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Advantages/Disadvantages .

Advantages:

m optimize with uncertainty consideration

m active machine learning (accumulate history)

m derivative free (avoid computing Jacobian)

m global optimization (convergence in probability)

m good convergence rate (provably asymptotic regret)
Disadvantages:

m high-dimensionality

m scalability: computational bottleneck O(n®) when the number

of observations n > O(10%)

7/27/20 ;




BO features W=

very versatile (adaptive for methodological extensions)

7/27/20

acquisition functions: Pl, El, UCB, Thompson sampling, entropy-based, knowledge-gradient, and much
more,

constrained on objectives (known -+ unknown constraints) v’
multi-objective (Pareto frontier/optimal, domination) v
multi-output X

multi-fidelity (couple multiple low-, high-fidelity models) v
batch parallelization v'— asynchronous parallel v
stochastic X

time-series (forecasting, e.g. causal kernel) X

mixed-integer (discrete/categorical + continuous) v
scalable v*

latent variable model X

gradient-enhanced v*

physics-constrained: monotonic, discontinuous, symmetry, bound X
outlier: student-t distribution X

non-stationary X



()

Methodology:

7/27/20

Anh Tran et al. “srMO-BO-3GP: A sequential regularized multi-objective constrained Bayesian
optimization for design applications”. In: Proceedings of the ASME 2020 IDETC/CIE. vol. Volume 1: 40th
Computers and Information in Engineering Conference. International Design Engineering Technical
Conferences and Computers and Information in Engineering Conference. American Society of Mechanical
Engineers. Aug. 2020

Anh Tran et al. “aphBO-2GP-3B: A budgeted asynchronously-parallel multi-acquisition for
known /unknown constrained Bayesian optimization on high-performing computing architecture”. In: arXiv
preprint arXiv:2003.09436 (2020)

Anh Tran, Tim Wildey, and Scott McCann. “sMF-BO-2CoGP: A sequential multi-fidelity constrained
Bayesian optimization for design applications”. In: Journal of Computing and Information Science in
Engineering 20.3 (2020), pp. 1-15

Anh Tran, Tim Wildey, and Scott McCann. “sBF-BO-2CoGP: A sequential bi-fidelity constrained Bayesian
optimization for design applications”. In: Proceedings of the ASME 2019 IDETC/CIE. vol. Volume 1: 39th
Computers and Information in Engineering Conference. International Design Engineering Technical
Conferences and Computers and Information in Engineering Conference. V001 T02A073. American Society
of Mechanical Engineers. Aug. 2019

Anh Tran, Minh Tran, and Yan Wang. “Constrained mixed-integer Gaussian mixture Bayesian optimization
and its applications in designing fractal and auxetic metamaterials”. In: Structural and Multidisciplinary
Optimization (2019), pp. 1-24

Anh Tran et al. “pBO-2GP-3B: A batch parallel known/unknown constrained Bayesian optimization with
feasibility classification and its applications in computational fluid dynamics”. In: Computer Methods in
Applied Mechanics and Engineering 347 (2019), pp. 827-852



Applications:

7/27/20

Anh Tran et al. “Multi-fidelity machine-learning with uncertainty quantification and Bayesian optimization
for materials design: Application to ternary random alloys”. In: arXiv preprint arXiv:2006.00139 (2020)

Anh Tran et al. “An active-learning high-throughput microstructure calibration framework for
process-structure linkage in materials informatics”. In: Acta Materialia 194 (2020), pp. 80-92

Stefano Travaglino et al. “Computational optimization study of transcatheter aortic valve leaflet design
using porcine and bovine leaflets”. In: Journal of Biomechanical Engineering 142 (1 2020)

Anh Tran et al. "WearGP: A computationally efficient machine learning framework for local erosive wear
predictions via nodal Gaussian processes”. In: Wear 422 (2019), pp. 9-26

Anh Tran, Lijuan He, and Yan Wang. “An efficient first-principles saddle point searching method based on
distributed kriging metamodels”. In: ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems,
Part B: Mechanical Engineering 4.1 (2018), p. 011006



Classical GP W=

Let D, = {x;, yi}7_; denote the set of observations and x denote
an arbitrary test points

n(%) = o(x) + k()T (K +02) Ny —m) (1)
02(x) = k(x,x) — k(x)T(K + o>1) " k(x) (2)

where k(x) is a vector of covariance terms between x and x;.,.
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Classical GP ) .

Formulation:
m stationary: only depends on r = ||x — x’||

m the covariance matrix: symmetric positive-semidefinite matrix
made up of pairwise inner products

Kij = k(xi, xj) (3)

m unknown function is presumably smooth
m variables are presumably continuous, i.e. f:RY — R.
Implementation:

m MLE to estimate the hyper-parameter # € R?: compute K~!
at the cost of O(n?)

msizcof K=nxn

2721720 Ingredients: some data, GP kernel, acquisition function.




Classical GP e

Common kernels:
B kMaterni (X, X7) = 98 exp (—r)
B kmarems (X, X’) = 02 exp (—V/3r)(1 +/3r)
(—VBr) (L+ Vbr+ 3r?)
B ksgexp(X, X') = 02 exp (—3r?)

, 9
B KkMaterns (X, X)) = 05 exp

Log-likelihood function:

log p(y|x1:n,0) = —5log(2m) — 5log|K’ + o] ()
—3(y —mg) (K +021)" (y — my)

7/27/20 ’




Formulation & Implementation: multi-objective GP @

Let:
m x={x}¢, € X CRY be input in d-dimensional space,

m y = {yj};_, as s outputs.

argma‘x(fl(x)v B fs(X)) (5)
xeX

subjected to ¢(x) < 0.

7/27/20 10
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Formulation & Implementation: multi-objective GP @k

Pareto definition:

m x; is said to dominate x», denoted as x; = xy, if and only if
V1 < j <'s, such that yj(x;) < yj(x2), and 31 < j <'s, such that
yi(x1) < yj(x2).

B Xx; is said to strictly dominate xo, denoted as x; < xo, if and only if
V1 < j <s, such that yj(x;) < yj(x2).

Scalarization: multi-objective — single-objective

1. weighted Tchebycheff y = max;<i<s w;(yi(x) — z),

2. weighted sum y = Y7, wiy;i(x),

3. augmented Tchebycheff
y = maxi<i<s Wi(yi(x) — 2) + p X7y wiyi(x),

where z7 denotes the ideal value for the i-th objective, the weights

0<w <1, Zl";l w; =1, p is a small positive constant (p = 0.05).
7/27/20 11




Formulation & Implementation: multi-objective GP @k

What is the idea?

7/27/20

learn Pareto frontier through a uncertain binary classifier
GP comes out naturally as an uncertain classifier
push the learned Pareto frontier to the true Pareto frontier

use acquisition function in BO to promote richness
(exploration) and diversity (exploitation)

once learned Pareto frontier — true Pareto frontier: the
uncertain classifier stabilizes

some regularization to help (a) fitting objective GP and (b)
reduce noise in stochastic settings

12




Formulation & Implementation: multi-objective GP @k

Acquisition function:

a(x) = aobj(X) - aPareto(X) - Pr(xlc(x)=1) - Z(x)
—— N—— N——— ~—~—
objective GP  uncertain Pareto  unknown constraints  known constraints
(6)

B aopj(x): objective GP fitted through augmented Tchebycheff
with random weights

B apareto(X): Pareto GP classifier (Pareto/non-Pareto)
m Pr(x|c(x) = 1): constrained classifier (feasible/infeasible)
m Z(x): indicator function if ¢(x) < 0

7/27/20 13




Formulation & Implementation: multi-objective GP @k

Algorithm 1 smo-80-36P algorithm

Input: dataset D), consisting of input, observation, feasibility (x, y, ¢)i_{
Input: multi-objective (x;, y;)/—;, constraint GP (x, ¢;){_;,

1:forn=1,2,...,do

randomize a weight vector w

combine {y; }Js»zl toy > multi- to single-objective
construct single-objective GP > GP #1: popi(x), agbj(x)
construct Pareto front > GP #2: ppareto(X), a'garem(x)

find current Pareto front
construct Pareto classifier GP
construct constraints classifier GP > GP #3: Lfeasible (X)), Ufzeasible(x)

O 00Xy 1 s 1D

locate the next sampling point x4 1

10: query for y,11 = {yj}jzl’ feasibility ¢, 1

11: augment dataset D1 = {Dn, (Xn4-15 Ynt15 1)}
12: end for

Benchmark: 18 variants
m El, Pl, UCB for objective
m El, PIl, UCB for Pareto frontier
= regularized vs. non-regularized

7/27/20 14
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Sandia

Acquisition function: How to pick the next point(s)

m dictates how to pick the next point: exploitation (focus on
the promising region) or exploration (focus on the
uncertain/unknown region)

m different flavors:

1. probability of improvement (PI)

api(x; {xi, yi}1_1,0) = ®(v(x)), (7)

where

2. expected improvement (El) scheme
aei(x; {x5, yitio1, 0) = o (x; {xi, yi} o 9)'(7(X)¢(7(X))+¢(7(é))<))

7/27/20 15




Acquisition function: How to pick next point(s) 3

m dictates how to pick the next point: exploitation (focus on
the promising region) or exploration (focus on the
uncertain/unknown region)

m different flavors:

3. upper confidence bound (UCB) scheme

auce(X; {xi, yi}i=1,0) = p(x; {xi, yi}izy, 0)+ro(x; {xi, yi}iy, 0),
(10)
where k is a hyper-parameter describing the
exploitation-exploration balance.
4. pure exploration®:

m maximal MSE ¢°
® maximal IMSE [ _. o?(x)

7/27/20




ZDT1: 12d L=

fl :lef2 :gha (11)

where

f
—1+—pr, El' (12)

1 < g < 10 = Pareto frontier is obtained when g = 1. More
precisely, {fi, 2}, where f, =1 — /f,.

7/27/20 17




ZDT1: 12-d

Figure: ZDT1 Pareto frontier
comparison.

£0 Comparison of Pareto frontiers: ZDT1 functions.

%8s 02 0 06 08 To
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Figure: Zoom at [0, 1] x [0,1].

Comparison of Pareto frontiers: ZDT1 functions

0.4

02,

%80 02 oa 06 08 1o



DTLZ1: 12-d

fi = 0.5(1+ g)x1, (13)
fy = 0.5(1+g)(1 - x), (14)

where g = 10011 + 2}72:2((xp —0.5)% — cos [20m(x, — 0.5)]).

7/27/20 19
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DTLZ1: 12-d W=

Figure: DTLZ1 Pareto frontier Figure: Zoom at
comparison. [2500, 2525] x [2475, 2500].

S Comparison of Pareto frontiers: DTLZ1 functions o Comparison of Pareto frontiers: DTLZ functions
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Flip-chip BGA package design

Table: Design variables for the FCBGA design optimization.

Variable | Design part Lower bound | Upper bound | Optimal value

X1 die 20000 30000 20702

X2 die 300 750 320

X3 substrate 30000 40000 35539

X4 substrate 100 1800 1614

X5 substrate 10-10-6 17-10-6 17-10-6

X6 stiffener ring | 2000 6000 4126

X7 stiffener ring | 100 2500 1646

X8 stiffener ring | 8-106 25-10—6 8.94.10-6

X9 underfill 1.0 3.0 1.52

X10 underfill 0.5 1.0 0.804

x11 PCB board | 12.0-1076 16.7-106 16.7-106
7/27/20 21



Flip-chip BGA package design

Figure: Warpage at Figure: Warpage at Figure: Warpage at
-40°C 20°C 200°C

— e c— e— s ce—
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Flip-chip BGA package design

Figure: Correlation heatmap
between objectives.

Figure: Correlation between
objectives and joint densities.

0.9
NE4EEINE
A 3 SR
- - //~ B 2
|
)
V4 A

7/27/20




Additive manufacturing: inverse process-structure
mapping: asynchronous parallel

0.40 microstructure calibration: convergence plot

1
o
w
o

i

o
N
w

o
—
wu

single-objective y = Z Yi
o =}
- N
o o

0.05

0 500 1000 1500 2000 2500 3000 3500 4000
Iterations

Figure: Reverse engineering an additively manufactured specimen through
kinetic Monte Carlo (Sandia/SPPARKS). Tran et al., “An active-learning
high-throughput microstructure calibration framework for

7/27/20 Process-structure linkage in materials informatics”. 2%




Sequential multi-fidelity: searching optimal chemical W=

composition
Tran et al., “Multi-fidelity machine-learning with uncertainty
quantification and Bayesian optimization for materials design:

Application to ternary random alloys”: coupling DFT and MD.
Multi-fidelity for multi-scale ICME.

FIgU r€: lteration 4: 2 LF + 2 HF Figure: Iteration 24: 21 LF + 3 HF

Tio Tio 9 1§ 27 36 13 s Al
7/27/20 Al atoms 40 Al atoms 40 25



Sequential multi-fidelity: searching optimal chemical W=

composition
Tran et al., “Multi-fidelity machine-learning with uncertainty
quantification and Bayesian optimization for materials design:

Application to ternary random alloys”: coupling DFT and MD.
Multi-fidelity for multi-scale ICME.

Figure: iteration 35: 31 LF + 4 HF Figure: iteration 130: 116 LF + 14 HF

180 180
160 160
140 140
120 = 120 =
[a¥ %
100 1009
80 80
54 ¥ " 60 60
Tio 9 18 27 36 45 si Al f 5
7/27/20 Al atoms 40 Al atoms 40 26



Welded-beam design optimization &,
(2d+4-4d) (mixed-integer)

Welded beam design problem

£150 ' : ::Et!liron
2125 o . i |5 Hgim
Pl — L JF ol w ) . 8 i
. - £
t 2 50
' g 2
o 0 x
Figure; Welded-beam design ° 20 Niber ot fanetional evtumtione T
Figure: Convergence plot of welded beam
design.
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Speed reducer design optimization (=
(1d+6d) (mixed-integer)

4000 Speed reducer design problem

--- mixed-integer BO (2 init samp)

--=- mixed-integer BO (5 init samp)

--+- mixed-integer BO (10 init samp)
mixed-integer BO (20 init samp)

—— genetic algorithm: (150,10)

F,_ —— genetic algorithm: (50,3)
i
I - genetic algorithm: (1500,10)

Objective cost function ($)

\f/ 0 200 400 600 800 1000
_e\ %6 Number of functional evaluations

Figure: Comparison against GA.
Figure: Speed reducer design A part &l
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High-dimensional discrete sphere function .

(5d+-50d) (mixed-integer)

f(x(d)’x(C)) —

F(X1, " s Xny Xng 1,y Xm) =
Ty Il (s %)

where
1<x<2(1<i<n)are

n integer variables and

=512 < x; < s =
512(n+1<j < m) are
m — n continuous
variables.

(50+5)D discrete spherical problem

~e~ mixed-integer BO (2 init samp)

~»= mixed-integer BO (5 it samp)

=4 mixed-integer BO (10 init samp)
mixed-integer BO (20 init samp)
genetic algorithm; (10,1)

— genetic algorith: (50.3)

—= genetic algorithm: (150,10}
genetic aigorithm: (1500,10)

Objective function

0 400 600 800 1000
Number of functional evaluations

Figure: Comparison against GA.
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High-dimensional discrete sphere function .

(5d4-100d) (mixed-integer)

f(x(d)’ x(c)) —
f(X1’~-- ,Xn,Xn+1’--- ,Xm):

(100+5)D discrete spherical problem

-~ mixed-integer BO (2 init samp)
=== mixed-integer BO (5 it samp)
-+ mixed-integer BO (10 init samp)

mixed-integer 8O (20 init samp)

T bl (i1 %) SEEEE
where u T )
1<x5<2(1<i<n)are ;_
n integer variables and = S e
—IEE % = i ’ ™ Number of functional evaluations 3000
sl 41 -SJ < m) are Figure: Comparison against GA.
m — n continuous
variables.
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(Fractal) mechanical metamaterials/AM
(4d+5d) (mixed-integer)

Figure: Hierarchical multiscale structure Figure: Design optimization of fractal
of octahedral (second-order). Printed in cube. Printed in Georgia Tech Invention
Georgia Tech Invention Studio. Studio.

7/27/20 31



Sandia

(Fractal) mechanical metamaterials/AM
(4d+5d) (mixed-integer)

S, Mises
(Avg: 75%)
+5.870e+07

+3.431e-10

¥ Uniaxial compression on 1x1x1 fractal ce
ODB: cellRVE_1x1ix1_straini.odb Ahlquslsundard 3DEXPERIENCE R2017x
A _ Step: cellLoad, Load RvE 1x1x1 fractal cell.
z X Increment  6: Step Time =  1.000

Figure: ABAQUS FEA.

Figure: Parametric design.
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Impeller design optimization using CFD
(33d) (pBO-2GP-3B: parallel + blind constraints)

BO-2GP-3B: Convergence plot of 33d impeller CFD simulation

2.00 ®
[T T U
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175 gl 2 W,
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£ 1.50 S 4 = we M gl g
£ AL ~ -9
§ 0y e e & 2
2125 5 LA @ Bacquisition
E - . B Bexpiore
5 1.00 ik @ Bexploreciassit
g X infeasible
g0'75 —— initial sampling
E ol » e |
g 0.50 N
< ®
025 ®® ® 66

XO0O8SCE XX X XX XX0000 MK XX XX omK XX XX

o
o
S

0 250 500 750 1000 1250 1500 1750
Number of functional evaluations

Figure: Multiphase CFD simulation for design optimization of 33d slurry pump

impeller: Convergence plot .
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Materials Design

* Turning/milling

* Casting
process_ * Drawing/Rolling PROCESS N
¢ Heat treatment S s{\\ Inverse problems:
« Additive o rostructure -
structure- s tistically equivalent | find some
. RVE Q processes such
property lin kage ST * Orientation distributionij that one or
< 4  Grain size / multiple properties
n materlals « Chord-length 4 g are optimized

2-point statistics g
-

Yield stren,
* Wear resistance
* Transport coefficients

Figure: Process-Structure-Property linkage.
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Conclusion

This talk: multi-objective Bayesian optimization
m an uncertain Pareto classifier is proposed

m augment the acquisition function to help convergence on
Pareto frontier

m design engineering and materials science applications
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Thank you for listening.
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