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2 Fuel Cost if NOMAD was in Albuquerque
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3 Hinged Wings —A Compromise

Traditional Hinged Control Surface

Morphing Surface Wlnq
Notice less required deflection for

equivalent hinged maneuvers

I I I I I I I I I I I I I I .-.111i1/4,

Lift

Variable Lift Distribution

Weight optimum

Fixed wing is a

compromise Potential

ra nge

Aerodynamic optimum

Span

•
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4 Morphing Wings — Nature Motivated

/Flexible variable
Camber Bird wing

Nature inspires

Variable Camber
Mission Adaptive wing

Actual A/C devices

•
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5 Morphing Wings — Not just a Concept

They are flexible, shape-changing and bio-inspired high-lift devices:

Reduced fuel consumption

Reduced airframe noise

https://www.youtube.com/watch?v=bC5BUuDFhmg

Kinematic

Systems 

Compliant

■

Introduction Full Order Model Reduced Order Model Conclusion



6 I Kinematic Finger Like Mechanisms

Finger — Like Mechanisms consists of different blocks (connected by hinges and links) moving
with a pre-defined mechanical law and driven by load-bearing actuators

A

•

G F

z

Several connected components exhibit frictional nonlinearity at the interfaces

•
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7 I Importance of Modeling Frictional Interfaces

Well tightened bolts still exhibit regions of slip at the edge of contact
• Microslip/Macroslip

• Introduces hysteresis and amplitude dependent behavior

Jointed Structure

[F11 [F11 [F11 
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8 Project Objective

Develop a nonlinear finite element model of an industrial structure to better understan
the nonlinear damping and frequency behavior

1

Introduction Full Order Model Reduced Order Model Conclusion



Full — Order Modeling with
Quasi-Static Modal Analysis



10 The Quasi-Static Modal Analysis Process

QSMA of a Full-Order Model

Nonlinear Preload Analysis
Kx fN L(x , 19) = fpre

Modal Force Application
Kx fP1(x, 0) — fpre M ra

R. M. Lacayo and M. S. Allen, "Updating Structural Models Containing
Nonlinear lwan Joints Using Quasi-Static Modal Analysis," Mechanical
Systems and Signal Processing, vol 118, pp. 133-157, 2019

Quasi-Static

Response

(cor(a))2

q(a)

A
 F
r
e
q
u
e
n
c
y
 

o
co

E

ser)
o

log(Displacement Amplitude)

log(Displacement Amplitude)

Dynamic analysis of a structure is computationally expensive so we use
a static analysis

-10x increase in speed for a quasi-static case (seconds) vs. static response
case (hours)

Dynamic simulation could take upwards of weeks

Introduction Full Order Model Reduced Order Model Conclusion



11 Application to the MorphingWing

Gravity Load - Test
Condition

Tip Load - Representative
Operative Condition

Apply QSMA to get frequency and damping curves for these two preload methods

•

Introduction Full Order Model Reduced Order Model Conclusion



12 Apply Preload on the Structure

Gravity Load

Contact Status

1.000e+00
7.500e-01
5.000e-01
2.500e-01
0.000e+00 "

Nonlinear Preload Analysis
Kx + fNL(x,O) = fpre

Tip Load

SM

111Pigbftft,
0
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▪ -0.1

c7, -0.15
E
L, ▪ -0.2
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-0
o -0.3z

• -0.35
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-0.45
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0.00 "

—e— Tip Load Preload
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13 I Mode Of Interest

164.5 Hz

Gravity Load

Disp Vector [in]

6.578e+01
4.933e+01
3.289e+01
1.644e+01
0.000e+00

Linearized Modal Analysis
( 
K + 
4,1 (x, 0)1

—
dx 

4114 = 0

SD

X=Xpre

166.1 Hz

414441\k1
Disp Vector [in]

6.578e+01
4.933e+01
3.289e+01
1.644e+01
0.000e+00

iD Load
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14 I Gravity Load Vs.Tip Load QSMA
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Interface Reduction using
Multi-Point-Constraints



16 Modeling through Whole Joint Models

CB Reduction

Nodes

Joint Model

"Virtual" Nodes

RBAR/RBE3

Elements

(MPC)
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1 7 Morphing Wing — Contact Interfaces

Introduction Full Order Model II Reduced Order Model Conclusion



18 Morphing Wing — Spidering Process

Original surface assigned for
contact

Contact surface output from
preload analysis

Spider created using nodes
from preload contact surface

Introduction Full Order Model Reduced Order Model Conclusion



1 9 Morphing Wing — Spidering Process

Introduction Full Order Model II Reduced Order Model Conclusion



20 Morphing Wing — Full Model With Multi-Point Constraints
Assigned

Introduction Full Order Model Reduced Order Model Conclusion



21 I Rotational Stiffness Sensitivity Study

•Adjust rotational stiffness of the structure to see effect on
the natural frequency of the 2nd Mode

. .1

50 . —
100 102 104 106

KRx Stiffness

1

I I 11111 1 I 11111

108 1010

m

Introduction Full Order Model Reduced Order Model Conclusion



22 I Future Work

•Calibrate Reduced Order Model to match the linear natural

frequencies about the preloaded state

Apply nonlinear hysteretic elements and update to match the full

order quasi-static frequency and damping curves

•Add hyper elastic compliant skin around the rib for a more realistic

model

Gauge additional reduction techniques on this industrial model

Joint model

Introduction Full Order Model Reduced Order Model Conclusion



23 Concluding Remarks

•Applied the QSMA framework on an industrial scale structure

• Utilized two methods for preload (test vs. representative operative condition)

• Both methods were able to generate quasi-static frequency and damping curves

•Developed a spidered reduced order model that can be updated to match the full order model

•These methods have been typically done on bolted connections vs. the pin/hole frictional connections for this model

•High fidelity nonlinear finite element models are key for future successful virtual testing demonstrations. They present several

challenges to make advanced response predictions with confidence.

■

Introduction Full Order Model Reduced Order Model Conclusion
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1 Tools to Capture Joint Nonlinearity — lwan Element

A whole joint model that uses four parameters to characterize the amplitude dependent
behavior

Multiple Jenkin's slider elements in parallel

KT

X

The force necessary to cause rnacroslip

The tangential stiffness of the Jenkins elements (i.e. the joint stiffness
when no slip occurs)

The exponent that describes the slope of the energy dissipation curve

The ratio of the number of Jenkins elements that slip before micro-slip
and then at macroslip

microslip

Joint Force

(b)

O

o

o.
-

o

c
macroslip 

log(Joint Force)

D. J. Segalman, "A Four-Pararneter Iwan Model for Lap-Type Joints,"Journal of

_Applied Mechanics, vol. 72, no. 5, pp. 752-760, Sep. 2005.
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27 I Mode 2 Mode Shape GIF
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Introduction



Motivation: How many fasteners?

_ rx!fi

‘r1;'

° Fasteners are everywhere: from phones to cars to planes
•

J •

HURLEY, T. AND VANDEMBURG, J., "SMALL
AIRPLANE CRASHWORTHINESS DESIGN GUIDE"

2002.

Failure can lead to minor inconveniences to major catastrophes

High-fidelity models of threaded fasteners computationally expensive

Reduced-order models (ROMs) can be an
effective method to replicate the response

ORTIZ, J., "COMMONLY USED PRELOADING METHODS," 2019.



35 I Project Goals

o Generate blind predictions for ROMs based on nominal parameters

o Calibrate plastic response of the RO s to experimental data from collaboration with UNM

o Evaluate the plastic response of intermediate angles using calibrated model
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37 Fixture Model

o D-rings with holes from 0° — 90° spaced 15° apart

o Fastener held in by bushings

o Model must be defeatured for meshing

O Removed clevis assembly and detailed features

• Webcut half of the fixture geometry on the symmetric plane

O Placed clevis rods at each load angle

• Used a fine mesh for the bushings and fastener if one was
included

MI=



38 Reduced Ordered Models

+Spot Weld
+Applies a force-displacement relationship in
tension and shear to a node-side set pair

*: One-Block Plug
+Single set of material properties

+Calibrated to tensile data

+Two-Block Plug
+Two sets of material properties

+Tensile region calibrated to tensile data

+Shear region calibrated to shear data

Node

Side Set •

Spot Weld

J
Tensile

Shear

Tensile

Region

Region

Region

One Block Plug Two Block Plug



3 9 Material

Fixture 4340 Steel ° Spot Weld Tension and Shear Functions

• Young's Modulus: 30.4e6 psi

O Density: 7.33 g/cc

• Poisson's Ratio: 0.32

O Yield Stress: 142.7 ksi

0 Fastener (A574) Tensile Region

• Effective Young's Modulus*: 21.1e6 psi

O Yield Stress: 155 ksi

O Poisson's Ratio: 0.3

0 Fastener (A574) Shear Region

O Effective Yield Stress: 90 ksi (-60% of tensile region)

• Rest as Tensile Region

*Effective Young's Modulus
F dx A1
— = E — E2 =
A 1-1 2

5000

Aftf111

2000

-0.01 t 0.01 0.02 0.04 0.05

1000

.200D
Displacement (in)

-Tension Function

Shear Function

Spot Weld Failure Envelope

2

-Default

Calibrated

Un  )P

+ 

Ut )P

ncrit tcrit( 

> 1.0
U U 



40 I Loading and BC

General

o Experimental loading condition

• Fixed Constraint

• Prescribed Displacement in x

o Symmetry in Y to account for half model

o Surface contacts

Spot Weld

O Rigid surfaces for spot weld

Fixed

Prescrib
Displacement



Initial Results



42 Initial Prediction - Tension
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43 Initial Prediction - Shear
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Calibrated Models: Results



45 I Calibrated Results:Tensile and Shear
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Intermediate Angles: Results



47 1 Intermediate Angles after Calibration
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48 I Intermediate Angles after Calibration
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49 1 Intermediate Angles after Calibration

3,000
Results with 75' Load Angle
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51 Concluding Remarks

Spring Model Hardening follows the magnitude of the curve and failure point quite effectively

One Block Plug takes longer to tune but can follow the Load/Displacement of a particular angle
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NNM Force Appropriation Pre-test
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I. Introduction



58 I Background and Motivation

•Despite its effect on multiple aspects of structural dynamics,
neglected in industrial design and qualification

•To develop understanding of nonlinear structural dynamics,
identification on a demo aluminum aircraft (Fig. 1) [1]

•But, dynamics of the full system (wing+pylon+fixture)
were too complex

Solution: Begin with isolated
fixture-pylon structure

nonlinearity is under-considered and often

Seimens Industry Software attempted system

Fig. 1: Siemens demo aluminum aircraft [1]



59 I Previous NOMAD Work

•A NOMAD 2019 research group studied the
isolated fixture-pylon structure [2]

•Experiments were conducted on the setup
shown in Fig. 2

• Shaker was used to excite fixture-pylon structure

• Data collected through accelerometers

Results:

Experimental data

Basic nonlinear model

Shaker

Connection to
DAQ, Amplifier

Load Cell Pylon Fixture

Optical
Breadboard

Pylon

Triaxial
Accelerometers

Uniaxial
Accelerometers

Fig. 2: Sandia isolated fixture-pylon test setup



60 I Current Work

The NOMAD 2020 project builds upon the previous results by:

•Analyzing experimental data

•Further developing the nonlinear model of the fixture-pylon assembly

•Calibrating fixture-pylon model against experimental data

•Combining fixture-pylon model with linear model of the wing structure

•Analyzing the fixture-pylon and wing-pylon-fixture models

•Simulating experiments by coupling wing-pylon model to a shaker model

First step: Analyzing fixture-pylon experimental data



61 Fxperimental Data Analysis
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Previous experiments resulted in sine spectra data from accelerometers

slY+ Magnitude Response Spectra
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Fig. 3: Sine spectra magnitude response
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Fig. 4: Sine spectra phase response



62 I Experimental Data Analysis (cont.)

From test data, we extracted backbone curves 

•Backbone curves are a useful tool for
understanding nonlinear behavior

•Backbone aligned with peaks of magnitude
response

Backbone curves

Starting point

40

35

30

a) 25

•E 20
ca

15

10

5

0
7

slY+ Backbone and Magnitude Response Spectra

7.2 7.4 7.6 7.8

Frequency (Hz)

 0.5 N
 1 N

3 N
 5 N

7 N

8.5 N
 10 N
 12 N
 15 N

17 N
 20 N

— — • Backbone

8

Fig. 5: s1Y+ backbone curve and magnitude response from sine
spectra experimental data

8.2



11. Fixture-Pylon Assembly



64 I Fixture-Pylon ROM

•To compare the experimental data to a numerical model, a
linear finite element model was created for the fixture-pylon
assembly using CUBIT

•To reduce the degrees of freedom (DOFs) in the model, a
Craig-Bampton (CB) reduction was run in Sierra SD to
obtain a reduced order model (ROM) [3-4]

° This takes the full model with thousands of DOFs and reduces
it to a more manageable model with only 7 retained DOFs
(virtual nodes, accelerometers, and drive point)

Drive Point

Accelerometer

Reduce the full model to something more manageable:

Full model 4 CB reduction 4 Linear ROM

Virtual N odes

Fig. 6: Fixture-pylon CAD assembly



65 I Fixture-Pylon ROM (cont.)

•The linear ROM from Sierra
provides the mass and stiffness
matrices for the fixture-pylon
• Damping matrix is computed

using proportional damping

•To convert the linear ROM to a
nonlinear model, virtual nodes
were tied to the pylon block so
that a nonlinear restoring force
could be added to the equations
of motion (E0Ms)

•EOMs of nonlinear dynamic
system:

ltri(t) + CX(t) + Kx(t) +

Linear ROM

(Sierra Output)

tnitx(t)} u

Add nonlinear element

Left B

Virtual node •

Rigid Bar Multi-

Point Constraints

Thin Beam

Virtual node ss

Rigid Bar Multi-

Point Constraints

Right Block

Fig. 7: Virtual nodes in pylon block

Nonlinear restoring force

between virtual nodes
(MATLAB)



66 N online ar Normal Mode (NNM) Theory

•For an unforced, undamped system, an NNM is defined as a response that is periodic but not
necessarily synchronous [5-6]

*A multi-degree of freedom system will have multiple NNMs

•NNMs are often illustrated in a frequency - energy plot
(FEP) (Fig. 8), which shows how a system's natural frequency
changes with energy input into the system

•Each point along the NNM in the
different time-history response

*Multi-harmonic balance (MHB) is
methods used to compute NNMs

FEP corresponds to a

one of several numerical

NNMs are computed using MHB and
illustrated in frequency - energy plots

106

104

10-2

10-4

Natural frequency changes

with input energy

Internal

resonanc

0.16 0.18 0.2 0.22

Frequency, 1/s
Fig. 8: Frequency - energy curve for 15t NNM of sample system



67 I Calibrating ROM Nonlinearity

Two options were considered for nonlinear elements:

*Cubic spring element (Fig. 9)

• fn1(Ax) = kNL(Ax)3
• Parameters:

kNL - nonlinear spring constant

*Gap-spring element (Fig. 10)

f 0 f or Ax xgap

kpen (AX — Xgap) f or Ax > Xgap• fn1(Ax) =

• Parameters:

kpen- linear penalty spring constant

xgap- gap width

Re
st
or
in
g 
Fo

rc
e 

10

5

4

2 3
o

.c 2

ri

1

0

0.2 0 4 0 6 0.8 1
Displacement

Fig. 9: fni for cubic spring element

0 0.2 0.4 0.6

Displacement

Fig. 10: fni for gap-spring element

0.8 1



68 I Calibrating ROM Nonlinearity (cont.)

With cubic spring (Fig. 11) and gap-spring (Fig. 12) elements, NNM backbone curves were determined and
compared to experimental data

0.015

0.01

t)_
E

0.005

0

slY Exp. Backbone

- - - •slY NMM Backbone

s2Y Exp. Backbone

- - - -s2Y NMM Backbone

.-

,

_

,

1 1.02 1.04 1.06 1.08

Normalized Frequency

Fig. 11: Cubic spring element backbone comparison

1.1

0.015

a) 0.01

0.005

slY Exp. Backbone

- •slY NMM Backbone

 s2Y Exp. Backbone

- -s2Y NMM Backbone

PP'

1 1.02 1.04 1.06 1.08 1.1

Normalized Frequency

Fig. 12: Gap-spring element backbone comparison

Selected: kpen = 7 * 10^4 N/m

Gap-spring element xgap = O. 68 mm



69 I Stepped Sine Validation

A stepped sine test simulation was performed to verify that the gap-spring nonlinearity accurately captures
the nonlinear dynamics in the pylon-fixture ROM in comparison to the NOMAD 2019 experimental results

Input Forcing
Location

Output Displacement
Location

Fig. 13: Fixture-pylon system with marked
input and output nodes

A stepped sine test simulation will verify if the
calibrated ROM is in agreement with the
experimental data



70 I Stepped Sine Validation (cont.)

o Despite some variation in stiffness effects, the simulation results compared relatively well with the
experimental results

o Nearly all linear-peak regions occurred at a slightly higher frequency and most nonlinear-peaks were
slightly smaller in magnitude, compared to the experimental results
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Fig. 14: Comparison of results from NOMAD 2019
experiment (a) and stepped sine simulation (b)
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71 I Stepped Sine Validation (cont.)

o Despite some variation in stiffness effects, the simulation results compared relatively well with the
experimental results

o Nearly all linear-peak regions occurred at a slightly higher frequency and most nonlinear-peaks were
slightly smaller in magnitude, compared to the experimental results
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0.006

0.004

0.002

0

0.02
(a)

0.5N
- 1 N

3N

0.018

0.016

(b)

There was great agreement between the simulation and experimental

results which suggests that the calibrated ROM was accurate
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Fig. 14: Comparison of results from NOMAD 2019
experiment (a) and stepped sine simulation (b)



III. Full Assembly



73 Wing-Pylon ROM

•Next step: Attach the calibrated pylon to the wing

•Following similar methods as the fixture-pylon model, a linear
finite element model of the next-level wing-pylon assembly was
created

•Craig-Bampton reduction was applied using Sierra SD to obtain
the linear ROM

o DOFs for the accelerometers, virtual nodes, and drive points were
retained

•The calibrated gap-spring element in the pylon block was added
to the linear ROM to describe the nonlinear EOMs

Linear wing-pylon
ROM from Sierra

+
Calibrated gap-
spring element in

pylon

Drive Points

Virtual Nodes

Fig. 15: Wing-pylon CAD assembly

Accelerometer

Nonlinear EOMs

m.t(t) + CX(t)+Kx(t) fn1tx(t)} M.t(t) + WO + Kx(t) + fn1{x(t)} = u



74 1 Wing-Pylon ROM (cont.)

Mode shapes for linear wing-pylon model:

_DispVEC
2 639e+00
1.979e+00
1 320e+00
6.604e-01
9.301e-04

Fig. 16: Mode 1 (7.30 Hz)

DispVEC
2—.639e+00
1.979e+00
1.320e+00
6.604e-01
9.301e-04

Fig. 18: Mode 3 (47.28 Hz)

Note: mode numbers refer to elastic modes

1.320e+00
6.604e-01
9.301e-04

Fig. 17: Mode 2 (22.20 Hz)

Fig. 19: Mode 4 (49.22 Hz)

_DispVEC
2.639e+00
1.979e+00
1.320e+00
6.604e-01
9.301e-04



75 I Multi-Harmonic Balance Method

• The MHB method was utilized to identify NNMs and any possible internal resonances for the
calibrated wing-pylon ROM

• Mode 2 was of interest because the bending of the wing resulted in bending of the pylon beam
which produced large displacements in the lower pylon block

• Large displacements in the pylon initiated the nonlinear behavior in the gap-spring element

DispVEC
27639e+00
1,979e +00
1.32Ce+00
6.604e-01
9 301e-04

Fig. 20: Mode 2 (22.20 Hz)

Mode 2 was considered for further investigation
based on the large wing and pylon bending mode
shapes



76 Multi-Harmonic Balance Method (cont.)

• NNM 2 contained a small frequency shift which remained extremely close to linear mode 2 resonant
frequency

• This can easily be overlooked if only a linear analysis is considered thus reinforcing the significance of
nonlinear analyses

• An internal resonance was identified on a tongue of NNM 2

22.24

22.23

C1

22.22

C

ll

22.21

22 2

22.19

NNM 2 Frequency-Energy

(a)

10-10 10-5 10 '
Energy

NNM 2 Frequency-Energy

244

22 242

(b)

100 101
Energy

102

Fig. 21: NNM 2 of the Wing-Pylon Assembly Fig. 22: NNM 2 with Identified Internal Resonance
and Single Harmonic Points



77 Multi-Harmonic Balance Method (cont.)

• A 1:5 internal resonance was identified
between NNM 2 and 7 on the wing-pylon
ROM; the red point in (a) is the tongue
of the internal resonance between the
two NNM's

• The internal resonance can easily be seen
in the displacement time-history (b)
where multiple ratios of 1:5 harmonics
exist

• Single harmonic motion exists (c) in
NNM 2 as well which is described by the
magenta point in (a)

NNM 2 remained very close to its linear
mode and additionally contained
a 1:5 internal resonance with NNM 7

NNM 2 Frequency-Energy

(a)

Displacement Time-History

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045

time

Displacement Time-History

0.005 0_01 0.015 0_02 0.025 0.03 0.035 0_04 0.045
ti rne

Fig. 23: Displacement Time-Hitories of Identified Internal Resonance and Single Harmonic Motion



78 Multi-Harmonic Balance Method (cont.)

• The modal interaction between the NNM's 2 and 7 are
down by an integer of 5 and only computed to the 5th
resonances on NNM 7)

• This essentially means when mode 2 is excited mode 7

(a)

responses

ChapVEC
i83941•00
1.979e.00 I
1.320e4.00
6.604e-01
9.301•04

DispVEC
E.262ee00
1.697E1+00 I
1.132e4-00
5 666e-01
1.542e-03

depicted in plot (b) where NNM 7 was scaled
harmonic (there are more harmonics and internal

can experience large displacement amplitude

(b)

23
NNM 2 and 7 Modal Interaction

(c)

22.45 2NNM 2 NNM
1/5 NNM 71/5 NNM 7

22.4
22.5

22.35

22.3
22

8; 22.25o>"
a) G)

tir 21.5 0- 22.2

u_ u_
22.15

21 22.1

22.05

20.5  22

10-2 100

Energy

102 104 10°

Energy

101

•

Fig. 24: Linear Modes 2 and 7 Mode Shapes Fig. 25: NNM 2 and 7 Modal Interaction Fig. 26 NNM 2 and 7 Internal Resonance Crossing



79 Multi-Harmonic Balance Method (cont.)

• The modal interaction between the NNM's 2 and 7 are depicted in plot (b) where NNM 7 was scaled
down by an integer of 5 and only computed to the 5th harmonic (there are more harmonics and internal
resonances on NNM 7)

• This essentially means when mode 2 is excited mode 7 can experience large displacement amplitude
responses

(a) (b)

23
NNM 2 and 7 Modal Interaction

(c)

22.45 2NNM 2 NNM
1/5 NNM 71/5 NNM 7

22.4
22.5

22.35

If NNM 2 is excited during a simulation or experiment, higher

harmonics can be found in some components of the model due to

the internal resonance, which is critical information to consider

. , —,4 ,

10-2 100 102 104

Energy

22 L

10°
Energy

101

•

Fig. 24: Linear Modes 2 and 7 Mode Shapes Fig. 25: NNM 2 and 7 Modal Interaction Fig. 26 NNM 2 and 7 Internal Resonance Crossing



IV. Virtual Experiments



81 I Shaker Model

To account for physical limitations of the shaker, a previously calibrated electro-mechanical shaker model
was substructured to the wing-pylon ROM for simulated experiments using the force appropriation method

(a)

ea Inp
tamp

eb = BL(±2—

Le

(b)
I narl reit

Fig. 27: Virtual shaker model (a) and
wing-pylon finite element model (b)

Drive Point

Note: Shaker input voltage is the only input to the substructured shaker, wing, pylon system



82 I Force Appropriation Method

•Phase lag quadrature criterion: A single NNM is isolated if the structure vibrates with a phase lag of
90° with respect to the input signal

•Force appropriation testing relies on the phase lag quadrature criterion

O The structure is excited at different forcing frequencies until a 90° phase difference is achieved

O NNMs can be identified one at a time using this method

Simulated force appropriation experiments were performed for the wing-pylon assembly

• A controller varied the frequency of the shaker input voltage until quadrature was achieved

• The amplitude of the input voltage was then increased and the process repeated; thus constructing the
frequency-energy plot (FEP) for NNMs of interest

edas Amplifier
eam

Controller

,
Shaker

Load cell
force Wing-Pylon Structure res onse

Phase Lag
Estimator

1r—

Fig. 28: Block diagram of force appropriation testing



83 I Force Appropriation Method (cont.)
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V. Conclusions



85 1 Results, Conclusions and Future Work

Results 

• NNMs were successfully characterized using computational methods such as force appropriation and multi-harmonic
balance

• Models were accurately validated against experimental data and finite element software

• It was shown that the study of NNMs can yield insights into nonlinear systems, such as the presence and behavior of
internal resonances as well as the frequency-energy dependence of nonlinear modes

• To simulate a physical experiment, a calibrated shaker model was substructured to the wing-pylon model

Future Work: 

• Fine-tune simulation model to accurately simulate second and higher modes

• Experimental testing of the physical wing-pylon assembly to validate NNMs and internal resonances between
different combinations of modes

• Further investigations can be conducted on the effect of other system parameters such as wing length
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90 I Background and Motivation

•Despite its effect on multiple aspects of structural dynamics, nonlinearity is under-considered and often
neglected in industrial design and qualification

•Further development of experimental and computational identification techniques is essential to
understanding nonlinear structural dynamics

•To this end, a previous Sandia research group studied an
isolated pylon structure and developed a nonlinear model
to replicate the experimental response [1]
• Pylon design originated from a demo aluminum aircraft (Fig. 1)

created by Seimens Industry Software [2]

*Goals included:
• To understand how localized nonlinearities can influence the

global modes of a system

• To investigate how nonlinearity in engine pylon subassemblies
could be positively exploited Fig. 1: Siemens demo aluminum aircraft [2]



91 I Overview of Current Work

*NOMAD 2019 experiments were conducted
on an isolated pylon mounted to a rigid fixture
(Fig. 2)

•This study builds upon the previous results by:

O Developing a nonlinear Craig-Bampton (CB)
reduced order model (ROM) for the pylon-
fixture assembly

O Applying nonlinear normal mode (NNM) theory
to the pylon-fixture ROM

O Identifying pylon-fixture nonlinearity by
comparison with experimental data

O Combining pylon-fixture ROM with a linear CB
ROM of the wing structure

O Simulating nonlinear force appropriation
experiments by coupling wing-pylon ROM to a
calibrated electromechanical model of a shaker

Shaker

Connection to
DAQ, Amplifier

Load Cell Pylon Fixture

Optical

Breadboard
Pylon

Triaxial

Accelerometers

Uniaxial

Accelerometers

Fig. 2: Sandia isolated fixture-pylon test setup



92 I Preliminary Data Analysis

•Previous experiments on the fixture-pylon
system yielded complex sine spectra data at
accelerometer locations AT+ and s2Y- for a
series of forcing amplitudes

•To determine frequency backbones, data was
separated into phase and magnitude
components to locate quadrature points for
each amplitude (Fig. 3)
° Quadrature: The point where input-output phase

difference = 90°. Here, damping and input forces
are balanced

200
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Fig. 3: Sine spectra phase response, values closest to quadrature marked



93 I Fixture-Pylon ROM (cont.)

•Using the mass and stiffness matrices from the CB ROM, the nonlinear, undamped equations of
motion with no external force were written as:

114ROMROM + KROMXROM + fnl = 0}

o Where f ni is the conservative nonlinear restoring force (0 at all DOFs except virtual nodes)

•The NNMs of this model were calculated using the multi-harmonic balance (MHB) method, which
represents the approximate NNM solution as a Fourier series [5]:

c 
+ Ek

x
XROM(t) = 7 h1[sk x sin(kw) + 4cos(kcot)]°2 = 

o Where c)., sixc, and ckx are Fourier coefficients

•These Fourier series were converted to a set of nonlinear algebraic equations and solved numerically to
obtain a branch of predicted NNM solutions [6-7]



94 I Calibrating ROM Nonlinearity

Two options were considered for the nonlinear elements between the pylon and pylon blocks
o Cubic spring element, dependent on interface points x1 (pylon) and x2 (block)

-NL ,- ,Force: fNL(x1, x2) = k (x — x -1 ) 3

O Potential energy: PENL(x1,x2) = 4 km,(x2 — x1)4

O Where kNL was the nonlinear spring constant of the cubic spring

o Gap-spring element, dependent on interface points x1, x3 (pylon) and x2, x4 (blocks)
kpen(612 Xgap) f or 812 > Xgap

• Force: fflap (xi, x2, x3, x4) = k (s-penk-34 — xgap) f or 634 > Xgap
0 otherwise

1O Potential energy: PEgap (x1, x2, x3, x4) = _1 k (g \ 2

2 
r v

pen V-'34 — Xgap j f or °34 > Xgap

2 kpen(612 — gap)
2 
f or 612 > Xgap

0 otherwise

O Where:

o kpen was the linear spring constant of the penalty spring

xgap was the gap width on either side of the pylon

o 612 = x1 X2

o 634 = x3 — x4.



95 I Calibrating ROM Nonlinearity (cont.)

NNM displacement backbones at
points slY and .92Y were
compared to experimental data
0 Gap-spring element was selected

Gap-spring element parameters
kpen and xgap were varied to
determine effects and calibrate
model to experimental data

Final parameter values:
• kpen = 7 * 104 N

o xflap = 0.68 mm

Experimental-NNM Backbone Comparison: Cubic Spring Element

k
NL
= 4e10 N/m
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Fig. 8: Cubic/gap-spring element backbone comparison
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96 1 Adding Damping to ROM

•Rayleigh mass and stiffness proportional damping was used to obtain the damping matrix

•Different combinations of natural frequencies and damping ratios were tested in order to identify
the combination that produced results closest to the experimental response

•Based on the results from preliminary stepped sine test simulations, it was determined that the
properties from the combination of mode 1 and mode 3 produced the most accurate damping
coefficients

Table 1: Modal Properties of Pylon-Fixture NOMAD 2019

Mode 1 2 3 4 5

fexp (Hz) 7.25 45.79 78.07 96.30 134.75

fFEA (HZ) 7.23 47.28 80.48 99.89 134.73

% difference 0.41 3.20 3.04 3.66 0.015

iexp (%) 0.12 1.76 0.39 0.95 0.35

(a)

(b)

1

2

-

1

1



97 I Shaker Model

To account for the dynamics of a shaker in virtual experiments, a previously calibrated electro-
mechanical model was utilized

Shaker system equations of motion:
R,

Note:

. •

BL(.x2 x1) Lie/amp — eamp Reiamp

1 (.0b

e + — eamp = 
 edas

k amp a ka

m1:i1 + c1(±1 ±2) k141 — x2) + BL • iamp= O

eanip
amp

eh = BL(i2 — ii)

1712.t2 c1(±2 il) c2 (±2 x3) k1 (X2 x1) k2 (X2 x3)

M.31r3 + C2 — ±2) k2 (X3 — .X2) =

edas

— BL • i amp =

k11

BLiamp

Load cell
x33

Fig. 17: Virtual shaker model

O

= voltage output from data acquisition system (used as the only input to the shaker, wing, pylon model)

eamp = voltage output from amplifier



98 I State-Space Formulation & Substructuring

Wing-pylon equations of motion:

MROMXROM + CROMXROM + KROMXROM + f nl,ROM = 01
State-space representation for shaker, wing, pylon model (unconstrained):

A • k = B • Y -F fnl + C • edas

-1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 040 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0/41x41 0 0 0 0
0 0 0 0 0 0 m1 0 0 0
0 0 0 0 0 0 0 m2 0 0
0 0 0 0 0 0 0 0 m3 0
0 0 0 0 0 0 0 0 0 MROm_90x90

±1

X3i. 2

jamp

eamp

±ROM

11

12

13

1ROM 90x1

Continued
on next
slide

A 'it



99 I State-Space Formulation & Substructuring (cont.)

0 0 0 0 0 0 1 0 0 0 x1

0 0 0 0 0 0 0 i 0 0 x2

0 0 0 0 0 0 0 0 i 0 x3

0 0 0 —Re 1 0 BL —BL 0 0 iamp
0 0 O O —6)b O O O O O eamp

.
0 0 O O O O O O O I41x41 xROM

—k1 k1 O —BL O O —c1 ci. O O ±i
k1 —(k1 + k2) k2 BL 0 0 ci. — (c1 + c2) c2 0 ±2

0 k2 —k2 0 0 0 0 c2 —c2 0 ±3

_ O O O O O —KROM O O O
—CROM-90><90 

±ROM

f 049x1

(—fnl,ROM190><1

fni

• edas

90x1



o10 ctate-Space Formulation & Substructuring (cont.)0

Now we need to substructure the shaker to the wing-pylon. To attach the load cell (x3) to drive point 5 (d5):

Load
cell

Load
L cell

Y =

jamp
amp
q1fi

al
d3
d2
d4
d5

±1
±2

di
d3
d2
d4
d5

1 0
0 1

0
0

0
0

0 0 0 0
0 0 1 0
0 0 0 1
•.
•

•.
•

0 0 0 0
= 0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0
-0 0 0 0

i 90x1

0
0
0

0
0

0
0

•••
•••

0
0 0

••• 0
••• 0
••• 1 0 0 0 ••• 0 0
••• 0 0 0 0 0 ••• 0 0
••• 0 0 0 0 ••• 0
..
.

— 1 0 0 0 ••• 0
• • •

••• 0
. . 0
••• 0
••• 0

••• 0
••• 0

•
•

10 0 0 0
LO 0 0 0

...

• • •

• • •

1
0

o

T

90x88

x11
x2
tamp
eamp

q1fi

Alll
d3
d2
d4 ,
cq_i

f1m11

±2

Cilfi

iill

d1-1
d3
d2
•4
d5 88x 1

Drive
1 point

= [T] • {z}

Drive
point



10 State-Space Formulation & Substructuring (cont.)

Using the substructuring transformation matrix, T , constrain the EaMs in state-space:

Substitute y = T • z and pre-multiply both sides by TT

A • )./ = B • Y + fnl + C • edas

TT AT Z = TTBTz + TT fn1 + TT Cedas

Isolate

= (TT AT)-1TT BT z + (TT AT)-1-TT fn1 + (TT A,N
) 
-

1 1TT Cedas

Az Bnl Bz

± = Azz + Bidfid + Bzedas (constrained state-space representation)



10 State-Space Model Validation

A linear version of the constrained state-space model was verified against the full wing-pylon model
in Sierra through comparing their frequency-response functions (FRFs)

In the frequency domain, the vector of transfer functions Hez between input voltage edas and
output displacements z was defined as:

o Hez = Gal — Az)-1C

o Where C was a column vector with the only non-zero entry corresponding to the input, in this case edas

The transfer function vector Hef between input voltage edas and load cell force fic was defined as:

O H = kef 2 (H ez,x2 — Hez,xdp) + C2 (Hez,..±2 — HUL„-
"A' 

4,
dp 
)

o Where Hez,i = the element of Hez corresponding to DOF i

Thus, the final transfer function lizf between load cell force fic and selected output displacement zs
was:

Hzf= Hez,zs

Hef

1-14. was computed over a range of frequencies and compared to the Sierra-generated FRF



10 State-Space Model Validation (cont.)
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10 Multi-Harmonic Balance Method (cont.)
4

• NNM 2 spanned through a very low frequency range which resided extremely close to the linear modal frequency

• This can easily be overlooked if only a linear analysis is considered thus reinforcing the significance of nonlinear
analyses

•

• A 1:5 internal resonance was identified between NNM 2 and 7 on the wing-pylon ROM which can easily be seen in
the displacement number of harmonics in the plot (c)

NNM 2 remained very close to its linear mode. Additionally, a 1:5

internal resonance was identified 1
1
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10 Goals
8

Use neural networks to augment reduced-order models (ROMs) for
improved prediction

Learn error behavior to allow for future-time error prediction, either
deterministic or statistical

Use real-time ROM augmentation to more accurately simulate and predict
extreme events in physical systems



Problem Description



ii I Physical Problem0

• Euler-Bernoulli bearnL( lm )

• Harmonic forcing air = 0.75m

F = 0.1 sin(1007t) N
.

• Initial displacement prescribed ot 0.5m F ku au

• 10 equidistant 'sensor' locations

• 4 datasets were generated varying
initial conditions and spring
constants

Jii



POD Mode Energy Content

11 Reduced Order Model

Galerkin projection onto low-rank
basis

POD basis generated from
simulations with varying
parameters and initial conditions

10 modes retained for each ROM
basis

Fast integration using implicit
Runge-Kutta m (
each)
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11 ROM Errors
2
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131 Dynamic Prediction Framework

Instead of learning the map4 x(t) ,
learn the map(tn) x(tri+1) •

Often better posed for long time
extrapolation

Easier to characterize
growth/decay/oscillations

We use this framework to learn the
dynamics of the ROM error

vs

1x a (y x)
1

y x(p z) y
1z xy ,3z



Network Architectures



11
5

Recurrent Neural Nets (RNNs) & Long-Short Term Memory
(LSTM)

RNNs with modified structure
which enable them to learn long
term dependencies.

Natural architecture for parsing
sequenced inputs or outputs (or
both).

LSTMs exhibit state-dependent
context; i.e., they can look back in
time a variable number of steps

A

r



i6 The Koopman Operator

Dynamical

isf- x(tn±lOysteftx(tn))

Koopman Operator Koopman

1-c(,o(x(tn)) (p(x(tn+1)) K cliiRMfu-nc (.)

1
x(tn+1) (p-1- (Kcp(x(tn))

Estimating the Koopman operator
generates linear dynamics in right
coordinates, even for nonlinear
systems

1
1

I

I

x(tn+1) (P)T1 (A(P A(x(tn)) I

Koopman eigenfunctions are an
efficient choice of embedding, and have
physical significance (Mezió 2016)



ii Deep Koopman Network
7

Developed by Lusch et al. to
learn Koopman eigenfunctions
and use them for predictions

Full version includes auxiliary
network to account for nonlinear
adjustments to Koopman
eigenvalues corresponding to
continuous spectra

Linear Predictive
„

v

,

A

Autoencoder
Yk Yk+1

K linear

-1

Deep Koopman Network

v

Images from Lusch et



ii
8 

Modified Deep Koopman Network

Our problem is more complex than
those considered in Lusch et al.:

Time dependent forcing (non-
autonomous dynamics)

Varying physical parametek, (c
)

Unknown dynamics, requiring a
priori estimation of parts of
network architecture

r 1

(P-

L

1

Architecture estimated a priori





12
0 LSTM Training
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12 LSTM Results: Linear Spring
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12 LSTM Results: Linear Spring;Varyit
2
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12 I LSTM Results: Nonlinear Spring
3

Nonlinear Spring Sensor 1
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LSTM Results: Nonlinear Spring;Varyiwg
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12 Koopman Results
5

Preliminary training on smooth
sinusoidal time series

Downsampling required to
increase training speed

Extensive hyperparameter tuning
required to train effectively

Numerical stability issues
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12 Koopman Results cont'd
6

The network struggles to learn
true ROM error

Sequential network means we
can't take advantage of
parallelism

All errors start near zero, so the
model has trouble reconstructing
unique trajectories from each IC

R
O
M
 E
rr

or
 

15 

10.

5

0

-5.

-10.

-15-
0

Deep Koopman

20 40 60 80

Time (rescaled)

Predicted Error

— — True Error

100



_
1_

1•

1
II___



12 Conclusions
8

Deep learning is an effective
method for learning and
predicting ROM error at coarse
frequency scales

Well-established architectures
that maximize use of
computational power often scale
and train well

Specialized architecture that aids
in physical interpretability led to
extreme sensitivity to
hyperparameters and long train
times
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Future Work

Investigate sensitivity of training to breadth vs. length of time series for use in
experiment/simulation design

Incorporation of ROM-specific features; i.e., dual-weighted residuals, into network

Implementation with alternate modes of operation; i.e., control, data fusion, etc.

Addition of statistical outputs or Bayesian training/prediction for real time uncertainty
quantification and error statistics

Determine how well error predictions enhance the ability of ROM predictions to
account for extreme eve  

02

Nonlinear Spring Sensor
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