible(X)

Benchmark: 18 variants

• El, PI, UCB for objective

• El, PI, UCB for Pareto frontier

• regularized vs. non-regularized
14



Acquisition function: How to pick the next point(s) (35141'

• dictates how to pick the next point: exploitation (focus on
the promising region) or exploration (focus on the
uncertain/unknown region)

• different flavors:

1. probability of improvement (PI)

apl (x; {xi, yi}7-1, 0) = 4)(')/(x)),

where
7(x) P(x; {xi, Yi} 7=1 8) f (Xbest) 

a(x; {xi, yi}7_1, 64)

2. expected improvement (El) scheme

(7)

(8)

aEi(x; {xi, yilri1=1, 8) = 0-(x; {xi, yil7=i, 8)-(-Y(x)4)(-Y(x))+0(1'(x))
(9)
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Acquisition function: How to pick next point(s)

• dictates how to pick the next point: exploitation (focus on
the promising region) or exploration (focus on the
uncertain/unknown region)

• difFerent flavors:
3. upper confidence bound (UCB) scheme

fi ra.

aucB(x; {xi, yil"=1, 8) — p(x; Yil7=1, 0)+Ka(x; {xi, yil"=1, 0),
(10)

where is a hyper-parameter describing the
exploitation-exploration balance.

4. pure exploration*:

• maximal MSE o-2
• maximal IMSE LEX o-2 (x)

7/27/20 16



ZDT1: 12d

fi = f2 = gh, (11)

where
9 12

\/141
g = 1 +

11 
Exp, h = 1 — —
p=2

1<_ g < 10 Pareto frontier is obtained when g = 1 More

precisely, {f1, f2}, where f2 = 1 —

(12)
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ZDT1: 12-d

Figure: ZDT1 Pareto frontier
comparison.
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DTLZ1: 12-d

fl = 0.5(1+ g)xi,

f2 = 0.5(1+ g)(1 —

where g = 10011 + Ep12 2 ((Xi, — 0.5)2 — cos [2070p — 0.5)]).

7/27/20

(13)

(14)
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DTLZ1: 12-d

Figure: DTLZ1 Pareto frontier
comparison.

Figure: Zoom at
[2500, 2525] x [2475, 2500].
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Flip-chip BGA package design

Table: Design variables for the FCBGA design optimization.

Variable  Design part Lower bound Upper bound Optimal value
x1 die 20000 30000 20702
x2 die 300 750 320
x3 substrate 30000 40000 35539
X4 substrate 100 1800 1614
x5 substrate 10.10-6 17 • 10-6 17 . 10-6
X6 stiffener ring 2000 6000 4126
x7 stiffener ring 100 2500 1646
x8 stiffener ring 8 • 10-6 25 • 10-6 8.94 • 10-6
x9 underfill 1.0 3.0 1.52

xi° underfill 0.5 1.0 0.804
xi.i. PCB board 12.0 .10-6 16.7 • 10-6 16.7 • 10-6

O 
Nth%
Laboratorms

7/27/20 21



Flip-chip BGA package design

Figure: Warpage at
-40°C
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Figure: Warpage at Figure: Warpage at
20°C 200°C
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Flip-chip BGA package design

Figure: Correlation between
objectives and joint densities.
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Figure: Correlation heatmap
between objectives.
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Additive manufacturing: inverse process-structure
mapping: asynchronous parallel
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Figure: Reverse engineering an additively manufactured specimen through
kinetic Monte Carlo (Sandia/SPPARKS). Tran et al., "An active-learning
high-throughput microstructure calibration framework for

7/27/20 process-structure linkage in materials informatics". 24



Sequential multi-fidelity: searching optimal chemical
composition

Tran et al., "Multi-fidelity machine-learning with uncertainty

quantification and Bayesian optimization for materials design:

Application to ternary random alloys": coupling DFT and MD.
Multi-fidelity for multi-scale ICME.

Figure: Iteration 4: 2 LF + 2 HF
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Figure: Iteration 24: 21 LF + 3 HF
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Sequential multi-fidelity: searching optimal chemical
composition

Tran et al., "Multi-fidelity machine-learning with uncertainty

quantification and Bayesian optimization for materials design:

Application to ternary random alloys": coupling DFT and MD.
Multi-fidelity for multi-scale ICME.

Tio
7/27/20

Figure: Iteration 35: 31 LF + 4 HF
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Welded-beam design optimization
(2d+4d) (mixed-integer)

Figure: Welded-beam design

Welded beam design problem

E 150

.c: 125
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• cast imn
• aluminum
• bras

a 100

o 75

•
•

•
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• • . •4,
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0 0
• ••'", • ••• • •
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Number of functional evaluations

Figure: Convergence plot of welded beam
design.
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Speed reducer design optimization
(1d+6d) (mixed-integer)

Figure: Speed reducer design
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Figure: Comparison against GA.
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High-dimensional discrete sphere function
(5d+50d) (mixed-integer)

f(X(d),X(c)) =

f ()(1 1 • • • xn, xn+11 • • • Xrn)

ru=, (E7=n+, xi)
where
1 < < 2(1 < i < n) are
n integer variables and

—5.12 < xj <

5.12(n+ 1 < j < m) are
m — n continuous
variables.

la

(50+5)D discrete spheric& problem 
-.- ...Integer B012 Ink tam.

mixed-integer B015 ink sem.
-•- mixed-integer BO 110 mi.

- • - ...integer B0120 init sar.

- - - gemeMc algeritt.110.11
— genetic algorithm:1.31

—•- genetic algorithm: 1150.10i

 ; 

generic Mg..: (1500301

200 100 BOO BOO

Number of functional evaluations

Figure: Comparison against GA.

1000
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High-dimensional discrete sphere function
(5d+100d) (mixed-integer)

f(x(d),x(c)) =
f(xi,

ru=1 (E7=„+1 xi)
where
1 < < 2(1 < i < n) are
n integer variables and

—5.12 < xj <

5.12(n+ 1 < j < m) are
m — n continuous
variables.

I
41174
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-•- ...integer BO 12 ink Sanip,
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Figure: Comparison against GA.
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(Fractal) mechanical metamaterials/AM
(4d+5d) (mixed-integer)

Figure: Hierarchical multiscale structure Figure: Design optimization of fractal

of octahedral (second-order). Printed in cube. Printed in Georgia Tech Invention

Georgia Tech Invention Studio. Studio.
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(Fractal) mechanical metamaterials/AM
(4d+5d) (mixed-integer)

Figure: Parametric design.

7/27/20
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Figure: ABAQUS FEA.
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Impeller design optimization using CFD
(33d) (pB0-2GP-3B: parallel + blind constraints)

2.00 
..r.:130.-..2GPil3: Convergence plot of 33d impeller CFD simulation 
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Figure: Multiphase CFD simulation for design optimization of 33d slurry pump

impeller: Convergence plot .
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Materials Design

process-
structure-
property linkage
in materials

7/27/20

• Turning/milling

• Casting

• Drawing/Rolling

• Heat treatment

• Additive

San&
NaDml
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• Orientation distribution 

n 
that one or
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• Chord-length C::22:2 are optimized
• 2-point statis

PROPERTY
• Yield strengrlii4

• Wear resistance

• Transport coefficients

Figure: Process-Structure-Property linkage.
34



Conclusion

This talk: multi-objective Bayesian optimization

■ an uncertain Pareto classifier is proposed

■ augment the acquisition function to help convergence on
Pareto frontier

■ design engineering and materials science applications
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Thank you for listening.
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