
Real-Time Fine Grained Occupancy Estimation
using Depth Sensors on ARM Embedded Platforms

Sirajum Munir1, Ripudaman Singh Arora2, Craig Hesling3, Juncheng Li 4,, Jonathan Francis5, Charles Shelton6,
Christopher Martin7, Anthony Rowe8, and Mario Berges9

Bosch Research and Technology Center, Pittsburgh, PA 1,4,5,6,7

University of Michigan, Ann Arbor, MI2

Carnegie Mellon University, Pittsburgh, PA3,4,8,9

Email: {sirajum.munir1, billy.li4, jon.francis5, charles.shelton6, christopher.martin7}@us.bosch.com,

asripu@umich.edu2, craig@hesling.com3, agr@andrew.cmu.edu8, marioberges@cmu.edu9

Abstract—Occupancy estimation is an important primitive for
a wide range of applications including building energy efficiency,
safety, and security. In this paper, we explore the potential
of using depth sensors to detect, estimate, identify, and track
occupants in buildings. While depth sensors have been widely
used for human detection and gesture recognition, computer
vision algorithms are typically run on a powerful computer like
XBOX or Intel R© CoreTM i7 processor. In this work, we develop
a prototype system called FORK using off-the-shelf components
that performs the entire depth data processing on a cheaper
and low power ARM processor in real-time. As ARM processors
are extremely weak in running computer vision algorithms,
FORK is designed to detect humans and track them in a very
efficient way by leveraging a novel lightweight model based
approach instead of traditional approaches based on histogram of
oriented gradients (HOG) features. Unlike other camera based
approaches, FORK is much less privacy invasive (even if the
sensor is compromised). Based on a complete implementation,
real-world deployment, and extensive evaluation at realistic
scenarios, we observe that FORK achieves over 99% accuracy
in real-time (4-9 FPS) in occupancy estimation.

Index Terms—Occupancy Estimation, People Counting

I. INTRODUCTION

Occupancy estimation is an important primitive for a wide

range of applications including building energy efficiency,

safety, and security. Heating, ventilation, and air conditioning

(HVAC) is a major source of energy consumption in the US

as approximately 35% of the total energy in the US was

used for HVAC in 2006 [2]. Most HVAC systems operate by

assuming maximum occupancy in each room, which leads to

a significant waste of energy, e.g., an HVAC system providing

ventilation for 30 people when there are only 10 people in

a room [15]. Feeding occupancy count to HVAC systems

enables reducing such energy waste and enables zone based

heating and cooling control. When it comes to lighting control,

PIR motion sensor based solutions often turn off lights when

people are inside but not moving, and keep the lights on for

a timeout interval even after everyone leaves a room, thus

wasting energy. Estimating the number of occupants in real-

time enables addressing both issues. In emergency situations,

e.g., in a fire, an accurate occupancy estimation solution is

very useful for rescue operations. Also, in banks, museums,

kindergartens, and high schools, occupancy estimation helps

to determine whether everyone has left at the end of the day

to improve safety and security.

Several occupancy estimation solutions are available in the

market and in the literature that use break-beam sensors,

ultrasonic sensors, cameras, and thermal imagers. Break-beam

sensor based solutions do not work when multiple people

enter or leave through a door simultaneously. Ultrasonic sensor

based solutions [25] require significant training and they are

usually not pet friendly. RGB cameras are too privacy invasive

to be deployed in many settings, e.g., in office rooms, and

they do not work in the dark. Low resolution (e.g., an 8x8

pixel Panasonic GridEYE) thermal imagers do not have good

enough resolution to detect multiple people entering/exiting

simultaneously and high resolution thermal imagers are very

expensive, e.g., a 32x32 thermopile array sensor costs over

$200 (Heimann sensor[3]). Our exploratory study shows that

a depth sensing based solution can overcome these limitations

a great extent as our system can detect multiple people

entering/leaving a room simultaneously, requires almost no

training, is not as privacy invasive as RGB cameras, is pet

friendly (IR signals don’t bother pets), and works in a com-

pletely dark environment (because of the underlying properties

of the IR structured light being used in the depth sensor).

We also show how depth data has the promise for being a

lightweight biometric primitive to identify room occupants

for personalizing room environment and to track the flow of

people through a building.

To explore these ideas, we build a prototype system using

off-the-shelf components. The system is based on a Time of

Flight (TOF) sensor, more specifically a Kinect depth sensor.

We call the system FORK (Fine grained Occupancy estimatoR

using Kinect). Although Kinect has been extensively used for

human detection, skeletal tracking, and even gesture recog-

nition, our solution is different from others for two reasons.

First, most of the previous works assume that the Kinect is

placed in front of people, which is not practical in a number

of settings, e.g, in office rooms and classrooms. Our solution

places the Kinect at the ceiling (Figure 1(a)) near to a door,

which resolves this issue. This placement also helps us to

deal with occlusion. Second, instead of using a powerful

978-1-5090-5269-1/17 $31.00 © 2017 IEEE 291978-1-5090-5269-1/17 $31.00 © 2017 IEEE 295978-1-5090-5269-1/17 $31.00 © 2017 IEEE 295

Authorized licensed use limited to: ROBERT BOSCH. Downloaded on August 03,2021 at 18:25:17 UTC from IEEE Xplore. Restrictions apply.

computer like XBOX, we tailor the solution to be able to run

in a low power ARM processor-based embedded computer,

e.g., ODROID-XU4 [6] (Figure 1(c)). ARM processors are

extremely weak in running computer vision algorithms. As

a micro benchmark, an occupancy estimation solution that

typically runs at 25 FPS on an Intel R© CoreTM i5 machine runs

at 2 FPS when directly ported to an ARM processor machine.

Low frame processing rate violates assumptions of existing

tracking algorithms (described in Section II-E) and requires a

novel solution with minimal computational complexity.

FORK uses a model based approach for occupancy estima-

tion with several steps. First, after preprocessing, it performs

multilevel scanning and extracts contours of potential heads.

Using the contours, it finds the minimum enclosing circles of

the contours, which provides approximate centers and radii of

the heads. Second, for each identified circles, it uses the 3D

depth data to verify whether it is an individual or not. To do so,

it uses a novel orientation invariant 3D human model that relies

on anthropometric properties of human heads and shoulders, as

these are the most prominent body parts seen from the ceiling.

Finally, FORK detects door locations and tracks individuals

to determine whether they are entering or leaving a room for

estimating number of occupants in a room. Note that FORK

doesn’t use the Kinect SDK and hence can generalize to any

depth camera with similar hardware functionality.

This work has four major research contributions. First, we

perform a comprehensive exploratory analysis to understand

the potential of depth sensors for detecting, estimating, and

tracking building occupants using low cost embedded proces-

sors. It includes the design and implementation of a novel

lightweight solution for occupancy estimation, which is the

first solution that runs on an ARM processor and does the

processing in real-time. We also investigate how different

factors affect the real-time performance of FORK. Second,

we explore how the system can be used to identify and

track occupants by extracting biometric features and using

machine learning algorithms. Third, we design the system in a

way that requires almost no training as FORK can determine

door locations automatically from the depth data. Fourth, we

have deployed nine instances of FORK at a Bosch office

and several CMU classrooms. Based on evaluation at realistic

scenarios (e.g., door opening and closing, people moving with

bicycles, cleaning lady moving with a large drum of cleaning

equipment, food caterers moving with boxes of food in hands,

people carrying laptops, people wearing caps), we see that

FORK achieves over 99% accuracy in real-time (4-9 FPS) in

occupancy estimation.

II. EXPLORATORY ANALYSIS OF DEPTH SENSING BASED

APPROACHES

In this section, we explore the potential of modern depth

sensors to detect occupancy patterns in buildings on ARM

embedded platforms. In particular, we focus on solutions for

human detection, counting, tracking, and identification as well

as the detection of other non-human objects of interest (e.g.,

(a)

(b)

(c)

Fig. 1. (a) Placement of a Kinect sensor on a ceiling. (b) Kinect sensor for
XBOX One. (c) Embedded computer Odroid-XU4.

doors). Our experiments were carried out using our prototype

system, FORK. We begin the section by describing FORK.

Fig. 2. Occupancy estimation for one week

A. FORK Overview

We use the depth sensor in Kinect for XBOX One (Figure

1(b)) in this work. We choose Odroid-XU4 (Figure 1(c))

for processing as it is one of the few embedded platforms

that supports USB 3.0 that is required by this Kinect. We

upload the occupancy count over WiFi to the Sensor Andrew

[22] infrastructure, which allows monitoring of occupancy

patterns in real-time using a browser by authorized users. As

an example, Figure 2 shows how the occupancy pattern of a

conference room (Warhol) of a Bosch office changes over a

typical workweek. FORK does not store or upload any images

for privacy concerns.

An overview of FORK occupancy estimation approach is

shown in Figure 3. After doing minimal preprocessing, FORK

performs multilevel scanning, where it scans at a few potential

depth levels to detect humans. For each level, FORK extracts

contours of potential heads by ignoring the depth data below

that level. Then it verifies whether each contour represents a

real person by verifying the presence of a head and a shoulder

using anthropometric properties of a human body. FORK

tracks individuals going through a door to count number of

people inside. It also determines the location of the door.

FORK is implemented in C++. It uses OpenCV library

and runs on Ubuntu 15.04 as an application on Odroid

XU4. To access the depth frames from a Kinect, FORK uses

libfreenect2 library of the OpenKinect project. Libfreenect2
library leverages libusb library to access the USB interface.

FORK runs several modules to perform several tasks to report

292296296

Authorized licensed use limited to: ROBERT BOSCH. Downloaded on August 03,2021 at 18:25:17 UTC from IEEE Xplore. Restrictions apply.

Fig. 3. An overview of the FORK approach

Fig. 4. FORK software architecture

occupancy estimation information at real-time. These modules

and FORK software architecture are shown in Figure 4.

The Image Preprocessor module preprocesses depth frames.
The Background Detector module captures an approximate
background. The Door Detector module detects the location of
the door. Multilevel Scanner module is crucial for detecting
and locating humans. It has a few sub-modules for contour

detection and verifying the presence of heads and shoulders.

Once the presence of someone is verified, the People Tracker
module tracks whether he is entering or exiting through the

door and Occupancy Estimator module updates the people
count. The Update Publisher module publishes the updated
count to Sensor Andrew server [22] using XMPP communi-

cation protocol. The detailed approach is described below.

B. Preprocessing

Kinect for XBOX One produces 512x424 resolution depth

images at 30 FPS. Each pixel of a depth frame provides the

distance from the Kinect to the nearest objects in millimeters.

However, in the presence of noise, the corresponding pixel

has a value of 0. State of the art approaches [28] use median

filtering to smooth the depth image. However, we find that a

5x5 window median filtering takes 3x more computation time

than that of our entire occupancy estimation algorithm. Also,

as most noise is at the perimeter of the frame, FORK doesn’t

use median filtering by default. However, it can be configured

to do so. We evaluate FORK with and without median filtering

(Section IV-C2 and IV-C1). At the preprocessing step, we reset

noise pixels and outliers (depth too high) to floor depth. The

floor depth is computed by computing a histogram of the depth

values of a frame, where the bin with the maximum number

of depth data points is considered the floor. A preprocessed

image is shown in Figure 5(a), which shows that a portion of

a head (left person) is missing due to noise.

C. Human Detection

FORK detects humans in three steps: multilevel scanning,

head verification, and shoulder verification. These steps are

(a) (b)
Fig. 5. Preprocessed image (a). Canny edge followed by a Hough circle
transformation (b).

described below in detail.

Multilevel Scanning: The goal of this step is to determine
the centers and radii of minimum enclosing circles of all

the potential heads. Typical computer vision solution for this

purpose is to detect Canny edges followed by a Hough circle

transformation as shown in Figure 5(b). However, the Hough

circle transformation suffers significantly due to noise and

cluttered background. As shown in Figure 5(b), it detects

many false heads. Also, both processes are computationally

expensive. So, instead, we introduce a novel approach called

multilevel scanning, and determine the centers and radii of the
heads by detecting contours at different height levels (Figure

6(d)).

The average height of an adult male is about 5’7" to 5’11"

and a female is about 5’2" to 5’7". As we estimate the floor

depth (Section II-B), we start scanning depth data from 6’

(from the floor) to 2’ at 6-inch intervals. We choose these

parameters in a conservative way so that we do not miss

humans. When we scan depth data a height level, we discard

all the depth data below that level. Figure 6(a), 6(b), and

6(c) show the depth data after scanning at levels 5’, 4’6",

and 4’, respectively (discarded pixels are shown black). As an

example, when we scan at 6’, if PersonA and PersonB have

heights 6’6" and 6’1" respectively, we only see the top 6" and

1" of their heads, respectively. We find all the contours at that

depth level. For each contour, we find the minimum enclosing

circle using an iterative algorithm. The center and radius of the

minimum enclosing circle is considered the center and radius

of the head. For each detected center and radius, we verify

whether it is a person by verifying the presence of a head

and a shoulder (described next). Note that a single person can

be detected at different levels. In order to avoid this, we scan

from the top and when we verify a person at a higher depth

level, we discard all the nearby centers at lower levels.

We leverage two strategies to speed up processing. First,

when we perform multilevel scanning, it is performed out of

order. Instead of scanning from top (6’) to bottom (2’) in

293297297

Authorized licensed use limited to: ROBERT BOSCH. Downloaded on August 03,2021 at 18:25:17 UTC from IEEE Xplore. Restrictions apply.

(a) (b) (c) (d)
Fig. 6. Multilevel scanning at 5’(a), 4’6"(b), and 4’(c). Determining centers
and radii of heads (d).

a serial order, we scan at the top most level first and then

at the most bottom level, and then at the remaining levels.

The intuition is that if there is someone there, FORK should

capture a body at the bottom level scanning. If the bottom

level scanning returns that there is nothing there compared

to the approximate background (described next), we move on

to process the next frame. Otherwise, we scan the remaining

levels in a serial order (top to bottom) to determine the

precise location of the head. Second, we do not scan at the

levels that do not have enough depth data compared to the

background. We do not determine the exact background as

background detection often requires training and even if we

take two snapshots of the same background, they tend to vary

in depth data. We determine an approximate background
by building a histogram of depth data points at different

scanning levels (6-inch bin sizes). Each time we see a new

frame, we update the histogram by assuming that the minimum

number of depth data points seen so far at a level is from

the background, which reasonably captures the wall, door,

tables etc. in the environment. This approximate background

detection technique enables us to move on to the next frame

quickly when there is no one in the scene.

Head Verification: Given a center (cx, cy) and

a radius r of a head, the goal of this step is

to verify if there is a human head at this position.

Fig. 7. Modeling a head
using a hemi-ellipsoid.

There are two challenges to this. First,

there is a mismatch of units in (X, Y)

(measured in pixels) and Z coordinates

(measured in depth in millimeters) in

using the depth data. To deal with this,

either we transform one co-ordinate

system to another, or we build a head

model with two different types of units.

Second, the look of a head depends on

the orientation of the person. To deal

with this, either we build different models for different head

orientations and check them all, or we build an orientation

invariant head model. In order to reduce computational com-

plexity, we use a hemi-ellipsoid (top half of an ellipsoid) to

model a human head (Figure 7), which is orientation invariant.

Also, it can have two different units in the axes. An ellipsoid

in Cartesian coordinates is represented by equation (1), where

a, b, and c are the lengths of the semi axes and (cx, cy , cz) is
the center of the ellipsoid.

(x− cx)
2

a2
+

(y − cy)
2

b2
+

(z − cz)
2

c2
= 1 (1)

Since we need two different units in the axes, we set a =
b = r (in pixel co-ordinate), and we set c = 0.5 ∗D (in depth

co-ordinate), where D is the depth of a human head. Based on

the average length of a human head [5] [4], we set D = 220

mm. We set cx = cx, cy = cy, and cz = T + 0.5∗D, where T is
smallest distance between the Kinect and the head. We iterate

over the x, y values of the detected contours and use equation

(1) to compute a z value for each (x,y) and compare it with

the corresponding z value in the depth frame. If the average

difference is less than a threshold Thead, we report that a head

is detected. If Thead is too small, a small variation in a head

(e.g., a pony tail) will cause us to miss it. If Thead is too big,

something that is not a head (e.g., a box) will be reported as

a head. We analyze hundreds of GBs of data and set Thead to

40 by performing extensive empirical studies by considering

kids, people wearing turbans and caps, women with pony tails,

and movement of empty chairs, boxes and a table lamp.

Shoulder Verification: Given a center (cx, cy) and a radius
r of a head, the goal of this step is to verify if there is a
human shoulder close to this position. It is tricky to verify,

as we not only have to deal with orientation, but also with

occlusion. Because, a part of the shoulder may be occluded

due to the head (Figure 8(e)). In order to verify a shoulder, we

go through four steps. First, we consider a region of interest

(ROI) surrounding the head and the shoulder. The end-to-end

distance between the two shoulders of a person is around three

times his head’s diameter [5] and hence we choose a slightly

bigger square ROI around the head. Figure 8(a) shows one

such ROI. Second, we extract the head from it by discarding

all the depth data higher than T + D (computed in the head

verification step), as shown in Figure 8(b). Third, we subtract

the latter (Figure 8(b)) from the earlier one (Figure 8(a)) to

obtain the shoulder depth data (Figure 8(c)). Note that from

the first step, we discard all the depth data higher than T + D
+ S by setting these values to 0, where S is the depth of the
shoulder. We set S to 250 mm, as ∼10 inch depth is reasonable
enough to capture a shoulder. At step 4, we determine whether

the depth data obtained from step 3 conforms to a shoulder

by trying several techniques. For example, we detect contours

and measure a goodness of fit to an ellipse. However, this

approach suffers from occlusion (Figure 8(e), 8(f), 8(g), and

8(h)) and the surrounding environment, e.g., doors, walls, and

nearby people (Figure 8(i), 8(j), 8(k), and 8(l)). Hence, at

step 4, instead, we compute a histogram of depth data at

different height levels and check if there is at least one bin at

the shoulder depth level around the head’s position that has

enough depth data points to represent a shoulder. If there is no

shoulder, e.g., for a ball, the depth data at that position will

be close to the floor level and the bin at the shoulder level

will not have enough depth data points. The purpose of the

shoulder verification is to avoid spherical objects, e.g., balls,

balloons, and spherical lamps. For counting people, the head

verification usually suffices. However, shoulder size is a useful

feature for identifying and tracking occupants.

D. Door Detection

Many existing computer vision based occupancy estimation

solutions [30] [19] [21] [18] require training, where the door

location or the region of interest needs to be entered manually.

294298298

Authorized licensed use limited to: ROBERT BOSCH. Downloaded on August 03,2021 at 18:25:17 UTC from IEEE Xplore. Restrictions apply.

(a) (b) (c) (d)()

(e)

(b)

(f)

()

(g)

()

(h)()

(i)

()

(j)

(g)

(k) (l)
Fig. 8. Shoulder detection in a clear environment ((a), (b), (c) (d)), when a
head occludes a shoulder ((e), (f), (g), (h)), and when a subject is close to a
door and a nearby person ((i), (j), (k), (l)).

Our solution suggests orienting the X axis of the depth sensor

parallel to the door (shown in Figure 1(a)). We use this

constraint to determine the location of the door automatically,

in six steps. First, starting with the preprocessed image, we

do median filtering with kernel size 5 (Figure 9(a)). Second,

we discard the depth data that are very close to the ground

(within 1 foot) and 2 feet above it by replacing these with the

maximum floor depth (Figure 9(b)). It helps us by getting an

edge near the floor (marked as Special Edge, SE in Figure

9(c)) that we leverage in the subsequent steps. Third, we

detect Canny edges to increase contrast and reduce noise

(Figure 9(c)). Fourth, we perform Hough line transformation

on the Canny edges to detect straight lines (Figure 9(d)). Even

though Canny edge detection and Hough line transformations

are not computationally cheap, it doesn’t degrade the real-

time performance as door detection is performed only at the

beginning. Fifth, from the candidate Hough lines, we choose

the line having the highest accumulator vote that is most

parallel to the X axis of the depth frame. This line is shown as

grey and all other candidate lines are shown as white in Figure

9(d). We call it Door1. It is shown as line AB in Figure 9(e).
Note that someone can enter into the room from the left/right

side without crossing AB. To address this case, we add another

door called Door2, which is shown as lines CD, DE, and EF
in Figure 9(e) at the sixth step. The locations of CD, DE, and

EF are fixed for now, based on our empirical study on nine

doors. We push CD and FE as far as possible and make sure

we can see a partial head at least once at the outside. If the

door is too wide to detect AB, we set AB to be the middle

line of the frame. A trainer can update the door locations, if

needed.

E. Tracking

FORK performs two types of tracking: (i) basic tracking

to determine whether people went inside or outside through a

door to count them accurately, and (ii) biometric tracking to

identify and track individuals as follows.

Basic Tracking: When using RGB images, tracking is

usually performed by using colors and assuming that the color

of a person remains the same as he moves. When using

depth images, tracking is usually performed by assuming the

speed of an object changes smoothly in neighboring frames,

e.g., there is no big jumps in the speed or a person stays

closer to his position in the previous frame than others [28].

While these assumptions hold at a high frame rate (∼30
FPS), performance degrades when the frame rate is low.

There are other complex solutions that use a Kalman filter

and Hungarian algorithm that are not computationally cheap.

We design and implement a lightweight greedy bipartite
matching algorithm by leveraging the position, height, and

head radius of people.

Assume that we detect N and M people in the previous

and current frames, respectively. For each pair of people

(i,j), where i ∈ {1, 2, 3, ..., N} and j ∈ {1, 2, 3, ...,M}, we
normalize the distance between head centers, the difference

of head radii and heights of each pair. Then we compute a

weighted distance by using these three distances (weight: 1,

1, and 0.5, respectively). The reason for a smaller weight for

height difference is that we observe that the height of a person

varies up to 40 millimeters when he walks from one side to

the other. Then we sort the distances in ascending order and

pair them in that order. If someone j ∈ {1, 2, 3, ...,M} is not
paired, we add him in the current frame. However, if someone i
∈ {1, 2, 3, ..., N} is not paired, we do not immediately discard
him, because, it is possible that we may miss someone in a

frame and detect him in the next frame. For the missing person,

we predict the person’s current position based on his average
walking speed and direction, and update the location of the

center of his head accordingly. To do so, every time we pair,

we update average walking speed and direction of the person.

At low frame rates, someone can move a considerable

distance between consecutive frames, which impacts tracking

negatively, e.g., when someone (P1) leaves through a door and

someone else (P2) enters from the other side of the door in

the next frame. It may look like P1 has moved towards his

opposite direction and may increase/decrease the occupancy

count erroneously. As the head of P1 is missing at the current

frame, the greedy bipartite matching tries to match the earlier

frame’s P1 with the current frame’s P2. To avoid this, we

consider the walking direction and if the matching requires

a reversal of direction, we check if there is a presence of a

depth shadow of P1 in the current and previous frames at his

respective predicted positions. By depth shadow, we mean a
head is missing, but a partial body contour is seen near to

that location. If a depth shadow is present, we assume that P1

is/was there while P2 enters and we do not allow the matching.

Biometric Tracking: Every time when someone enters/ex-
its, FORK extracts 38 simple features regarding height, head

radius, shoulder size, going in/coming out, and walking speed

of the subject. More specifically, for height, FORK extracts

12 features including the minimum, maximum, average, and

exact height from the depth data when s/he is crossing Door1,

295299299

Authorized licensed use limited to: ROBERT BOSCH. Downloaded on August 03,2021 at 18:25:17 UTC from IEEE Xplore. Restrictions apply.

(a) (b) (c) (d) (e)

Fig. 9. Door detection. After preprocessing and median filtering (a), depth data between 1 and 2 feet from the ground (b), Canny edge detection (c), Hough
line transformation (d), and door detection (e).

Door2, and overall minimum, maximum, average, and median
height during the entrance/exit event. Similar features are

extracted regarding the head radius and shoulder size. Several

machine learning algorithms are trained using these features

to identify individuals (c.f. Section IV-D).

F. Counting

For each frame, for each person within that frame, we

determine Di, which is 1 if he is at the left side of Doori
and 0 otherwise, where i ∈ {1, 2}. To be at the left side,
someone’s head center has to be to the left of the line segment

AB for Door1, and to the left of all the three line segments
CD, DE, and EF for Door2. We increase the occupancy count
if someone’s Di is changed from 1 (at the previous frame) to

0 (at the current frame). We note the direction of the person

and if his Dj (j �= i) is changed from 1 to 0 later, we do

not increase the count again. However, if either Di or Dj is

changed from 0 to 1 later, we decrease the occupancy count

and ignore a similar change (0 to 1) subsequently.

III. DEPLOYMENT & DATA COLLECTION

We deployed five instances of FORK at a Bosch office and

four instances of FORK at Scaife Hall on the CMU campus.

At the Bosch office, we deployed the units to cover the

main office area (requires monitoring at two entrances: main

entrance [Figure 1(a)] and a remote entrance), two conference

rooms (Warhol and Clemente), and a lab. At Scaife Hall, we

deployed the units in two classrooms (room 212 and 220)

and an auditorium (room 125), which had a double door and

required two FORK units. The size of the doors varied from

3 feet to 6 feet. The office had a 9.33 feet drop ceiling. CMU

deployments had similar heights (9.43 feet to 9.48 feet). The

units were deployed on August 24th 2015 (four instances at

Bosch), December 15th 2015 (four instances at CMU), and

January 27th 2016 (one instance at Bosch). All nine instances

were running and we kept collecting data (people count) till

June 7th 2016, when we took down the Bosch units for office

relocation. The four instances at the CMU are still running. We

have collected over nine months of occupancy data from these

deployments. We plan to analyze this long term occupancy

data to determine how we can use it for energy efficient HVAC

control in commercial spaces and academic buildings in the

future. We also collected over 750 GB of depth data from

Scaife auditorium 125 for over a week and obtained over 3.65

million depth frames containing thousands of human heads,

which was used to determine FORK model parameters. We

also collected over 250000 depth frames from the Bosch office

for this purpose.

IV. EVALUATION

We evaluate the performance of FORK in terms of its

ability of human detection, occupancy estimation at realistic

scenarios, occupant identification, and door detection. We also

compare its performance with break-beam sensors.

A. Experimental Setup

We evaluate FORK in all the nine deployment settings in

order to determine its performance in door detection. In order

to evaluate its performance in occupancy estimation, we need

the ground truth of occupancy information. We consider traffic

and door size, and choose three doors for this purpose. We

choose Bosch office main entrance (Figure 1(a)) and CMU

Scaife Hall 220 for high traffic. Both are three feet wide doors.

We choose Bosch lab door since it is a six feet wide door and

use it to evaluate how performance degrades at wider doors

(c.f. Section IV-I) and how FORK performs when multiple

people enter and exit simultaneously (c.f. Section IV-C1). Note

that ground truth is obtained by a human observer standing

around 10 feet distance from the door, who compares FORK’s

reported count with actual count in real-time without using a

video camera. We keep two human observers to make sure at

least one is present during the entire time of evaluation even

if there is no traffic and the room being monitored is empty.

B. Human Detection Performance

In this section, we evaluate the performance of FORK in

terms of its ability to detect heads, shoulders, and humans.

Even though we collected over 3 million depth frames (c.f.

Section III), since human verification requires ground truth of

the location of heads and shoulders, we use 4100 frames for

this evaluation. These frames contain a total of 2505 humans.

The ground truth of the centers and radii of their heads is

labeled by a human labeler. Assume that FORK verifies a

head at center (x1, y1). If there is a center of a human head
at a position (x2, y2) with radius r in the ground truth at that
frame and if

√
(x1 − x2)2 + (y1 − y2)2) <

r
2 , we consider it

a true positive (TP). If there are no human heads in the ground

truth with that proximity, we consider it a false positive (FP).

If FORK verifies that it is not a head and there are no heads

nearby in the ground truth, we consider it a true negative (TN).

If there is a head within that proximity in the ground truth, we

consider it a false negative (FN). Then we compute precision =

296300300

Authorized licensed use limited to: ROBERT BOSCH. Downloaded on August 03,2021 at 18:25:17 UTC from IEEE Xplore. Restrictions apply.

Detection Precision(%) Recall(%) F-score(%)
Head 98.10 96.51 97.30

Shoulder 88.77 99.21 93.70

Human 98.12 95.80 96.95
TABLE I

HEAD AND SHOULDER DETECTION PERFORMANCE

TP
TP+FP , recall =

TP
TP+FN , and F-score =2 · precision·recall

precision+recall of

head detection. Similarly, for shoulders, when FORK verifies

a shoulder, we compare with the ground truth to see if there

is a shoulder there and compute precision, recall, and F-score

accordingly. If both the head and shoulder verification pass,

FORK reports it as a human.

We show the precision, recall, and F-score of detecting

heads, shoulders, and humans (when both head and shoulder

verification pass) in Table I. The results show high precision,

recall, and F-score of human detection. The head detection

precision and recall are very high. Sometimes the head detec-

tion fails when the heads lie near the edges of the frames. The

precision of shoulder detection is a bit low since the shoulder

verification passes sometimes when there is a door or a wall

nearby. However, in these cases, head verification reports that

there is no head, which enables us to have high precision for

human detection.

C. Real-Time Occupancy Estimation Performance

1) Comparison with state of the art: We evaluate the

performance of FORK in terms of its ability to estimate

occupancy in real-time and compare with that of state of the

art break beam sensors (All-Tag Bi-directional people counter

with display [1], costs $285 per unit). We do the evaluation

at Scaife 220 from 9:00 AM to 5:15 PM. It is a real test

for FORK as no depth data containing the occupants of this

classroom has been collected before. The way ground truth is

collected is described in Section IV-A. There are 146 entrance

events and 146 exit events. There are many realistic scenarios

that both solutions need to address, e.g., door opening and

closing, students coming with backpacks, gym bags, papers,

laptops, bike helmets hanging around the shoulders, carrying

jackets in hands, carrying paper scrapbooks, wearing head-

phones over their heads, wearing sunglasses over their heads,

wearing caps, and wearing hoodies. The performance results

are shown in Table II. FORK processes data at 9 FPS on

average (without median filtering) and detects all 146 entrance

events accurately, achieving 100% accuracy. Among 146 exit

events, it detects all the exit events accurately, except it reports

twice for one exit event, achieving 99.32% accuracy. We can

not explain why FORK makes that error as we have not saved

the images and have not changed FORK’s code to keep a

log of its analysis, which would hurt FORK’s processing rate

and its performance. If it were a post-facto analysis, we could

have identified the reason of error more easily. But then the

result would not show FORK’s real-time performance. Break-

beam sensor makes 2 errors in detecting entrance events and

makes 6 errors in detecting exit events, achieving 98.63% and

95.89% accuracy, respectively. The causes of these errors are

students peeking into classes quickly without going in, a few

students having conversation at the doorway, students playing

Events Ground
Truth
(# of
events)

FORK
(# of
events)

FORK
Accu-
racy(%)

BB (# of
events)

BB Ac-
curacy
(%)

Entrance 146 146 100 144 98.63
Exit 146 145 99.32 140 95.89

TABLE II
ACCURACY OF OCCUPANCY ESTIMATION

with the break-beam sensor out of curiosity, multiple people

leaving simultaneously counted as one, and a single person

leaving counted twice. The reason for more errors at the exit

events is that students’ arrivals are sparse when a class starts,

but a large portion of the students leave very shortly after a

class is over. Note that we mount the break-beam sensors 4.2

feet above from the ground in order to detect adults according

to the manual. Deploying it at a higher level will cause it to

miss shorter people and deploying at a lower level may cause

it to count just legs. We notice that deploying it at such a

level may not be robust, as people carrying backpacks can hit

the sensors inadvertently, especially in a narrow door. For a

wider door, break-beam sensors can not detect multiple people

entering/leaving simultaneously, as shown below.

In order to see how FORK and break-beam sensors perform

when multiple people enter/exit simultaneously, we perform a

controlled experiment. We ask 2, 3, 4, and 5 people to enter,

exit, and cross each other 10 times each through a 6-foot wide

door (Bosch lab door). The subjects are asked to stay as close

as possible. The heights of the people are 5’6", 5’7", 5’7",

5’8", and 6’ (in order of their appearance in the scenario).

FORK runs without median filtering at ∼9 FPS. The way
ground truth is collected is described in Section IV-A. The

Break-beam sensor is mounted at the same height as before.

The percentage of times when FORK and the break-beam

sensor accurately count all the people entering and exiting

are shown in Table III. It shows that FORK performs much

better than the break-beam sensor if the door is wider and

several people enter and exit simultaneously. FORK achieves

100% accuracy when multiple people enter/exit simultane-

ously. However, the performance degrades when people cross

each other. This is because when people cross, they reach the

edge of the door during crossing, which contains noise and

that makes it hard to see heads. Also, the tracking algorithm

makes mistakes when multiple people bump into each other

simultaneously. The break-beam sensor only counts accurately

when people enter/exit one-by-one. Multiple people aligned

across the door are counted as one during entering and exiting.

When people cross each other, it becomes non-deterministic.

This particular break-beam sensor has a bidirectional count

and in 62.5% of cases when people cross each other, neither

the entering nor the exiting counter is increased. In other cases

when people cross, it either counts the entering or the exiting

people, but not both and even then multiple people aligned

across the door are counted as one.

2) Performance at a low frame rate: We perform median

filtering, which throttles FORK’s processing rate to 4 FPS

and evaluate its performance in occupancy estimation in real-

time. We evaluate it at the Bosch main entrance (Figure

1(a)) from 12:00 PM to 6:15 PM on a work day. Note

297301301

Authorized licensed use limited to: ROBERT BOSCH. Downloaded on August 03,2021 at 18:25:17 UTC from IEEE Xplore. Restrictions apply.

of People Event FORK Accuracy
(%)

BB Accuracy (%)

2 Entrance 100 0
2 Exit 100 10
2 Crossing 100 10

3 Entrance 100 0
3 Exit 100 0
3 Crossing 90 0

4 Entrance 100 10
4 Exit 100 10
4 Crossing 80 0

5 Entrance 100 0
5 Exit 100 0
5 Crossing 90 0

TABLE III
PERFORMANCE AT MULTIPLE PEOPLE WALKING SIMULTANEOUSLY

Events Ground Truth
(# of events)

FORK (# of
events)

FORK
Accuracy(%)

Entrance 207 207 100
Exit 235 232 98.72

TABLE IV
OCCUPANCY ESTIMATION AT A LOW FRAME RATE

that median filtering is not needed here as the depth data

is not so noisy and we see a similar performance without

median filtering. The way ground truth is collected is described

in Section IV-A. FORK deals with many realistic scenarios

during the evaluation including door opening and closing,

arrival of visitors, arrival of food caterers with boxes of food

in hands, multiple people walking together, people moving

with bicycles, people carrying laptops in their hands, people

walking while drinking water from a bottle, people walking

while talking on a phone, people waving hands over their

heads, people wearing regular caps, and the arrival of a

cleaning lady with a large drum of cleaning equipment. The

result of occupancy estimation is shown in Table IV. FORK

detects all 207 entrance events accurately and achieves 100%

accuracy. Among 235 exit events, FORK detects 232 of them

and achieves 98.72% accuracy. The three cases that FORK

misses are when two interns try to fail the system by jumping

together to exit (counted as one), when someone walks out

extremely fast, and when someone covers his head by waving

hands to defeat the system. The average accuracy is 99.36%.

D. Occupant Identification Performance

In order to determine if FORK can identify room occupants

(who entered/left), we ask 11 subjects to go through a door and
come back 10 times each. This provides us 11 · 2 · 10 = 220
data points with ground truth that are used in this post-facto
analysis. Every time when someone enters/exits, we extract 38

simple features as described in Section II-E. We perform a 10

fold cross validation using these features of 220 entrance/exit

events and obtain 97.27% accuracy in occupant identification

using the Naive Bayes classifier. The accuracy is 95%, 96.36%,

and 98.18% for multilayer perceptron, random forest, and K*

classifiers, respectively. In order to see how much training is

needed, we vary the number of training instances from 1 to

18 and show occupant identification accuracy of the rest of

the data in Figure 10 for all these four approaches. It shows

that with only 6 samples, the accuracy is over 80% for all of

the approaches with K* classifier reaching 91.56% accuracy.

With 10 samples, all the classifiers reach over 90% accuracy.

Fig. 10. Accuracy of occupant identification.

K* reaches 100% accuracy with 17 training samples. It shows

a great potential for personalizing room environment, e.g.,

room temperature, light intensity by identifying individuals in

a medium sized office. Coupled with building floorplan and

multiple hypothesis testing, these features can also be used for

tracking individuals throughout a building in real-time, which

we leave to future work.

E. Door Detection Performance

In this section, we evaluate the performance of FORK in

detecting doors. We collect data from all nine deployments

and use 40000 frames for this evaluation. We consider door

sizes from 3 feet to 6 feet, door opening and closing, keeping

the door open and closed, doors with both (left, right) sides

seen as well as one side unseen by FORK (12 feet double door

in Scaife 125). We do not require keeping the space empty for

door detection. In fact, people keep walking in these frames

while we detect doors. As discussed in Section II-D, lines CD,

DE, and EF are fixed for now. In this evaluation, we try to

determine how accurate we are in detecting line AB.

The results are shown in Table V. It shows that FORK can

detect doors with 100% accuracy in most instances. FORK is

usually not affected by people walking through the doorway

as it only considers data points between 1 and 2 feet from the

ground. However, if they stand in a way that obstructs a nearby

wall/door so that Canny edge detection doesn’t produce special

edge SE, FORK can’t find the exact line AB. Also, people’s

movement may cause the line AB to angle a bit especially if

FORK can’t see the other side of the door (if the door is too

wide or the edge produced by the wall is too short). Usually

it is not inaccurate enough to affect occupancy estimation.

However, we can overcome this limitation by detecting doors

in several frames followed by a voting. Sometimes objects

in the scene can affect door detection performance. In Scaife

classrooms 212 and 220, there was a chair placed in a way that

blocked SE and in 220 there was a half pad chair placed on

the other side of the door that produced a stronger edge than

the wall and caused inaccuracies. Even if someone verifies the

door detection and updates if needed, the effort is minimal.

F. Impact of Different Factors on Execution Time

In this section, we demonstrate the impact of processors,

OpenKinect driver, and number of people on FORK’s execu-

tion time. We show the performance in terms of frame rate

(number of frames processed per second) instead of execution

time, as frame rate captures the real-time processing ability.

298302302

Authorized licensed use limited to: ROBERT BOSCH. Downloaded on August 03,2021 at 18:25:17 UTC from IEEE Xplore. Restrictions apply.

Door #of Frames Accuracy(%)
Lab 5000 100
Warhol 5000 100
Clemente 5000 100
Main Entrance 5000 100
Remote Entrance 5000 100
Scaife 212 2000 94.45
Scaife 220 3000 93.57
Scaife 125 (left) 5000 100
Scaife 125 (right) 5000 100

TABLE V
ACCURACY OF DOOR DETECTION

Fig. 11. Frame rate on different processors.

Impact of different processors: In order to show how fast
FORK processes, we also benchmark performance on Intel R©

CoreTM i5 and CoreTM i7 processors. We use the collected data

from Scaife auditorium 125 (c.f. Section III) in this analysis.

We choose 2000 frames containing a dense scenario, where

over 40 students came out from the auditorium in only 2.75

minutes. Figure 11 shows the processing rate (Frames Per

Second) when the same solution is run on ARM v7 (in Odroid

XU4), Intel R© CoreTM i5, and Intel R© CoreTM i7 processors.

We run the same program 10 times in each machine and show

the average result. Note that hardware configurations (eMMC

card in ARM v7 vs. SSDs in the others) and operating systems

(Ubuntu 15.04 on ARM v7 vs. Ubuntu 14.04 on CoreTM i7 vs.

Mac OSX 10.10.1 on CoreTM i5) are not exactly same in all

three. Still it shows the fact that FORK is extremely fast as it

processes at 144.05 FPS, 131.62 FPS, and 53.2 FPS on CoreTM

i7, CoreTM i5, and ARM v7 processors, respectively, when

no one is in the scene. When there are people, it processes

at 102.88 FPS, 96.93 PFS, and 34.08 FPS on average on

CoreTM i7, CoreTM i5, and ARM v7 processors, respectively.

It shows that FORK is extremely fast (102.88 FPS) compared

to existing computer vision based people counting solutions

that can process about 30 FPS on CoreTM i7 processors.

Impact of the driver and of feeding sensor data in
real-time: We use the OpenKinect driver to access the depth
frames with no change in the driver code. We see a significant

impact of the driver in the FORK’s processing rate due to

processing and filtering pixels at different stages, buffering,

and I/O by OpenKinect. In order to see the impact of the

driver, we feed real-time depth data using the Kinect and skip

all the processing after getting a depth frame. In that case, an

ARM v7 processor can process only at 13.36 FPS, which is

much lower than 30 FPS in the Kinect specification. It is 98.4

FPS for an Intel R© CoreTM i5 processor. In another test, when

we do all the subsequent processing, FORK runs ∼5x slower
in an ARM v7 processor when depth data is fed from the

sensor in real-time compared to when (previously collected)

Fig. 12. Frame rate with different people count.

stored depth frames are fed from an eMMC card (9.7 FPS vs

50.2 FPS). In several works [28] [10] [30] [26], frame rate

is computed by analyzing stored images. It shows that frame

rate computed in such a way is not the same as that of feeding

depth data from the sensor in real-time.

Impact of number of people: When there are more people
in the field of view, FORK’s frame rate degrades as they

require more head and shoulder verification. Figure 12 shows

how frame rate varies when the number of people are changed

from 0 to 13. When median filtering is not used, FORK

processes at 8.9 FPS when no one is in the field of view.

When there are 13 people, the frame rate drops to 4.3 FPS,

which is still good enough to detect and track people. However,

when median filtering is used, FORK can only process at 4

FPS when no one is there. With 6 or more people in the field

of view, the frame rate drops below 3 FPS, which degrades

its real-time ability of occupancy estimation as shown in an

experiment below.

G. Impact of Frame Rate on Occupancy Estimation

We evaluate the performance of FORK at different frame

rates. We collect data at 20 FPS from the Bosch lab door

deployment and use 9000 frames in this evaluation. We ask

the participants to go wild as they cover their heads while

walking, wave their hands, shake their heads back and forth,

run fast, move table lamps and empty chairs, and stand still

for a while near the door. There are 75 entrance and 75 exit

events. We vary the frame rate from 20 to 0.5 FPS and show

how that affects precision, recall, and F-score of occupancy

estimation in Figure 13. At 4 FPS, the precision and recall

are 94.23% and 98%, respectively. At 3 FPS, the precision

and recall are 96.64% and 96%, respectively. It shows that we

can estimate occupancy with high precision and recall with a

cheaper depth sensor having a lower frame rate.

H. QoS Parameters and Real-time Analysis

FORK is a soft real-time system. Its performance depends

on application requirement, e.g., occupancy estimation accu-

racy, selection of hardware within the cost budget. Frames

are processed as fast as possible, where the achieved frame

processing rate depends on several parameters, including

the number of individuals being tracked. Formally, the time

needed per frame consists of:

• Data acquisition and transfer time: It depends on image
size and it is constant.

299303303

Authorized licensed use limited to: ROBERT BOSCH. Downloaded on August 03,2021 at 18:25:17 UTC from IEEE Xplore. Restrictions apply.

Fig. 13. Performance at different frame rates.

• Preprocessing time: It depends on image size and it is
constant.

• Time for multilevel scanning: If there is no one in the
scene, it is constant. Otherwise, it depends on number of

people in the scene.

• Time for verification of head/shoulder: It depends linearly
on the number of individuals detected.

• Time for tracking individuals: It depends linearly on all
pair combinations of number of individuals of this frame

and of the previous frames.

So, the time for processing a frame (T) consists of a
constant part (T0) and a part that is roughly proportional

to the number of individuals (N) and can be estimated as
T ≈ T0 + p · N seconds. The frame rate (FPS) is 1/T ≈
1/(T0 + p · N). Figure 12 suggests that T0 is 1/8.9 second

without median filtering and 1/4 second with median filtering.

Also, it shows that p is (1/4.3 - 1/8.9)/13 = 0.00925 second
per person without median filtering and (1/2.58 - 1/4)/13 =

0.0105 second per person with median filtering. p is slightly
smaller without median filtering as depth values of some pixels

are reported zeroes due to noise and hence ignored during

the head-verification process, which saves a little computation

time.

In addition to detecting individuals, FORK requires an

individual to be seen on sufficient number of frames to enable

reliable counting. As long as only a single person is in the field

of view, a minimum of two frames showing the individual on

each side of the door is sufficient. However, with more people

entering or leaving simultaneously and more than one door,

more frames are needed for the bipartite matching algorithm

to track individuals reliably. Also, it depends on location of the

doors, location of individuals, and the number of consecutive

frames FORK misses detecting them. Based on the log of a

FORK unit deployed at Scaife Hall classroom 220, we see that

FORK tracks an individual around 17 frames (median value)

during the entire path of the individual. It processes depth

data around 9 FPS. Hence, it sees a person for 1.89 seconds

to enter/exit. If a FORK unit processes frames at K FPS, it

will see him/her for K· 1.89 frames to enter/exit.
When FORK takes too long to process frames, this man-

ifests as a loss of its performance (i.e. counting accuracy).

Increasing the number of individuals lowers the frame pro-

cessing rate (c.f. Figure 12) and at the same time requires

processing at a higher frame rate. We can therefore expect

FORK’s performance to drop abruptly when the frame rate

Fig. 14. Performance at different door sizes

falls below a certain threshold. From Figure 13, this threshold

can be estimated to be around 3 FPS. We suggest future depth

sensing based people counting systems to process frames at 5

FPS or higher for having good performance consistently.

I. Impact of Door Size

In this section, we describe how door size affects the

performance of FORK. Kinect v2 has a 70.6 degrees of

horizontal field of view (FOV). If it is mounted 9 feet high,

it can see a 2 · 9 · tan(70.6/2) = 12.74 feet wide door at
the floor level. However, since the FOV is angular and FORK

requires the head to be seen, for a six feet tall person, in

order to keep his head within the angular FOV, the door size

becomes limited to 2 · (9-6) · tan(70.6/2) = 4.25 feet. Actually
FORK can cover a bit wider door since it can detect partial

heads and when people enter/exit through the edges of a door,

they cross door lines CD or EF that are within this range.

To determine how performance degrades for a wider door, we

consider a six-foot wide door (Bosch lab door). It has a 9.3-

foot drop ceiling and the Kinect is mounted at 8.9 feet from the

ground. We consider 10 individuals of varying heights from

5’3" to 6’1" asking each to walk in and walk out 10 times

each along straight lines that are 6 inches apart across the

door. There are 13 lines and each individual generates 20 · 13
= 260 data points. Overall 208075 depth frames are collected

for analysis. The box plot of the accuracy of entrance and

exit events of all the individuals at different distances from

the center of the Kinect co-ordinate system (marked as 0) is

shown in Figure 14. This analysis reveals several interesting

findings. First, we see that the accuracy is 100% at the middle

and it starts to degrade at 2.5 feet from the center of the Kinect,

which suggests that the performance of FORK will degrade

for a door wider than 5 feet (for this mount height). There

are two reasons for this: noise and missing heads. There is a

significant amount of noise at the edges and sometimes even

though the head is in the frame, it can’t be seen due to noise

(there is a big hole in the head). The noise can be asymmetric

as we see more noise at the left side. Second, we see that

FORK can detect shorter (height < 5’5”) and slender people

with 100% accuracy even at the edges of the door. Short and

slender people generate less noise. It suggests mounting the

Kinect at a higher altitude, if possible. Taller people (height

>5’9") not only produce more noise, but their heads are unseen

near the edges of the door. Third, we suggest two ways to deal

with noise: using median filtering at the edges of the frame

300304304

Authorized licensed use limited to: ROBERT BOSCH. Downloaded on August 03,2021 at 18:25:17 UTC from IEEE Xplore. Restrictions apply.

(doing such in the entire frame is computationally expensive)

and relaxing the error threshold Thead at the door edges. We

use median filtering in this analysis. Relaxing Thead too much

(> 55) causes false positives and hence is not suggested.

V. DISCUSSIONS AND FUTURE WORKS

Currently, each FORK unit costs around $260 ($99 for a

Kinect, $49 for a Kinect adapter, $74 for an Odroid, $24 for

an 8GB eMMC card, and $10 for a WiFi dongle). A major

portion of the cost is due to the high price of Kinect and its

adapter. However, depth sensors have been rapidly decreasing

in price as new ones become available on the market, e.g.,

Intel R©’s RealSense and Texas Instrument’s OPT8241 TOF
sensor (costs <$60). They will be cheaper if we build one
with a lower frame rate and lower resolution. FORK is more

appropriate for estimating occupancy in commercial spaces,

academic buildings, restaurants, and shopping centers for its

cost. Hence, we evaluated FORK in one Bosch office and

in one CMU campus building. Also, with this cost and high

accuracy, FORK is useful for collecting "almost" ground truth

for developing other solutions of occupancy estimation.

Even though FORK does not store or upload any depth

image for privacy issues, biometric tracking can lead to privacy

concerns. However, biometric tracking can be disabled, if

needed. Note that FORK is not privacy invasive in a large

space, e.g., in a shopping center, as there are many people

with similar body shape there.

We could not analyze the huge amount of data we collected

due to lack of resources. We plan to use the data for future

projects. The FORK system has not been tested with infants

and pets, which are important to detect for emergency re-

sponse. We consider it future work. FORK requires almost no

training for counting people as it can configure itself automati-

cally by detecting door positions. However, for identifying and

tracking individuals, it requires a little training. In the future,

we will explore unsupervised machine learning algorithms to

identify and track individuals. Also, in the future, we plan to

use the depth sensor to determine objects that people carry

while entering/exiting rooms, e.g., backpacks, laptops, boxes,

and even guns, which will improve safety, security, and energy

efficiency (e.g., someone leaving his office with a backpack

around 5 PM may mean he is leaving for the day, whereas

if he is leaving with a laptop it may mean he is going out

for a meeting, and leaving empty handed may mean that he is

leaving for a restroom break) using deep learning techniques.

If a carefully designed model is built using a powerful machine

in prior and ported to an embedded platform, the classifier can

be run on the embedded platform to detect objects at real-time.

VI. RELATED WORK

In this section, we review some of the most relevant

techniques for occupancy estimation.

Break-Beam sensors: When using break-beam sensors,

a pair of IR transmitters and receivers is placed across a

door. The transmitters continuously transmit IR beams and

if someone passes through the door, the receivers notice that

the beams are broken. Based on which receiver observed

the broken beam first, it can determine whether someone

is entering or leaving. However, if multiple people move

simultaneously (in the same direction or opposite direction),

the occupancy estimation becomes inaccurate. Also, break-

beam sensors can not be used for biometrics.

Ultrasonic sensors: Doorjamb [16] uses ultrasonic range
finders mounted above a doorway to detect people. It can

differentiate people by measuring their heights. However, it

can not detect when two or more people simultaneously

cross a door. [25] uses a wide-band transmitter to generate

ultrasonic chirps and uses a microphone to detect changes in

the reverberation to estimate the number of occupants in a

room. In order to build a regression model for reverberation

specific to a room, the system needs to be trained with the

room empty as well as with several occupancy levels. Note

that ultrasonic solutions are usually not pet friendly.

IR Array sensors: Conventional PIR motion detectors can
detect human presence, but can not count the number of

people. [20] places two sets of four PIR sensors to build a PIR

sensor tower and use the analog signals from the PIR sensors

to localize and classify a moving object. However, it can not

deal with the case when multiple people move together.

Depth cameras: Depth cameras, especially the Kinect,

have been used to detect, track, and count people by horizontal

placement [28] [17] [10] and vertical placement [30] [26]. [26]

uses a feature based approach, where it uses depth data to

extract HOG features of the head and shoulder, and uses a

SVM classifier for detecting pedestrians. [28] uses a model

based approach to detect humans. To determine the possible

positions of the heads, it uses Canny edge detectors to find all

edges in the depth array and uses that to do a 2D chamfer

distance matching with a binary head template. We avoid

Canny edge detection in our solution because of its high

computational complexity. [30] mounts Kinect vertically and

finds local minimum regions in the depth image to detect

humans as heads are closer to the camera than other parts

of the body in this setting. However, it is not clear how it

will behave if other objects (e.g., a box, a chair, or a ball) are

moved under the Kinect since there is no specific checking

for verifying a human head. Also, a number of these solutions

[17] [10] [26] use powerful machines (e.g., Intel R© CoreTM i7

processor) and/or high frame rate (around 30 FPS) for counting

people whereas we tailor our solution for a low power ARM

processor-based machine using depth data at a low frame rate,

even at 4 FPS.

RGB cameras: A number of solutions [23] [19] [31] [29]
[21] [18] [7] [12] use RGB video cameras for counting people.

Several of these solutions [21] [18] [7] [12] assume that all

the moving objects are people. To address that limitation, [31]

counts people by detecting their faces, which is very privacy

invasive compared to our solution. To detect individuals,

[9] uses a flexible shape model [8] to track the silhouette

of a walking pedestrian. However, [8] assumes that objects

do not overlap and a reasonable proportion of the objects

are not occluded. To deal with overlapping and occlusion,

301305305

Authorized licensed use limited to: ROBERT BOSCH. Downloaded on August 03,2021 at 18:25:17 UTC from IEEE Xplore. Restrictions apply.

multiple cameras are used [11], cameras are mounted ver-

tically looking downwards [21] [18] [7] [12]. Model based

approaches [23] [19] use models to detect individuals, e.g.,

in [19], pedestrians are modeled as rectangular patches with

an assumption that each patch is moving with a constant

velocity. Feature based approaches use training based on local

features, e.g., histograms of oriented gradient (HOG) [13],

oriented histograms of differential optical flow [14] to detect

humans. Although the reported accuracies of human detection

are high for these approaches, RGB image-based approaches

encounter difficulties when the background is cluttered, low

illumination, or human subjects have articulated poses. In

these cases, either the accuracy drops or the computation cost

increases. Depth camera based approaches do not have such

problems since a human body has to occupy a space regardless

of the background or illumination state.

There are a few works [24] [27], where ARM processor

computers are used to process RGB images. FORK is the

first system that processes depth data in an ARM processor.

RGB cameras/webcams are relatively inexpensive than a depth

sensor. However, RGB cameras expose privacy risks if they are

compromised when connected to the Internet. FORK is not as

privacy invasive even if compromised as a depth sensor does

not reveal the color of the clothes, skin, and hair. Also, it is

hard to determine the type of clothes occupants are wearing

using a depth sensor mounted in a ceiling as in FORK.

VII. CONCLUSIONS

In this work, we perform an exploratory study to under-

stand the potential of depth sensors for detecting, estimating,

and tracking building occupants. We specifically address the

computational complexity issue so that the entire solution

can be run on a cheaper and low power ARM processor in

real-time. We evaluate and test the exploratory ideas using

our prototype system FORK, which achieves over 99% ac-

curacy in occupancy estimation at realistic scenarios. We also

demonstrate the potential of identifying and tracking occupants

with depth sensors using biometric features. Our extensive

evaluation reveals the impact of processors, OpenKinect driver,

and number of people in the field of view in the real-time

performance of FORK. Our analysis demonstrates that a low

frame rate depth sensor is sufficient for this application, which

motivates manufacturers to build such and thus helps lower

the cost of depth sensors. If depth sensors become cheaper in

the future, this work serves an exploratory study to develop

depth sensing based real-time systems on ARM embedded

processors.

VIII. ACKNOWLEDGEMENT

We would like to thank the anonymous reviewers and shep-

herd for the insightful suggestions. This work was supported,

in part, by DOE grant DE-EE0007682. The opinions expressed

here are those of the authors and do not necessarily reflect the

views of the DOE.

REFERENCES

[1] Break beam sensors from all-tag. http://all-tag.com/product-items/
display-counter-bi-directional/.

[2] EIA. http://www.eia.doe.gov/.
[3] http://www.heimannsensor.com/products_imaging.php.
[4] Human engineering design data digest. http://www.acq.osd.mil/rd/hptb/

hfetag/products/documents/HE_Design_Data_Digest.pdf.
[5] Human figure average measurements. http://www.fas.harvard.edu/

~loebinfo/loebinfo/Proportions/humanfigure.html.
[6] Odroid XU4. http://www.hardkernel.com/main/products/prdt_info.

php?g_code=G143452239825.
[7] J. Barandiaran, B. Murguia, and F. Boto. Real-time people counting

using multiple lines. In WIAMIS, 2008.
[8] A. Baumberg and D. Hogg. Learning flexible models from image

sequences. In ECCV, 1993.
[9] A. Baumberg and D. Hogg. An efficient method for contour tracking

using active shape models. In IEEE Workshop on Motion of Non-Rigid
and Articulated Objects, 1994.

[10] E. Bondi, L. Seidenari, A. Bagdanov, and A. Del Bimbo. Real-time
people counting from depth imagery of crowded environments. In AVSS,
2014.

[11] Q. Cai and J. Aggarwal. Tracking human motion using multiple cameras.
In ICPR, 1996.

[12] T.-H. Chen and C.-W. Hso. An automatic bi-directional passing-people
counting method based on color image processing. In ICCST, 2003.

[13] N. Dalal and B. Triggs. Histograms of oriented gradients for human
detection. In CVPR, 2005.

[14] N. Dalal, B. Triggs, and C. Schmid. Human detection using oriented
histograms of flow and appearance. In ECCV, 2006.

[15] V. L. Erickson, M. Á. Carreira-Perpiñán, and A. Cerpa. Observe:
Occupancy-based system for efficient reduction of HVAC energy. In
IPSN, 2011.

[16] T. W. Hnat, E. Griffiths, R. Dawson, and K. Whitehouse. Doorjamb:
Unobtrusive room-level tracking of people in homes using doorway
sensors. In ACM SenSys, 2012.

[17] C.-T. Hsieh, H.-C. Wang, Y.-K. Wu, L.-C. Chang, and T.-K. Kuo. A
kinect-based people-flow counting system. In ISPACS, 2012.

[18] J. W. Kim, K. S. Choi, B. D. Choi, and S. J. Ko. Real-time vision-based
people counting system for security door. In International Technical
Conference on Circuits/Systems Computers and Communications, pages
1416–1419, 2002.

[19] O. Masoud and N. Papanikolopoulos. A novel method for tracking and
counting pedestrians in real-time using a single camera. IEEE TVT,
50(5):1267–1278, Sep 2001.

[20] S. Narayana, R. V. Prasad, V. S. Rao, T. V. Prabhakar, S. S. Kowshik,
and M. S. Iyer. PIR sensors: Characterization and novel localization
technique. In IPSN, 2015.

[21] M. Rossi and A. Bozzoli. Tracking and counting moving people. In
ICIP, volume 3, pages 212–216, Nov 1994.

[22] A. Rowe, M. Berges, G. Bhatia, E. Goldman, R. Rajkumar, J. Garrett,
J. Moura, and L. Soibelman. Sensor andrew: Large-scale campus-wide
sensing and actuation. IBM Journal of Research and Development,
55(1.2):6:1–6:14, Jan 2011.

[23] J. Segen and S. Pingali. A camera-based system for tracking people in
real time. In ICPR, 1996.

[24] S. Shah. Real-time image processing on low cost embedded computers.
Technical Report UCB/EECS-2014-117, EECS, UC Berkeley, 2014.

[25] O. Shih and A. Rowe. Occupancy estimation using ultrasonic chirps. In
ICCPS, 2015.

[26] Q. Tian, B. Zhou, W. hua Zhao, Y. Wei, and W. wei Fei. Human
detection using HOG features of head and shoulder based on depth
map. JSW, 8(9):2223–2230, 2013.

[27] W. Wolf, B. Ozer, and T. Lv. Smart cameras as embedded systems.
Computer, 35(9):48–53, 2002.

[28] L. Xia, C.-C. Chen, and J. Aggarwal. Human detection using depth
information by kinect. In CVPRW, 2011.

[29] D. Yang, H. Gonzalez-Banos, and L. Guibas. Counting people in crowds
with a real-time network of simple image sensors. In ICCV, 2003.

[30] X. Zhang, J. Yan, S. Feng, Z. Lei, D. Yi, and S. Li. Water filling:
Unsupervised people counting via vertical kinect sensor. In AVSS, 2012.

[31] X. Zhao, E. Delleandrea, and L. Chen. A people counting system based
on face detection and tracking in a video. In AVSS, 2009.

302306306

Authorized licensed use limited to: ROBERT BOSCH. Downloaded on August 03,2021 at 18:25:17 UTC from IEEE Xplore. Restrictions apply.

