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Deep Kernel Bayesian Optimization

Abstract

Bayesian optimization using Gaussian processes
(GPs) is a well-established framework that is
widely studied both theoretically and in applica-
tions. One major design decision that often con-
fronts the use of GPs is the choice of kernel func-
tion, which can greatly impact the performance
of the resulting Bayesian optimization approach.
In this paper, we explore the use of deep kernel
learning to automatically learn a kernel function
“on-the-fly”” during Bayesian optimization. We in-
troduce Deep Kernel Bayesian Optimization (DK-
BO), a general framework for combining deep neu-
ral networks with Bayesian optimization, and in-
vestigate different neural network structures, ker-
nel choices, acquisition functions, and posterior
sampling methods. Intuitively, DK-BO can learn
a kernel (and its corresponding dual feature map)
that is lower dimensional than conventional RBF
kernels while still retaining flexibility, thus leading
to faster convergence. We demonstrate that DK-
BO offers significant performance improvements
over using RBF-based GPs on multiple real-world
datasets and generalizes well with relatively little
tuning.

1 INTRODUCTION

The optimization of an unknown function that is expensive
to evaluate is a common problem in many domains. Exam-
ples include material design [Fleischman et al., 2017]], pro-
tein design [Romero et al.,|2013], clinical therapy optimiza-
tion [Sui et al.,2017], controller optimization Berkenkamp
et al.|[2016], personalized recommender systems [L1 et al.}
2010], hyperparameter tuning [Snoek et al., | 2012], amongst
many others. Since the goal is to ultimately arrive at the
best action or setting of the unknown function, the under-

lying optimization problem often requires reasoning about
uncertainty in order to arrive at effective algorithms.

A popular paradigm for framing the above optimization chal-
lenge is Bayesian optimization [Frazier,|2018], whereby one
posits a Bayesian prior over the unknown objective func-
tion. The most widely used prior distributions are Gaussian
processes (GPs) [Rasmussen and Williams, [2006]. A key
quantity of interest is how flexible the prior distribution is,
which in a GP corresponds to how flexible its kernel function
is. More flexible distributions typically require more sam-
ples to yield sharp posteriors with low uncertainty, leading
to slower convergence. However, less flexible distributions
may not properly model the application, leading to conver-
gence to a suboptimal solution. Designing a suitable kernel
for Gaussian processes is a notoriously challenging problem
[Duvenaud et al.,[2013], which typically requires significant
trial-and-error. In many cases, one simply resorts to using a
generic high-capacity kernel such as RBF or Matern.

In this paper, we propose Deep Kernel Bayesian Optimiza-
tion (DK-BO), in which we integrate the recent advances
in deep kernel learning [Wilson et al.| 2016] with BO to
automate the laborious process of kernel design. Our ap-
proach learns a kernel function “on-the-fly” during Bayesian
optimization. We design an acquisition function based on
Thompson or posterior sampling [Chapelle and Li, 2011,
Russo and Van Roy, 2014] whereby we sample both the
(deep) kernel and the objective function from the subse-
quent GP posterior (from the sampled kernel). Intuitively,
one can view DK-BO as learning a kernel (and its corre-
sponding dual feature map) that is lower dimensional than
conventional RBF kernels while still retaining flexibility,
thus leading to faster convergence without necessarily com-
promising optimality. We demonstrate the advantage of DK-
BO with challenging real-world adaptive experiment design
tasks in material science and protein engineering.
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2 BACKGROUND AND RELATED
WORK

2.1 GAUSSIAN PROCESSES

A Gaussian process (GP) [Rasmussen and Williams, 2006]]
models an infinite collection of random variables such that
each finite set has a joint Gaussian distribution specified
by its mean and covariance, or kernel function. GPs are the
favored model for BO as they have a closed form formula for
posterior inference. The kernel influences the prior with the
radial basis function (RBF) kernel, k(z, ') = exp(—~||x —
2’||?), and the linear kernel, k(z,2’) = x - 2/, being two
popular choices.

Custom kernel design is often necessary when standard
kernels don’t perform well, which is not uncommon when
trying to optimize complex objective functions and/or data
sets with many features. Kernel design for GPs is very diffi-
cult and is often an iterative tuning process [Duvenaud et al.,
2013], which is not particularly conducive to real world
adaptive experiment design where we’d like to apply BO
and have it work without using up expensive queries to tune
the model.

2.2 DEEP KERNEL LEARNING

Deep kernel learning [Wilson et al.,2016] uses a deep neural
net (DNN) to extract a meaningful embedding upstream of
GP inference. DKL combines a DNN with a standard GP
model and base kernel and offers an advantage over GPs
in that DNNs are capable of being more expressive and
thus can learn better representations. We can jointly learn
the DNN weights and hyperparameters of the kernel by
differentiably optimizing the log likelihood loss function.

There has recently been an increase interest in combining
deep learning with BO. |Li et al. [2020] uses deep learn-
ing for multi-fidelity BO by appending the lower fidelity
outputs to the higher fidelity inputs in order to learn some
correlation. However, it does not address the more com-
mon single-fidelity BO case nor utilize deep kernel learning.
Wistuba and Grabocka [[2021]] uses deep kernel learning to
do effective transfer learning for few-shot BO and shows
significant performance improvements over standard hy-
perparameter optimization methods. This is a testament to
DKL’s potential in a very relevant but specific domain. We
aim to provide a more general framework in this paper.

2.3 BAYESIAN OPTIMIZATION

Bayesian optimization is a popular framework used for adap-
tive experiment design problems when evaluations are ex-
pensive. It consists of training a model (usually a GP) and
choosing the next point to query by optimizing the model

with respect to an acquisition function. This is repeated with
an updated posterior until the budget is exhausted or con-
vergence. Example acquisition functions include GP-UCB
[Srintvas et al., 2009], entropy search [Hennig and Schuler,
2012], predictive entropy search [Hernandez-Lobato et al.,
2014] and max-value entropy search [Wang and Jegelka,
2017].

Despite the success of BO in many domains, it is largely
limited to problems of moderate dimension. Scaling BO to
higher dimensional problems presents a difficult challenge
because as the number of dimensions in the input space
increases, the amount of queries needed to attain sufficient
coverage of the domain increases exponentially. Several
recent works tackle this challenge from different perspec-
tives. Kandasamy et al.|[2015] and |Djolonga et al. [2013]
assume a high dimensional function has an inherent low
dimensional structure and design algorithms to identify the
low dimensional subspace. [Wang et al. [2016] uses ran-
dom projections to reduce the dimensionality. Our DK-BO
provides another viable path to automatically identify low
dimensional subspace via a DKL model.

2.4 POSTERIOR SAMPLING

Thompson sampling (TS) is used as a Bayesian acquisition
function that treats the model’s posterior like a distribution
and chooses a point to query proportional to the probability
that the point is the optimizer of the unknown objective func-
tion. It has been applied in parallel setting [Kandasamy et al.|
2018] and federated setting [Dai et al., 2020]. Efficiently
drawing a function sample from a general GP posterior re-
mains challenging as the complexity scales cubically with
the number of queries. Recent work by |Wilson et al.|[2020]
presents a method to reduce the complexity to linear time
in exchange for sampling from an approximate posterior.
For DK-BO, we sidestep this challenge by using GPs with
a linear kernel which admits a simple and efficient poste-
rior sampling method since they are equivalent to Bayesian
linear regression models [Duvenaud, [2014].

Monte Carlo dropout (MC dropout, MCD) is a posterior
sampling method [[Gal and Ghahramani, 2016] that extends
dropout, a commonly used regularizer for training neural
networks. Dropout is a common practice for avoiding over-
fitting by zeroing neurons with some probability p during
neural network training [[Srivastava et al.,|2014]. At infer-
ence time, MC dropout extends this by sampling from the
network weights in the same manner and making all model
predictions with this sample. |Gal and Ghahramani| [2016]
show that MC dropout can be interpreted as sampling a
model from an approximate posterior from a deep GP model
whose structure depends on the neural network layers. As a
result, one could obtain predictive uncertainty by drawing
multiple posterior samples and obtain a predictive distribu-
tion instead of a single point estimation given by a typical



neural network model. In DK-BO, we show that combining
MCD with TS is an effective acquisition strategy.

3 PROBLEM STATEMENT

Black-box Function Optimization. We consider the gen-
eral problem of optimizing a function f : X — R with
query access only, i.e., we can obtain information about
f only through (noisy) function evaluations f(x) + € for
x € X and € ~ N(0,02). Our goal is to maximize f with
iterative function evaluations. For applications in adaptive
experimental design, each function evaluation call can be
expensive. For example, the scientist might need to synthe-
size a new protein in the lab in order to measure a chemical
property. As a result, we would like to optimize f with a
small number of function evaluations.

Evaluation Metrics We measure the performance of an
optimization algorithm with simple regret, which is a natural
quantity measuring the gap between the value of a global
optimum and that of the best solution found so far. Specifi-
cally, if * = argmax,cx f(z) and we have queried f at
1, Ts,--- , 2 so far. Then the simple regret at round ¢ is
defined as 7, = f(x*) — maxy<;<¢ f(z;), which measures
the gap between the best global design and the best design
we find so far. Ideally, we want r; to converge to 0 as fast as
possible so we can find an approximate global maximizer
with a small number of function evaluations.

4 DEEP KERNEL BAYESIAN
OPTIMIZATION

We now present a general deep kernel Bayesian optimization
(DK-BO) framework. The core contribution is to substitute
standard GP models with deep kernel models [Wilson et al.}
2016] in the Bayesian optimization process. With the intro-
duction of a more expressive distribution model, there are
associated design decisions related to model updates and
acquisition function optimization.

4.1 DEEP KERNEL LEARNING

Deep kernel models [Wilson et al.,[2016] are compositions
of deep neural networks with kernel methods to harvest
the representation learning power of neural networks while
maintaining the non-parametric property. A standard GP
model represents a distribution over functions with the spec-
ification of a mean function p(x) and a kernel (covariance)
function k(x, z) for inputs z,z’ € X. Deep kernel mod-
els use a deep neural network g to first transform the input
feature into an embedding space, so the mean and kernel
function become p(g(x)) and k(g(x), g(x')), respectively.
Wilson et al.|[2016] observe that one can jointly learn the

Algorithm 1 Deep Kernel Bayesian Optimization

1: Imput: a function f, a parameter space X', a budget B, an
initialization budget b for fitting a starting model
2: Sample b points from X uniformly at random and query f at
those locations
Fit a deep kernel model on the b points
foric=b+1,--- ,Bdo
Formulate an acquisition functiona : X — R
Find z; = arg maxzex a(x)
Query f at z; and receive f(x;)
Update the deep kernel model with the new data point
end for

R A A

neural network parameters as well as the kernel hyperpa-
rameters in an end-to-end fashion.

4.2 DEEP KERNEL BAYESIAN OPTIMIZATION

Algorithm [T provides an overview of the deep kernel
Bayesian optimization framework. It follows closely the
standard Bayesian optimization loop while substituting a
standard GP with a deep kernel model. This modification
introduces additional flexibility at the acquisition function
formulation step (Line 5). More concretely, Gal and Ghahra-
mant [2016] develops a method to draw posterior samples
from a trained neural network with the technique of Monte-
Carlo dropout. A natural question to ask is: can we incorpo-
rate this distributional view with existing sampling-based
acquisition techniques, e.g., Thompson sampling? In Sec-
tion[5, we provide a formal look at the implication of such
combinations.

4.3 ACQUISITION FUNCTION OPTIMIZATION

Once we have computed an acquisition function, we need
to maximize it to find a new candidate query. Regardless of
the specific form of the acquisition function (e.g., posterior
sampling and upper-confidence bound), it is a mapping a
from the input domain & to some real value. If the domain
is discrete, such as the case when designing proteins as a
sequence of amino acids, the maximization process can be
done by enumerating all possible input values. If the domain
is continuous, the end-to-end differentiability enjoyed by
the deep kernel model is also applicable to a(x). We could
use gradient descent for optimization to obtain local optima.
Practically, automatic differentiation tools such as PyTorch
[Paszke et al.|[2019] make this procedure easy to implement.
As a could be non-convex, repeated random restarts can be
used to improve the optimization outcome.



5 THEORETICAL DISCUSSION &
INTERPRETATION

In this section, we seek to analyze the effect of combining
Monte-Carlo dropout in neural network with Thompson
sampling in posterior.

DKL with Dropout as Variational Inference on Deep
GP Posterior. In the following, we show that training
a DKL model with dropout applied before each weight layer
is equivalent to an approximation of a variational approxima-
tion to a deep Gaussian process [Damianou and Lawrence)
2013] by extending the analysis in |Gal and Ghahramani
[2016] to DKL.

Within a DKL model with L feedforward layers, assume
weights for each layer W; € RE>XKi-i Let W =
{W1, Wy, .- W} denote the neural network weights.
We also implement dropout for layer ¢ with probability p;.
Finally, (u, k¢) denote the mean and kernel function for the
last GP layer, 6 are hyperparameters for a kernel function,
e.g., length scale for a RBF kernel. The analysis in |Gal and
Ghahramani| [2016] defines a deep GP with L layers and a
covariance function defined with respect to layer weights.
For a DKL model, we extend such a deep GP with an extra
GP layer. Next, we briefly describe the connection between
training DKL with log-likelihood loss and approximating
the posterior of a deep GP model.

Given n observations (X,Y) = ({z; }_,, {yi},), we are
interested in the posterior predictive distribution at a new
point z,

p(yle, X, Y) = / plyle, W, 0)p(W, 0|X, Y)dWd6

(1)
p(ylz, W, 0) = N (y; u(2), ko (2, 2)) 2)

where & = f(z, W) is the embedding after the neural
network layers. The notation in Equation [Z denotes that
y ~ N3z, W), kg (3, W), §(z, W))). The poste-
rior distribution p(W, 8|X,Y) is intractable and we wish
to approximate it with a tractable distribution ¢(W,#9).
For simplicity, we assume g decomposes to a product of
q(W)q(0). Following the same treatment for dropout in
Gal and Ghahramani| [2016], we define (W) as:

. K-
W, =M, - diag([z ;];21")
z;; ~ Bernoulli(p;),1 <i < L, 1 <j <K,

with M;s being variational parameters. We place a Gaus-
sian prior on ¢(0) = N(6; 19, o2). By minimizing the KL
divergence

KL(¢(W)q(0)[[p(W, 0]X,Y))
=— [ ¢q(W)q(0)logp(Y|X, W, 8)dWdb

+ KL(¢(W)q(0)|[p(W)p(8))

We can obtain an unbiased estimator for the first term by
samplinga W ~ ¢(W), 6 ~ ¢(f). Then log p(Y|X, W, 6)
is precisely the log-likelihood loss function we use to train
the DKL model. We name this part of the loss as Lpkj .

The second term decomposes to KL(qg(W)||p(W)) +
KL(g(0)||p()). Typically we impose standard Gaussian pri-
ors on p(W) and p(6). Then the first KL-divergence term
is present in the analysis in|Gal and Ghahramani [2016] and
reduces to [ regularization terms on weights and biases and
the second KL term is between two Gaussian priors. Putting
everything together, we see that the loss function for the
variational inference is Lvi = Lpkr, + Zle pil| M;||? /2 —
log og + (03 4+ 3 — 1)/2. As aresult, optimizing the log-
likelihood for a DKL model with dropout is approximately
equivalent to variational inference on a deep GP posterior.

DK-BO with MC-dropout as Approximate Posterior
Sampling. The above analysis shows that DKL results
in an approximate deep GP posterior; furthermore, Gal and
Ghahramani [2016] suggests that MC-dropout on a deep
neural network could be interpreted as sampling from the
resulting approximate deep GP posterior. Therefore, with
MC dropout and Thompson sampling on the GP layer, it
could be interpreted as an approximate posterior sampling
procedure for deep kernel Bayesian optimization.

Riquelme et al. [2018] studies performances of various deep
Bayesian models with Thompson sampling from approx-
imate posteriors. In their experiments on contextual ban-
dits, they find that the NeuralLinear model which applies
Bayesian linear regression on features learned through neu-
ral network performs consistently well. Separately, models
trained with dropout also perform decently when the dropout
rate is tuned. These results that our DK-BO approach is em-
pirically sound.

The theoretical aspect is less clear. Recently, Phan et al.
[2019] studies the k-armed bandit problem, and analyzes the
asymptotic behavior of the Bayesian and frequentist regret
for posterior sampling with approximate inference. They
show that even small divergence from the exact posterior
can lead to linear regret. We wish to note that examples
leading to the undesired behaviors are highly stylized and
consist of 2 arms so their practical implication is unknown.

Representation Learning Automates Kernel Design.
The representation learning provided by a deep neural net-
work automates the kernel design process. We show in the
experiments (Section [6.4) that such capacity ensures that
a simple linear kernel provides excellent empirical perfor-
mance. As pointed out in [Duvenaud, |2014], kernel design
is usually an art that has significant impact in GP model per-
formance. Misspecification of kernel can lead to undesirable
results [Sollich, 2001} Beckers et al., [2018]]. A DKL model
with a linear kernel provides an elegant way to address this
issue by following Mercer’s theorem [Mercer, [1909]: the



linear kernel provides a generic inner product form while
representation learning explores the best way to map the fea-
ture. A natural question is whether this setup limits the type
of kernels. A subtle point about Mercer’s theorem is that the
feature map for a kernel might be infinite dimensional (e.g.,
the radial basis function (RBF) kernel). Given the neural net-
work maps only to a finite dimension embedding, this might
restrict learnable kernels. However, the classical work by
Rahimi and Recht|[2007] shows that for any shift-invariant
kernel, that is a kernel k(z, y) that only depends on the dif-
ference « — y (e.g., RBF kernel, Matern kernel), there exists
a low dimensional feature map z such that the inner product
(2(z), z(y)) approximates k(x, y) to arbitrary precision. As
a result, DKL models are able to recover commonly used
kernels and have the flexibility to fit additional forms of
kernels based on the representation learning.

Another benefit of using a linear kernel is the ease to apply
Thompson sampling in the BO loop. Sampling a function
from a Gaussian posterior is hard for generic kernels [Wilson
et al., 2020]. A workaround is to discretize the parameter
space [[Kandasamy et al., | 2018], which limits the accuracy
of Thompson sampling. However, GP with a linear kernel is
equivalent to Bayesian linear regression [Duvenaud} [2014]
and has an easy posterior sampling procedure. The sampled
function is a linear function, which is simple to optimize to
compute a query point required by Thompson sampling. The
representation learning can be generalized to fundamentally
different input types such as images and graphs as well
and the modular property of DKL provides flexibility in
expressing kernels.

6 EXPERIMENTS

In this section, we show that DK-BO models outperform BO
with standard GPs (GP-BO) on 3 real-world datasets. We
study different practical scenarios for designing probabilistic
models. In Section we show that DK-BO performs
better than GP-BO on average. This result caters to the
practical setting where one might not have much budget
for tuning during optimization. In Section [6.4, we study
three important design decisions in further optimizing the
DK-BO performance: 1) the final layer GP kernel and the
acquisition function; 2) the embedding dimension of the
neural network; 3) the inclusion of dropout and Monte Carlo
dropout as posterior sampling.

6.1 DATASET DESCRIPTIONS

We selected several real-world problems to assess DK-BO’s
performance on high-dimensional, difficult-to-optimize
tasks. Note that these tasks have discrete input spaces, as is
often the case in reality.

The first is a protein engineering dataset, for which we wish

to maximize stability fitness predictions for the Guanine
nucleotide-binding protein GB1 given different sequence
mutations in a target region of 4 residues [Wu et al.,[2019].
There are 26* possible orderings given 26 amino acids and
4 positions, and this problem has a 2048-dimension input
created using a Transformer model [Rao et al.,[2019]. GB1
has been well studied by biologists and its domain is known
to be highly rugged and dominated by "dead" variants with
very low fitness scores [Wittmann et al.,[2020]. Because of
its high input dimensionality and enormous input space, this
dataset is very challenging for traditional GP kernels.

The next is another protein engineering dataset describ-
ing a set of antigen/antibody binding calculations. These
calculations, executed using supercomputing resources, es-
timate the change in binding free energy between 71769
modified antibodies and the SARS-CoV-2 spike protein,
as compared to a reference antibody. A variant antibody
with better (lower) binding free energy will putatively be a
stronger binder. These calculations are executed via FoldX,
a structure-based protein binding code [Schymkowitz et al.}
2005], at a cost of several CPU hours each, and are produced
during an antibody design process [Desautels et al., 2020].
Inputs are described with an 80-dimensional feature vector
that, relative to the reference sequence, describes changes
in the interface between the antibody and the corresponding
target region on the SARS-CoV-2 spike. In practice, 20 to
30 of these dimensions are static across the dataset and thus
can be trimmed prior to optimization. This is a particularly
relevant problem setting when trying to rapidly choose an-
tibody candidates to respond to a new disease in a timely
fashion.

The third is a nanophotonics dataset, for which we wish to
optimize a weighted figure of merit quantifying the fitness
of the transmission spectrum of a possible device design as
assessed by a numerical solver [Song et al.,|2018b]. This
problem has a 5-dimensional input corresponding to the
physical design dimensions of a potential filter. Although the
input dimension is not very large, the function represents a
discrete solution of Maxwell’s equations and has a complex
value landscape.

6.2 EXPERIMENTAL SETUP

Experiments were conducted by running 20 trials for each
model and plotting average simple regret for each model
with an error bar of one standard error over all runs. Pseudo-
random seeds were fixed for reproducibility across models
in a given trial run and we initialize all models in a given
trial with 10 pseudo-random data points. All models were
implemented using GPyTorch [Gardner et al.| [2018]] and
given an optimization budget of 300 additional queries.

We use § = 0.1 as the exploration factor for GP-UCB and
DKL-UCB; Thompson sampling does not require such a
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Figure 1: Simple regret on real datasets for DK-BO with Monte Carlo dropout and Thompson sampling, mean DK-BO and GP-BO, the
best GP model, and random choice. Error bar shows one standard error over 20 runs for each experiment.

parameter. For DK-BO, we use the leaky ReL.U activation
function in the deep network and set DNN architectures of
[2048-500-150-50], [58-500-100-20], and [5-300-150-50]
for the GB1, FoldX, and nanophotonics datasets respec-
tively (see[6.1). We discuss architecture choice in depth in
Section [6.4] When using the standard train time dropout
(denoted DO), we dropout nodes with probability p dur-
ing training only. When using MC dropout, we follow the
aforementioned procedure and also sample a single set of
weights from the network with probability p for use during
prediction.

6.3 MAIN RESULTS

In Figure [T, we plot simple regret for all three real-world
datasets discussed above. DK-BO with a linear kernel and
MC dropout and Thompson sampling (MCD-TS) is shown
in bold red and outperforms the best GP model (shown in
green) on all three datasets. An average of DK-BO mod-
els (shown in orange) outperforms the average of GP-BO
models (shown in blue) on all three datasets as well. Both
averages include: linear kernel with TS, linear kernel with
UCB, and RBF kernel with UCB. The DK-BO average also
includes MCD-TS. These are compared with random choice
(shown in black), which performs poorly on all datasets.

On the GB1 dataset (Figure [Ia), the DK-BO average con-
sistently outperforms both the GP-BO average and the best
GP model and exhibits a relative final regret improvement
of 88.4% and 62.4% respectively. MCD-TS uses p = 0.3 as
its dropout rate at both test time and train time because the
input space is very high dimensional and thus can afford to
be sampled from at a high rate. MCD-TS improves upon the
DK-BO average by 62.0% by the end of the optimization.

On the FoldX dataset (Figure , the DK-BO average con-
sistently outperforms the GP-BO average with a relative
final regret improvement of 80.7%. We use a dropout rate
of p = 0.2 for MCD-TS. Although the best GP model
(GP-UCB, RBF kernel) outperforms the DK-BO average,

MCD-TS offers a relative regret improvement of 34.5% over
the best GP model.

On the nanophotonics dataset (Figure[Ic), the DK-BO aver-
age improves upon final regret of the average GP-BO and
best GP model by 61.3% and 35.1% respectively. The op-
timal dropout rate for MCD-TS was found to be p = 0.1,
and although it improves upon the best GP model by 13.3%,
it fails to outperform the DK-BO mean. This is consistent
with the intuition that low dimensional problems can’t af-
ford very much dropout, discussed in Section In this
problem setting the GP-BO average does not significantly
outperform random choice, representing a nontrivial subset
of adaptive experiment designs in which we are better off
choosing randomly than doing BO. However, DK-BO does
much better than random choice with relatively little tuning,
offering a clear alternative.

6.4 DESIGN CHOICES

Kernel and Acquisition Function We consider kernel
and acquisition function choice in Figure[2] Note that the GP
approximation used by TS assumes a linear kernel [Wilson
et al., 2020], meaning we can only use the UCB acquisition
function for the RBF kernel. For both DK-BO and GP-BO,
we examine the linear kernel with each of the TS and UCB
acquisition functions, and the RBF kernel with UCB. These
represent some of the most popular, "go-to" kernels used
in Bayesian optimization and are likely the first kernels
one would try when working on a new adaptive experiment
design problem. This choice results in significant perfor-
mance differences across the various GP models. DK-BO
is largely unaffected by such kernel and acquisition choices
and all three configurations have similar regret curves with
overlapping error bounds, demonstrating its stability. Al-
though DK-BO with RBF kernel and UCB achieves the
lowest regret here, the linear kernel and TS combination is
not significantly worse. Thus, we focus on the linear kernel
for the other experiments and analyses as this is in line with



our theoretical interpretation (Section [5).
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Figure 2: Simple regret for GB1 protein optimization task
with various kernel and acquisition function combinations.
Error bar shows one standard error over 20 runs for each
experiment.

Neural Network Architecture Neural network architec-
ture is one of the most important design choices for any
deep learning model and also one of the most difficult . We
focus on the final embedding dimension of the DNN out-
put as this has the most influence on what representation
is passed into the GP kernel during DKL and how much
information content it can hold. [Wilson et al. [2016] sug-
gest using a [d — 1000 — 500 — 50 — 2] architecture for
datasets with less than 6000 points (in the context of regres-
sion tasks); this architecture is denoted by ’2-D DK-BO’ in
Figure 3] We compare this with DK-BO models using a lin-
ear kernel with TS acquisition function and architectures of
[d — 500 — 150 — ey], where e € [10, 50, 100, 200]. These
architectures have less complex hidden layers given that in
a BO setting we often have a training set with much fewer
than 6000 points. ey is larger on the other hand, because
a larger output dimension allows for more flexibility and
expressiveness to be passed along to the GP base kernel
regardless of the objective’s complexity. It is much more
likely that relevant information will be lost when mapping
to a smaller latent space. Figure 3 illustrates this intuition:
for smaller embedding dimensions like 2 and 10, regret per-
formance is poor, whereas increasing dimension to 50 or
100 results in significant improvements, but an embedding
dimension that is too large (such as 200) likely results in
inefficient feature extraction, potentially making it more
challenging for the GP base kernel to fit the data. Embed-
ding choice is especially important in the case of the TS
acquisition function, since the embedding is used to com-
pute a posterior distribution and a 50D embedding has more
flexibility than a 2D one. As it is worse to use an embedding

dimension too small and lose relevant information, we rec-
ommend erring on the safe side and starting with a default
embedding dimension of 50. Some problems may perform
better with smaller embeddings; this can be tuned if budget
allows.
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Figure 3: Simple regret for GB1 protein optimization task
using a linear kernel and TS with various DNN embedding
dimensions. Error bar shows one standard error over 20 runs
for each experiment.

Monte Carlo Dropout and Thompson Sampling Us-
ing DKL for BO introduces the option of neural network
dropout. Training dropout (denoted DO) can be interpreted
as regularization via variational inference and may provide
performance improvements by protecting against overfitting.
Monte Carlo dropout (denoted MCD) combines training
dropout with test time dropout and can be considered sam-
pling from the set of neural network weights for prediction
[Gal and Ghahramanil 2016]. We can interpret MCD com-
bined with Thompson sampling as approximate posterior
sampling, as discussed in Section 3}

In Figure 4, we compare MCD-TS with only train-time
dropout (DO-TS) and DK-BO without any dropout (TS)
on the GB1 dataset. A dropout rate of p = 0.3 is used for
both MCD and DO. MCD-TS consistently performs better
than DO-TS and TS alone with a 71.6% and 65.6% relative
improvement in regret by the end of the optimization. This
demonstrates that MCD-TS offers empirical benefits over
both normal dropout models and naive DK-BO in addition
to its theoretical interpretation (Section [3)).Section

The dropout rate p used for MCD-TS on each dataset was
tuned empirically by testing each p € {0.1,0.2,0.3} as
dropping weights out at a higher rate likely means losing
a significant amount of information. However, we can also
correlate p to dimensionality of the dataset: GB1 has 2048 di-



mensions and an optimal p of 0.3; FoldX has 58 dimensions
and an optimal p of 0.2, and Nanophotonics has 5 dimen-
sions and an optimal p of 0.1. We see the largest gains for
MCD-TS on the highest dimensional dataset (Figure[Ta) and
the smallest gains on the lowest dimensional dataset (Figure
where MCD-TS is outperformed by the average of DK-
BO models that don’t use dropout at all. This suggests that
for problems where raw dimension is larger than the true
dimension (which encompasses most problems), MCD-TS
with higher dropout rates can offer substantial gains because
we can afford to lose a lot of the given information. Con-
versely, when raw dimension is likely representative of the
true dimension , higher dropout rates are more likely to be
detrimental as we cannot afford to discard very much in-
formation, suggesting the use of plain DK-BO without MC
dropout for such problems. These results demonstrate that
DK-BO with MCD-TS does indeed offer significant empiri-
cal gains in addition to its theoretical basis, particularly on
challenging, high-dimensional datasets.
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Figure 4: Simple regret for GB1 protein optimization task
with and without dropout and MC dropout. Error bar shows
one standard error over 20 runs for each experiment.

7 DISCUSSION AND FUTURE WORK

In this paper, we demonstrate that DK-BO offers significant
performance improvements over current GP methods on
complex, high-dimensional, real-world datasets represen-
tative of the adaptive experiment design domain. We pro-
vide both theoretical and empirical reasoning for the design
choices that follow, including neural network architecture
and kernel choice. We also introduce the combination of
DK-BO, MC dropout, and Thompson sampling as a deep
kernel method that can be interpreted in a Bayesian manner.
We also identify a set of satisfactory model parameters such
that DK-BO can be used on a variety of functions and input

dimensions without much tuning, and release an accompany-
ing software package constructed using GPyTorch [Gardner
et al., 2018], available here <github link to be put after
accepted>.

There is potential to ensemble DKL models with different
kernels or acquisition strategies or to train multiple DNNs,
potentially with a subset of the acquired dataset as suggested
by BESA [Baransi et al., |2014], and sample networks in
a Bayesian fashion. These ensembles also have the option
of being randomly sampled, sequential (rotate through set
of models in some order), averaged, or combined into a
weighted average via meta-learning [Fort et al., 2019]. Inte-
grating a deep kernel with our Bayesian optimization frame-
work opens up many interesting extensions on the network
front.

We plan to expand our implementation to multi-fidelity BO
and potentially multi-task and multi-objective versions as
well [Song et al.,[2018a]], using multi-fidelity versions of the
nanophotonics and coronavirus binding datasets described
above. Each of these expansions of BO requires learning
multiple objective functions and is likely to require addi-
tional regret formulations and analysis. More traditional GP
models often require complex kernel design here and have
not been able to perform very well. In contrast, deep kernel
based approaches have the advantage of being flexible and
thus may be able to learn meaningful underlying embed-
dings for these and other complex Bayesian optimization
settings involving multiple functions.
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A APPENDIX
A.1 ADDITIONAL EXPERIMENTAL DETAILS

We train all models for a constant 100 episodes and choose
the maximizer of the acquisition function at each episode.
For each model and at each time step, we calculate the ac-
quisition function on all possible inputs because optimizing
a discrete domain (as many real-world problems require)
isn’t as straightforward as the continuous case. Note that
DKL (and GP) models are reinitialized during each episode
of BO to avoid weights being biased toward earlier points.
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