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2 | Fuel Cost if NOMAD was in Albuquerque
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Total Fuel Cost: $40,700
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3 | Hinged Wings — A Compromise
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Fixed wing is a
compromise

Notice less required deflection for
equivalent hinged maneuvers
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4 | Morphing Wings — Nature Motivated

Variable Camber
Mission Adaptive wing

o .

Nature inspires Actual A/C devices




; | Morphing Wings — Not just a Concept

They are flexible, shape-changing and bio-inspired high-lift devices:

v" Reduced fuel consumption
v" Reduced airframe noise

Kinematic
Systems

Compliant




¢ | Kinematic Finger Like Mechanisms

Finger — Like Mechanisms consists of different blocks (connected by hinges and links) moving
with a pre-defined mechanical law and driven by load-bearing actuators

Several connected components exhibit frictional nonlinearity at the interfaces




7 | Importance of Modeling Frictional Interfaces
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B MleOShp/MacrOShp () Microslip ©) Near-Macroslip |
o Introduces hysteresis and amplitude dependent behavior .@ |
[

Jointed Structure

| | | I ]

A Frequency

A Frequency

log(damping ratio)
O D B 00 ]

‘N

log(Displacement Amplitude)
1

log(Displacement Amplitude)

Response
o

0 200 400 600 800 1000

log(Damping Ratio)

/ |
|
|

|
log(Displacement Amplitude)

Conclusion
o

log(Displacement Amplitude)

Full Order Model Reduced Order Model




s | Project Objective

Develop a nonlinear finite element model of an industrial structure to better understand
the nonlinear damping and frequency behavior




Full - Order Modeling with
Quasi-Static Modal Analysis




10 | The Quasi-Static Modal Analysis Process

QSMA of a Full-Order Model /

SM

Nonlinear Preload Analysis
Kx + fNL(x: ) = fpre

A Frequency

Quasi-Static
f, Response
log(Displacement Amplitude)
Linearized Modal Analysis SD
df,; (x, 6 =
K + %) —w?M | ¢, =0 W g
X=Xpre E‘
log(Displacement Amplitude)
SM
Modal Force Application
Kx + fr(x,0) = fore + M¢ra Dynamic analysis of a structure is computationally expensive so we use |
a static analysis
> ~10x increase in speed for a quasi-static case (seconds) vs. static response
R. M. Lacayo and M. S. Allen, “Updating Structural Models Containing case (hourS)
Nonlinear Ilwan Joints Using Quasi-Static Modal Analysis,” Mechanical s . .
Systems and Signal Processing, vol 118, pp. 133-157, 2019 g Dynam]C S]mUlatlon COUld take Upwards Of WeekS

Conclusion

Full Order Model Reduced Order Model




11 | Application to the Morphing Wing

Gravity Load - Test Tip Load - Representative
Condition Operative Condition

Apply QSMA to get frequency and damping curves for these two preload methods




Nonlinear Preload Analysis SM

| Apply Preload on the Structure Kx + fu(5,0) = fore
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13 | Mode Of Interest

164.5 Hz

Gravity Load

Disp Vector [in]
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4.933e+01
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0.000e+00
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Linearized Modal Analysis
+ dfnl (x, 8)

dx

X=Xpre

166.1 Hz

SD
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14 | Gravity Load Vs. Tip Load QSMA
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Interface Reduction using
Multi-Point-Constraints




“Virtual” Nodes

RBAR/RBE3
Elements
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17 | Morphing Wing — Contact Interfaces

Full Order Model Reduced Order Model

Conclusion




18 | Morphing Wing — Spidering Process

Original surface assigned for Contact surface output from Spider created using nodes
contact preload analysis from preload contact surface
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19 | Morphing Wing — Spidering Process




20 | Morphing Wing — Full Model With Multi-Point Constraints
Assigned

Full Order Model Reduced Order Model Conclusion




21 | Rotational Stiffness Sensitivity Study

*Adjust rotational stiffness of the structure to see effect on
the natural frequency of the 2°¢ Mode
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22 | Future Work

*Calibrate Reduced Order Model to match the linear natural

frequencies about the preloaded state

* Apply nonlinear hysteretic elements and update to match the full

order quasi-static frequency and damping curves

*Add hyper elastic compliant skin around the rib for a more realistic

Joint model

model

*Gauge additional reduction techniques on this industrial model




23 | Concluding Remarks

* Applied the QSMA framework on an industrial scale structure
* Utlized two methods for preload (test vs. representative operative condition)

* Both methods were able to generate quasi-static frequency and damping curves

*Developed a spidered reduced order model that can be updated to match the full order model

*These methods have been typically done on bolted connections vs. the pin/hole frictional connections for this model

*High fidelity nonlinear finite element models are key for future successful virtual testing demonstrations. They present several

challenges to make advanced response predictions with confidence.
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| Tools to Capture Joint Nonlinearity — Iwan Element - -

A whole joint model that uses four parameters to characterize the amplitude dependent r q
behavior

Multiple Jenkin’s slider elements in parallel

BRI

The force necessary to cause macroslip

The tangential stiffness of the Jenkins elements (i.e. the joint stiffness
when no slip occurs)

The exponent that describes the slope of the energy dissipation curve

The ratio of the number of Jenkins elements that slip before micro-slip
and then at macroslip
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D. J. Segalman, “A Four-Parameter Iwan Model for Lap-Type Joints,” Journal of ‘
Applied Mechanics, vol. 72, no. 5, pp. 752=760, Sep. 2005.
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27 | Mode 2 Mode Shape GIF
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2 | Presentation Contents

° Introduction

> Model Set-up
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Introduction




| Motivation: How many fasteners!?

° Fasteners are everywhere: from phones to cars to planes

HURLEY, T. AND VANDEMBURG, J., “SMALL

AIRPLANE CRASHWORTHINESS DESIGN GUIDE”

2002.

° Failure can lead to minor inconveniences to major catastrophes
> High-fidelity models of threaded fasteners computationally expensive

> Reduced-order models (ROMs) can be an
effective method to replicate the response

ORTIZ, J., “COMMONLY USED PRELOADING METHODS,” 2019.




35 | Project Goals

> Generate blind predictions for ROMs based on nominal parameters
o Calibrate plastic response of the ROMs to experimental data from collaboration with UNM

° Evaluate the plastic response of intermediate angles using calibrated model
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37 | Fixture Model

° D-rings with holes from 0° — 90° spaced 15° apart

° Fastener held in by bushings

> Model must be defeatured for meshing

o

Removed clevis assembly and detailed features
Webcut half of the fixture geometry on the symmetric plane

Placed clevis rods at each load angle

Used a fine mesh for the bushings and fastener if one was
included




18 | Reduced Ordered Models

“*Spot Weld
“* Applies a force-displacement relationship in
tension and shear to a node-side set pair

“*One-Block Plug

“*Single set of material properties

*¢*Calibrated to tensile data Spot Weld

“*'Two-Block Plug

“*'Two sets of material properties .
“*Tensile region calibrated to tensile data region
“*Shear region calibrated to shear data Region

Region

One Block Plug Two Block Plug




39

Material

° Fixture 4340 Steel
> Young’s Modulus: 30.4e6 psi
> Density: 7.33 g/cc
> Poisson’s Ratio: 0.32
° Yield Stress: 142.7 ksi
> Fastener (A574) Tensile Region
o Effective Young’s Modulus*: 21.1e6 psi
° Yield Stress: 155 ksi
° Poisson’s Ratio: 0.3
o Fastener (A574) Shear Region
o Effective Yield Stress: 90 ksi (~60% of tensile region)

> Rest as Tensile Region

*Effective Young’s Modulus

F Ax ; A1
ZzEL ’ E2=_E1

> Spot Weld Tension and Shear Functions

=—=Tension Function
1000 ====Shear Function
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Calibrated
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40 | Loading and BC

General

> HExperimental loading condition
o Fixed Constraint

o Prescribed Displacement in x
o Symmetry in Y to account for half model

o Surface contacts

Spot Weld
° Rigid surfaces for spot weld

Prescribed
Displacement




Initial Results
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s | Initial Prediction - Shear

Results with 90° Load Angle
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Calibrated Models: Results




Calibrated Results: Tensile and Shear

Results with 0° Load Angle Results with 90° Load Angle
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Intermediate Angles: Results




a7 | Intermediate Angles after Calibration

Results with 15° Load Angle Results with 30° Load Angle
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s | Intermediate Angles after Calibration

Results with 45° Load Angle
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Intermediate Angles
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51 | Concluding Remarks

Spring Model Hardening follows the magnitude of the curve and failure point quite effectively

One Block Plug takes longer to tune but can follow the Load/Displacement of a particular angle

Single-Property Cylinder Model Results
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Introduction




53 | Background and Motivation

*Despite its effect on multiple aspects of structural dynamics, nonlinearity 1s under-considered and often
neglected in industrial design and qualification

*To develop understanding of nonlinear structural dynamics, Seimens Industry Software attempted system
identification on a demo aluminum aircraft (Fig, 1) [1]

*But, dynamics of the full system (wing+pylon+fixture)
were too complex

Solution: Begin with isolated
fixture-pylon structure

Fig. 1: Siemens demo aluminum aircraft [1]



59 | Previous NOMAD Work

*A NOMAD 2019 research group studied the
isolated fixture-pylon structure [2]

*Experiments were conducted on the setup

shown 1n Fig. 2
* Shaker was used to excite fixture-pylon structure

* Data collected through accelerometers

Results:

Experimental data

Basic nonlinear model

Triaxial
Accelerometers

Shaker Load Cell  Pylon Fixture

Connection to Optical Pylon Uniaxial
DAQ, Amplifier Breadboard Accelerometers

Fig. 2: Sandia isolated fixture-pylon test setup



60 | Current Work

The NOMAD 2020 project builds upon the previous results by:

* Analyzing experimental data

*Further developing the nonlinear model of the fixture-pylon assembly
*Calibrating fixture-pylon model against experimental data

*Combining fixture-pylon model with linear model of the wing structure
*Analyzing the fixture-pylon and wing-pylon-fixture models

*Simulating experiments by coupling wing-pylon model to a shaker model

First step: Analyzing fixture-pylon experimental data




61

Experimental Data Analysis

Previous experiments resulted in sine spectra data from accelerometers

s1Y+ Magnitude Response Spectra

s1Y+ Phase Response Spectra
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Fig. 4: Sine spectra phase response
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Fig. 3: Sine spectra magnitude response



&2 | Experimental Data Analysis (cont.)

From test data, we extracted backbone curves

s1Y+ Backbone and Magnitude Response Spectra

4
°*Backbone curves are a useful tool for 0
understanding nonlinear behavior 35 //
*Backbone aligned with peaks of magnitude 30 =
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Fig. 5: s1Y+ backbone curve and magnitude response from sine
spectra experimental data




. Fixture-Pylon Assembly




6« | Fixture-Pylon ROM

*To compare the experimental data to a numerical model, a
linear finite element model was created for the fixture-pylon

assembly using CUBIT

*To reduce the degrees of freedom (DOFs) in the model, a
Craig-Bampton (CB) reduction was run in Sierra SD to
obtain a reduced order model (ROM) [3-4]

o This takes the full model with thousands of DOFs and reduces
it to a more manageable model with only 7 retained DOFs

Virtual Nodes

Drive Point

(virtual nodes, accelerometers, and drive point)

Accelerometer

Reduce the full model to something more manageable:

Full model 2 CB reduction = Linear ROM

Fig. 6: Fixture-pylon CAD assembly

I L | 5



s | Fixture-Pylon ROM (cont.)

*The linear ROM from Sierra

provides the mass and stiffness Add " i t
matrices for the fixture-pylon nonlinear elemen

* Damping matrix is computed
using proportional damping

/mxmﬁ DOWN / \\ \
*To convert the linear ROM to a ' | |

' { 1-D Nonli
nonlinear model, virtual nodes L0fon 'nm/

I\ | 1-D Nonlinear
| [ Element

were tied to the pylon block so
that a nonlinear restoring force

. 1 ThinBeam [— @« Right Block
could be added to the equations | EEEOE
of motion (EOMs) Ry |

' Virtual node _Virtual node
\ I Y
*EOMs of nonlinear dynamic k Rigid Bar Multi | Rigid Bar Muli- /
Point Constraints Point Constraints
system:
. . Fig. 7: Virtual nodes in pylon block
Mx(t) + Cx(t) + Kx(t) + =u
l J
i
Lmear RN Nonlinear restoring force
(Sterra Output) between virtual nodes

(MATLAB)




66 | Nonlinear Normal Mode (NNM) Theory

*For an unforced, undamped system, an NNM is defined as a response that is periodic but not
necessarily synchronous [5-6]

* A multi-degree of freedom system will have multiple NNMs Natural frequency changes

. . with input energy
*NNMs are often illustrated in a frequency - energy plot l

(FEP) (Fig. 8), which shows how a system’s natural frequency
changes with energy input into the system

*Each point along the NNM in the FEP corresponds to a
different time-history response

*Multi-harmonic balance (MHB) is one of several numerical
methods used to compute NNMs

NNMs are computed using MHB and
illustrated in frequency - energy plots Frequency, 1/s

Fig. 8: Frequency - energy curve for 15t NNM of sample system
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67 | Calibrating ROM Nonlinearity

8
8 /
@ . . (o]
Two options were considered for nonlinear elements: L //
€ 4
: : : S
*Cubic spring element gFlg. 9 i , /
* fm(Ax) = kyp(Ax) /
* Parameters: 0
0 0.2 0.4 0.6 0.8 1
° kyp- nonlinear spring constant Displacement
Fig. 9: f. for cubic spring element
5
*Gap-spring element (Fig. 10) 4
< <
() = 0 for Ax < x4qp 5
n - o
kpen(Ax — xgap) for Ax > x4qp 5
£,
* Parameters: 2
(0]
° Kpen- linear penalty spring constant ~
° Xgap- gap width
0
0 0.2 0.4 0.6 0.8 1

Displacement
Fig. 10: f; for gap-spring element




68 | Calibrating ROM Nonlinearity (cont.)

With cubic spring (Fig. 11) and gap-spring (Fig. 12) elements, NNM backbone curves were determined and

compared to experimental data

| | | I I |
s1Y Exp. Backbone s1Y Exp. Backbone
0.015 1|~~~ -s1Y NMM Backbone | |-—--s1Y NMM Backbone
s2Y Exp. Backbone s2Y Exp. Backbone
—-—--52Y NMM Backbone // - —--s2Y NMM Backbone
B [ B
o 001 —— -~ |
© ©
."3 / / e 1 § /
E_ / i _- ol e
E il g
0.005 g —— ==
0
1 1.02 1.04 1.06 1.08 1.1 1.02 1.04 1.06 1.08 1.1
Normalized Frequency Normalized Frequency
Fig. 11: Cubic spring element backbone comparison Fig. 12: Gap-spring element backbone comparison

Selected: Kpen = 7 *10"4 N/m

Gap-spring element Xgap = 0.68 mm




69 | Stepped Sine Validation

A stepped sine test simulation was performed to verify that the gap-spring nonlinearity accurately captures
the nonlinear dynamics in the pylon-fixture ROM in comparison to the NOMAD 2019 experimental results

Input Forcing

Location \

A stepped sine test simulation will verify if the

calibrated ROM is in agreement with the
experimental data

Output Displacement
Location

Fig. 13: Fixture-pylon system with marked
input and output nodes




70 | Stepped Sine Validation (cont.)

Despite some variation in stiffness effects, the simulation results compared relatively well with the
experimental results

Nearly all linear-peak regions occurred at a slightly higher frequency and most nonlinear-peaks were
slightly smaller in magnitude, compared to the experimental results
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Fig. 14: Comparison of results from NOMAD 2019
experiment (a) and stepped sine simulation (b)




71 | Stepped Sine Validation (cont.)

o Despite some variation in stiffness effects, the simulation results compared relatively well with the
experimental results

o0 Nearly all linear-peak regions occurred at a slightly higher frequency and most nonlinear-peaks were
slightly smaller in magnitude, compared to the experimental results

0.02 T T T T T T 0.02 T T T T T T
a b
0.018 ( ) s () 5N 0018 ( ) e ) 5N | 7]
—N =—1N
0.016 . 3N 0016 3N n

=——5N
e TN
=—=8.5N

There was great agreement between the simulation and experimental —

results which suggests that the calibrated ROM was accurate

=——15N
17N | 4
= 20N

7 7.2 74 76 78 g 8.2 8.4 7 7.2 7.4 7.6 7.8 8 8.2 8.4

Frequency (Hz) Frequency (Hz)
Fig. 14: Comparison of results from NOMAD 2019
experiment (a) and stepped sine simulation (b)




. Full Assembly




1 | Wing-Pylon ROM

Drive Points

*Next step: Attach the calibrated pylon to the wing

*Following similar methods as the fixture-pylon model, a linear
finite element model of the next-level wing-pylon assembly was
created

*Craig-Bampton reduction was applied using Sierra SD to obtain
the linear ROM

o DOFs for the accelerometers, virtual nodes, and drive points were
retained

Virtual Nodes

Fig. 15: Wing-pylon CAD assembly

*The calibrated gap-spring element in the pylon block was added
to the linear ROM to describe the nonlinear EOMs Accelerometer

Calibrated gap-
spring element in Nonlinear EOMs

Linear wing-pylon

ROM from Sierra
pylon

\ J

Mx(t) + Cx(t) + Kx(t) frtix(®)} Mx(t) + Cx(t) + Kx(t) + fuix(®)} =u




74 | Wing-Pylon ROM (cont.)

Mode shapes for linear wing-pylon model:

_DispVEC
2.639e+00
1.979e+00
1.320e+00
6.604e-01
9.301e-04

Fig. 16: Mode 1 (7.30 Hz) Fig. 17: Mode 2 (22.20 Hz)

_DispVEC

2.639e+00
1.979e+00
1.320e+00

6.604e-01
9.301e-04

_DispVEC \ _DispVEC
2.639e+00 v 2.639e+00
1.979e+00 \ 1.979e+00
1.320e+00 1.320e+00
6.604e-01 \ 6.604e-01
9.301e-04 * 9.301e-04

Fig. 18: Mode 3 (47.28 Hz) Fig. 19: Mode 4 (49.22 Hz)

Note: mode numbers refer to elastic modes



75 | Multi-Harmonic Balance Method

* The MHB method was utilized to identify NNMs and any possible internal resonances for the
calibrated wing-pylon ROM

*  Mode 2 was of interest because the bending of the wing resulted in bending of the pylon beam
which produced large displacements in the lower pylon block

* Large displacements in the pylon initiated the nonlinear behavior in the gap-spring element

Mode 2 was considered for further investigation
based on the large wing and pylon bending mode
shapes

Fig. 20: Mode 2 (22.20 Hz)




76 | Multi-Harmonic Balance Method (cont.)

*  NNM 2 contained a small frequency shift which remained extremely close to linear mode 2 resonant

frequency

* This can easily be overlooked if only a linear analysis is considered thus reinforcing the significance of

nonlinear analyses

* An internal resonance was identified on a tongue of NNM 2

NNM 2 Frequency-Energy

(@)

2224

223+

Frequency, 1/s
[\
M
M
(R}

221

222 F

~

219+

T

10710 107
Energy

10°

Fig. 21: NNM 2 of the Wing-Pylon Assembly

NNM 2 Frequency-Energy

Frequency, 1/s

22244 |
22242 |
2224 |
22238 |
22236 |
22234 |

32

Fig. 22: NNM 2 with Identified Internal Resonance
and Single Harmonic Points

(b)

100 107
Energy



77 | Multi-Harmonic Balance Method (cont.)

NNM 2 Frequency-Energy

5 5 % a
e A 1:5internal resonance was identified @)

between NNM 2 and 7 on the wing-pylon
ROM,; the red point in (a) is the tongue
of the internal resonance between the

two NNM's

Frequency, 1/s

* The internal resonance can easily be seen
in the displacement time-history (b)
where multiple ratios of 1:5 harmonics
exist

Energy

Displacement Time-History
0.6 . . : — :

* Single harmonic motion exists (c) in
NNM 2 as well which is described by the
magenta point in (a)

displacement
displacemert

NNM 2 remained very close to its linear
mode and additionally contained

L S

-0.6%=

a 1.5 inte]_’nal resonance With NNM 7 _60 0.0‘05 0,61 0.(;15 O(I)2 0.0‘25 0.63 00‘35 0.(IJ4 0.045 0 []_[I;[]S []_EJ‘] [],[]I15 [J.E]E [].[JIQS [].EJB [].[].35 0.04 E].-[]41-5

time time

Fig. 23: Displacement Time-Hitories of Identified Internal Resonance and Single Harmonic Motion



78 | Multi-Harmonic Balance Method (cont.)

* The modal interaction between the NNM's 2 and 7 are depicted in plot (b) where NNM 7 was scaled
down by an integer of 5 and only computed to the 5th harmonic (there are more harmonics and internal
resonances on NNM 7)

* This essentially means when mode 2 is excited mode 7 can experience large displacement amplitude

responses
(a) (b) . (©
NNM 2 and 7 Modal Interaction
23 . y .
NNM 2 2245 1 NNM 2
1/5 NNM 7 224 1/5 NNM 7
225 '
22.35 -
o o » 2237
‘Z" § 22.25 1
222 .
5215 g,‘
o e
2215 |
21 F - 221
_DispVEC 2205 F
2.262e+00
] | 205 : 2}
e : ' . : | ‘
1072 10° 102 104 10° 10!
Energy Energy

Fig. 24: Linear Modes 2 and 7 Mode Shapes Fig. 25: NNM 2 and 7 Modal Interaction Fig. 26 NNM 2 and 7 Internal Resonance Crossing



79 | Multi-Harmonic Balance Method (cont.)

* The modal interaction between the NNM's 2 and 7 are depicted in plot (b) where NNM 7 was scaled

down by an integer of 5 and only computed to the 5th harmonic (there are more harmonics and internal
resonances on NNM 7)

* This essentially means when mode 2 is excited mode 7 can experience large displacement amplitude
responses

(a) (b) (©)

23

NNM 2 and 7 Modal Interaction

NNM 2
1/6 NNM 7

NNM 2
15 NNM 7

If NNM 2 is excited during a simulation or experiment, higher
harmonics can be found in some components of the model due to
the internal resonance, which is critical information to consider

1.132e+00
5.666e-01
1542¢-03 5

102 100 102 10* 10° 10°
Energy Energy

Fig. 24: Linear Modes 2 and 7 Mode Shapes Fig. 25: NNM 2 and 7 Modal Interaction Fig. 26 NNM 2 and 7 Internal Resonance Crossing



V. Virtual Experiments




81 | Shaker Model

To account for physical limitations of the shaker, a previously calibrated electro-mechanical shaker model
was substructured to the wing-pylon ROM for simulated experiments using the force appropriation method

(b)

| I nad ro||

(@)

€amp )

ep = BL(x; — x1)

Fig. 27: Virtual shaker model (a) and
wing-pylon finite element model (b)

Note: Shaker input voltage is the only input to the substructured shaker, wing, pylon system




22 | Force Appropriation Method

*Phase lag quadrature criterion: A single NNM is isolated if the structure vibrates with a phase lag of
90° with respect to the input signal

*Force appropriation testing relies on the phase lag quadrature criterion

° The structure is excited at different forcing frequencies until a 90° phase difference is achieved

> NNMs can be identified one at a time using this method

*Simulated force appropriation experiments were performed for the wing-pylon assembly
* A controller varied the frequency of the shaker input voltage until quadrature was achieved

* The amplitude of the input voltage was then increased and the process repeated; thus constructing the
frequency-energy plot (FEP) for NNMs of interest

Fig. 28: Block diagram of force appropriation testing



3 | Force Appropriation Method (cont.)

a (b)
(@) Input-Output Phase Difference j63 Frequency-Energy Plot
130 T T T T T T T o ! ! ! :
MHB
— Force Appropriation
120
102k
110 |
& 10'f
o 100F .
) B
= I
‘o )
= Wy S 100}
— c s
(m) i
% 5
m 80 4 |
)
= 10tk
10| . i
2L J\/
60 i 10
50 | L | | ) & L L 1 |
a 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1073 : ] L ;
s 7 7:5 8 8.5 el 9.5
! Frequency, 1/s

Fig. 29: NNM 1 phase lag quadrature quality (a) and FEP (b)
Further work needs to

be conducted to achieve
better quadrature




V. Conclusions




% 1 Results, Conclusions and Future Work

Results

* NNMs were successfully characterized using computational methods such as force appropriation and multi-harmonic
balance

* Models were accurately validated against experimental data and finite element software

* It was shown that the study of NNMs can yield insights into nonlinear systems, such as the presence and behavior of
internal resonances as well as the frequency-energy dependence of nonlinear modes

* 'To simulate a physical experiment, a calibrated shaker model was substructured to the wing-pylon model

Future Work:

* Fine-tune simulation model to accurately simulate second and higher modes

* Experimental testing of the physical wing-pylon assembly to validate NNMs and internal resonances between
different combinations of modes

* Further investigations can be conducted on the effect of other system parameters such as wing length




THANK YOU
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9 | Background and Motivation

*Despite its effect on multiple aspects of structural dynamics, nonlinearity 1s under-considered and often
neglected in industrial design and qualification

*Further development of experimental and computational identification techniques is essential to
understanding nonlinear structural dynamics

*To this end, a previous Sandia research group studied an
isolated pylon structure and developed a nonlinear model
to replicate the experimental response [1]

* Pylon design originated from a demo aluminum aircraft (Fig. 1)
created by Seimens Industry Software [2]

*Goals included:

* To understand how localized nonlinearities can influence the
global modes of a system

LN

* 'To investigate how nonlinearity in engine pylon subassemblies

could be positively exploited Fig. 1: Siemens demo aluminum aircraft [2]



91 | Overview of Current Work

*NOMAD 2019 experiments were conducted
on an i1solated pylon mounted to a rigid fixture Shaker Load Cell Pylon Fixture

(Fig, 2)

*This study builds upon the previous results by:

Triaxial
Accelerometers

> Developing a nonlinear Craig-Bampton (CB)
reduced order model (ROM) for the pylon-

fixture assembly

> Applying nonlinear normal mode (NNM) theory
to the pylon-fixture ROM

o Identitying pylon-fixture nonlinearity by
comparison with experimental data

ROM of the wing structure DAQ, Amplifier Breadboard Accelerometers
° Simulating nonlinear force appropriation Fig. 2: Sandia isolated fixture-pylon test setup

experiments by coupling wing-pylon ROM to a
calibrated electromechanical model of a shaker



92 | Preliminary Data Analysis

s1Y+ Sine Spectra Phase Reponse

*Previous experiments on the fixture-pylon 0 By

system yielded complex sine spectra data at I

accelerometer locations s1Y+ and s2Y- for a

series of forcing amplitudes B ——— I —
*To determine frequency backbones, data was

05N u
1N
3N

separated into phase and magnitude
components to locate quadrature points for

Phase

each amplitude (Fig. 3) 50 SN
7N
° Quadrature: The point where input-output phase 85N
) . . . -100 10N u
difference = 90°. Here, damping and input forces 12N
are balanced 150 oL
20N
— — — ~Quadrature
-200 :
7 7.2 7.4 7.6 7.8 8 8.2

Frequency (Hz)

Fig. 3: Sine spectra phase response, values closest to quadrature marked




93 | Fixture-Pylon ROM (cont.)

*Using the mass and stiffness matrices from the CB ROM, the nonlinear, undamped equations of
motion with no external force were written as:

MgromXrom + KromXrom *+ fru = 10}
o Where fpis the conservative nonlinear restoring force (0 at all DOFs except virtual nodes)

*The NNMs of this model were calculated using the multi-harmonic balance (MHB) method, which
represents the approximate NNM solution as a Fourier series [5]:

Xpoy () = % + YN [s¥ sin(kwt) + cFcos(kwt)]

o Where €%, s¥. and ¢¥ are Fourier coefficients
0’°k> k

*These Fourier series were converted to a set of nonlinear algebraic equations and solved numerically to

obtain a branch of predicted NNM solutions [6-7]




94 | Calibrating ROM Nonlinearity

Two options were considered for the nonlinear elements between the pylon and pylon blocks
o Cubic spring element, dependent on interface points x; (pylon) and x5 (block)
° Force: fiy, (X1, %2) = kyy (2 — x1)°
o Potential energy: PEy; (xq,%,) = %kNL (x, — x1)*

o Where ky;, was the nonlinear spring constant of the cubic spring

o Gap-spring element, dependent on interface points X4, X3 (pylon) and X3, x4 (blocks)
kpen (612 - xgap) fOT 612 > Xgap
> Force: fgap(x1,%2,%3,%4) = Kpen (834 — Xgap) FOT 834 > Xgap

0 otherwise

1 2
Ekpen (512 - xgap) fOT 512 > Xgap

o Potential energy: PE,,(x1, %5, X3,%,) = {1 2
gy gap \X1, X2, X3, Ekpen((Sgll, —xgap) for &34 > Xgap

0 otherwise
o Where:

° kpen was the linear spring constant of the penalty spring
° Xgap was the gap width on either side of the pylon

° 01 = X1 — Xy

o

834 = X3 - X4.




Calibrating ROM Nonlinearity (cont.)

Experimental-NNM Backbone Comparison: Cubic Spring Element Experimental-NNM Backbone Comparison: Gap Element
kNL= 4e10 N/m k =7e4dN/m,x =0.68mm
pen gap
NNM displacement backbones at £1Y 56 Bacione |t 1Y E aceore
0.012 |~~~ 7STY NMM Backbone g 0.016 = — — -s1Y NMM Backbone
. : 2Y Exp. Backb 2Y Exp. Backb
p()lnts S 1 Y and S 2 Y were <Y NMM Backsons // 0.014 H——~ 22V NMM Backbon R el
. 0.01 = —— i
compared to experimental data : e T oo ——
< 0008 = @ 001 2= =T
s kel L— 55 S _1=== /7, =
o Gap-spring element was selected E P ot E e e
+— S 2 0006 = — 2 0008 e
< | == < | ="
g _de® 0.006 (=
0.004 | =
17T _-4+-77 0.004
0.002 = :: == —
Y- \
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Normalized Frequency Normalized Frequency
Fig. 8: Cubic/gap-spring element backbone comparison
Experimental-NNM Backbone Comparison (s1Y+): Gap Element, xgap =1 mm Experimental-NNM Backbone Comparison (s1Y+): Gap Element, kpen = 6ed
{ 0.018 T T T T T T . T T 0.018 T T " . T T T T T =
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k d % . d t 0.016 0.016 | .
an €re varie O
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determine effects and calibrate ootz votz
) E E
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Lé- 0.008 %;L 0.008
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Fig. 9: Effect of gap element parameters




% | Adding Damping to ROM

*Rayleigh mass and stiffness proportional damping was used to obtain the damping matrix

*Different combinations of natural frequencies and damping ratios were tested in order to identify
the combination that produced results closest to the experimental response

*Based on the results from preliminary stepped sine test simulations, it was determined that the
properties from the combination of mode 1 and mode 3 produced the most accurate damping

coefficients
Table 1: Modal Properties of Pylon-Fixture NOMAD 2019 (@) L B i
Wi "
Mode 1 2 3 4 5 [5&] :1 [7?1
< ~' 5
Foxn () 725 | 4579 | 78.07 | 9630 | 134.75 & - i "
— J
Frea (Hz) 723 || 4728 | 8048 | 99.89 | 134.73 | Wj |
% difference 0.41 3.20 3.04 3.66 0.015

Loxp (%) 012 | 176 | 039 | 095 | 035 (b)




97 | Shaker Model

To account for the dynamics of a shaker in virtual experiments, a previously calibrated electro-
mechanical model was utilized
X4 Load cell
Shaker system equations of motion: AN X2 - |
R,
€amp )
1 W} lamp

—@gmp T 7— € =e
ka amp ka amp das

ep = BL(X2 — X1)
mlil + c4 (x1 — xz) + k1 (x1 — xz) + BL - iamp= 0 Fig. 17: Virtual shaker model

myX; + ¢1(ky — xq) + c2(%2 — x3) + k1 (x2 — x1) + kp(x2 —x3) —BL - igpmp=10
Mm3¥3 + (k3 — X2) + ka(x3 —x2) =0

Note: egqs = voltage output from data acquisition system (used as the only input to the shaker, wing, pylon model)

€amp — voltage output from amplifier



9 | State-Space Formulation & Substructuring

Wing-pylon equations of motion:

MgpomXrom + CromXrom + KromXrom + frnirom = 10}

State-space representation for shaker, wing, pylon model (unconstrained):

A'}":B'y-l'fnl"l'c'edas

90x90

1 0 0 0 0 0O 0O 0 0 0
010 0 0 O0 0O 0 0 0
001 0 0 O 0O 0 0 0
000 L O O O 0 0 0
000 0 1 O 0O 0 0 0
0 00 0 0 Ijyegy O O O O
000 0O O m 0 0 O
000 0 0 O 0 my 0 O
000 0 O O 0 0 m 0
000 0 0 O 0 0 0 Mgy

il

A

.
A

~"

Continued
on next
slide



99 | State-Space Formulation & Substructuring (cont.)

- 0 0 0 0 0 0 1 0 0 0 FX1
0 0 0 0 0 0 0 1 0 0 X
0 0 0 0 0 0 0 0 1 0 X
0 0 0 —-R, 1 0 BL —BL 0 0 Lamp
0 0 0 0 —wp 0 0 0 0 0 €amyp
=l o 0 0 0 0 0 0 0 0 Iyixar "\ Xrom (
—ky k, 0 —-BL O 0 —cq Cq 0 0 X1
kl _(kl + kz) k2 BL 0 0 C1 _(Cl + Cz) Co 0 xZ
0 k, —k, 0 0 0 0 Cy —c, 0 X3
0 0 0 0 0 —Kpoy O 0 0 —Cromlogroy “XROM/ 90x1
\ Y J \ v J
B 14
049><1 04X1
+ {_f } + kg " €das
nl,ROM 90x1 085><1 o
{ Y J { J

fnl C



18 State-Space Formulation & Substructuring (cont.)

Now we need to substructure the shaker to the wing-pylon. To attach the load cell (x5) to drive point 5 (d5):

\
Load
cell
0O 0 0 O 0 O
0O 0 0 O 0 O
0O 0 0 0O 00]\
0O 0 0 O 0 O :
0 0 0 0 0 0 Drive
i g . /pomt
Y =9 . =10 0 0 0 -« O o 4 | = [T]- {2}
O 0 0 0 - 0
/’[0000---0
O 0 0 0 - 0
Load | — 00 0 0 — 0
cell SR
0 00 0 -~ 0 Drive
0000 0 90x88 /point
\ ' |
T 88X%X1
| J

/ 90x1 Y



"9 | State-Space Formulation & Substructuring (cont.)

Using the substructuring transformation matrix, T, constrain the EOMs in state-space:
Substitute Y = T - z and pre-multiply both sides by T

A-y=B-y + fu+C-eqqs

TTATz =TT"BTz + TTf,; + TTCeyys

Isolate z

z = (TTAT) 'TTBTz + (TTAT) 'T7 fo, + (TTAT)1T7 Ceqqs
L J \ J \ J
! | Y

Az Bnl Bz

* z=A,z + By fnu + Bs€qas (constrained state-space representation)




"9 | State-Space Model Validation

A linear version of the constrained state-space model was verified against the full wing-pylon model
in Sierra through comparing their frequency-response functions (FRFs)

In the frequency domain, the vector of transfer functions H,, between input voltage €445 and
output displacements Z was defined as:

° H,, = (iwl — A,)"1C

> Where € was a column vector with the only non-zero entry corresponding to the input, in this case €445

The transfer function vector H,s between input voltage €445 and load cell force fj. was defined as:

° Hef = k; (Hez,xz - Hez,xdp) + C (Hez,y'cz - Hez,irdp)
> Where H,,; = the element of Hg, corresponding to DOF /

Thus, the final transfer function H,¢ between load cell force f;. and selected output displacement zg
was:

H,¢ was computed over a range of frequencies and compared to the Sierra-generated FRF



10 | State-Space Model Validation (cont.)

. %1073 Magnitude FRF Comparison (Drive Point 1, Output at s1) ° 5 Phase FRF Comparison (Drive Point 1, Output at s1)
T - T
(a) Sierra (b) Sierra
— — — - State-Space ~ — — — - State-Space
6 3 —
|
\
|
|
5 25
g4 ; 2
3 5 & T ‘ |
8 . g : |
3 1.5 iall | ‘
2 I |
] |
1 0.2 / :
1
2 1 i 94 ) :
| l
v 0 l
‘ 75 8.5 |
1 : , , ) 05 : ]t
21. : \ L : 224 | 226 228 | 23 K
‘ )
o =L il S 0 —
6 8 10 12 14 16 18 20 22 24 6 8 10 12 14 16 18 20 22 24
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Fig. 18: Magnitude (a) and phase (b) FRF comparison between Sierra and
constrained state-space model




Multi-Harmonic Balance Method (cont.)

NNM 2 spanned through a very low frequency range which resided extremely close to the linear modal frequency

This can easily be overlooked if only a linear analysis is considered thus reinforcing the significance of nonlinear
analyses

A 1:5 internal resonance was identified between NNM 2 and 7 on the wing-pylon ROM which can easily be seen in
the displacement number of harmonics in the plot (c)

NNM 2 remained very close to its linear mode. Additionally, a 1:5

internal resonance was identified
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" Goals

e Use neural networks to augment reduced-order models (ROMSs) for
Improved prediction

e Learn error behavior to allow for future-time error prediction, either
deterministic or statistical

e Use real-time ROM augmentation to more accurately simulate and predict
extreme events in physical systems



Problem Description




't 1 Physical Problem

e Euler-Bernoulli beami(= 1m )
e Harmonic forcing at = 0.75m

e Initial displacement prescribed at= 0.5m
e 10 equidistant ‘sensor’ locations

e 4 datasets were generated varying

initial conditions and spring F

constants

F' = 0.1sin(1007t) N




"1 Reduced Order Model

e Galerkin projection onto low-rank
basis

e POD basis generated from
simulations with varying
parameters and initial conditions

e 10 modes retained for each ROM
basis

e Fast integration using implicit
Runge-Kutta m~20.5ss (
each)

Relative Energy Content

POD Mode Energy Content

[¢)
107° ; ....
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)% e
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" | ROM Errors

True vs. ROM at x=70 cm (Nonlinear)
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"1 Dynamic Prediction Framework

Instead of learning the map- z(t)
learn the map:(¢,,) — z(tn+1) -

e Often better posed for long time
extrapolation

e Easier to characterize
growth/decay/oscillations

We use this framework to learn the
dynamics of the ROM error




Network Architectures




"' 1 Recurrent Neural Nets (RNNs) & Long-Short Term Memory

(LSTM)

e RNNs with modified structure
which enable them to learn long
term dependencies.

e Natural architecture for parsing
sequenced inputs or outputs (or
both).

e LSTMs exhibit state-dependent
context; i.e., they can look back in
time a variable number of steps




" | The Koopman Operator

Dynamical

Koopman Operator
Ko(z(tn)) = o(x(tnt1))

!

z(tn1) = @ (Ko(2(tn))

Estimating the Koopman operator
generates linear dynamics in right
coordinates, even for nonlinear
systems

2 (tn s 19ystefi(z () \

Koopman |

K BigenTuachops (-)

Z(tnt1) = 05 (Apa(z(tn)) |

Koopman eigenfunctions are an I
efficient choice of embedding, and have
physical significance (Mezi¢ 2016)




Deep Koopman Network

e Developed by Lusch et al. to
learn Koopman eigenfunctions
and use them for predictions

e Full version includes auxiliary
network to account for nonlinear
adjustments to Koopman
eigenvalues corresponding to
continuous spectra

Linear Predictive

Yk Y

K linear

Autoencoder

Output Xg41
e

k+1

Deep Koopman Network

H

Yk

YEk+1

Xk+1
(P_l

Images from Lusch et



"' 1 Modified Deep Koopman Network

Our problem is more complex than
those considered in Lusch et al.:

=
w

/IRE N

e Time dependent forcing (non-
autonomous dynamics)

|
e Varying physical parametefs, ¢
)
Eri]

e Unknown dynamics, requiring al
priori estimation of parts of \ - -

network architecture Architecture estimated a priori



Results




21 LSTM Training

MSE loss

0.0175 -

0.0150 +

0.0125 -

0.0100 +

0.0075 H

0.0050 -

0.0025 +

0.0000 -

Predicts error time series given ROM
displacement time series

Very fast training (~2s per epoch)
Completely agnostic to parameter and
forcing dependence
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12 | LSTM Results: Linear Spring

s Linear Spring Sensor 1 Linear Spring Sensor 2
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Parameterized Linear Spring Sensor 1
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LSTM Results: Nonlinear Spring

Nonlinear Spring Sensor 1
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12 | LSTM Results: Nonlinear Spring;Varyiuag
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21 Koopman Results

e Preliminary training on smooth
sinusoidal time series

e Downsampling required to
Increase training speed

e Extensive hyperparameter tuning
required to train effectively

e Numerical stability issues

ROM Error

Linear Predictive Autoencoder

T T T T T T
o 10 20 30 40 50

Time

Deep Koopman Network

&
L

ROM Error

-
=]

1 I I 1 T 1 I 1
00 25 30 75 10.0 125 15.0 175

Time

Predicted Errorl
True Error

I D e -



21 Koopman Results contd

Deep Koopman PredictedError
e The network struggles to learn 15

true ROM error 4
10 N
e Sequential network means we
can’t take advantage of
parallelism

ROM Error

e All errors start near zero, so the
model has trouble reconstructing
unique trajectories from each IC

-15
0 20 40 60 80 100
Time (rescaled)
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12 Conclusions

e Deep learning is an effective
method for learning and
predicting ROM error at coarse
frequency scales

e Well-established architectures
that maximize use of
computational power often scale
and train well

e Specialized architecture that aids
In physical interpretability led to
extreme sensitivity to
hyperparameters and long train
times

>

Linear Predictive
Autoencoder

\Lev‘eragjng Qomlputaltionelll Po‘wer‘

Deep Koopman
P P

Physical Interpretability
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1(3) Future Work

Investigate sensitivity of training to breadth vs. length of time series for use in
experiment/simulation design

Incorporation of ROM-specific features; i.e., dual-weighted residuals, into network
Implementation with alternate modes of operation; i.e., control, data fusion, etc.

Addition of statistical outputs or Bayesian training/prediction for real time uncertainty
quantification and error statistics

Determine how well error predictions enhance the ability of ROM predictions to
account for extreme eve .- —

TFiree Domain
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