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ABSTRACT

To make informed decisions about model prediction, different sources of uncer-
tainty must be treated appropriately. In general, uncertainties can take two forms.
The first is aleatory uncertainty, which accounts for the natural variation of inputs
and parameters; it is irreducible and cannot be decreased with additional knowl-
edge. The second type of uncertainty is epistemic, which results from lack of
knowledge about the system of interest. Epistemic uncertainty can be reduced by
obtaining additional information. The distinction between epistemic and aleatory
uncertainty is often ignored or misunderstood during the formulation of statistical
models for calibration. In this work, two common statistical models for calibration
are analyzed to fully understand the distinction between the two types of uncertain-
ties during the calibration process. The first statistical model treats only epistemic
uncertainty in the parameters, and the second includes both epistemic and aleatory
parameter uncertainty. These statistical models are used to create synthetic data
and a simple empirical model is calibrated to that data. If the calibration method
has assumptions consistent with the statistical model used to create the synthetic
data, then the parameter distributions are accurately estimated. However, if a cali-
bration method is inconsistent with the statistical model, the underlying parameter
distributions are mischaracterized. When incorporated into a best estimate plus un-
certainty framework, this process will indicate the wrong parameter distribution(s)
to be propagated through a computational model.

1 INTRODUCTION

Best Estimate Plus Uncertainty (BEPU) methodologies are becoming increasingly common in nu-
clear engineering. The most common methods follow four basic steps: (1) characterize the statis-
tical distributions of model parameters, (2) randomly sample the model parameters, (3) evaluate a
computational model using those parameters, and then (4) use the results to assess the distribution
of some quantity of interest. For example of such methodologies, see [2, 6].

In this work, we focus on the first step in the BEPU process. In many studies, the model parameters
are defined using expert elicitation, however this method is susceptible to biases and inaccuracies.
Instead, calibration can be used, which optimally fits an empirical model to match experimental
data. Unlike expert elicitation, calibration is easily defended and can be improved as more exper-
imental data is gathered. A wide variety of calibration methods have been developed throughout
the literature [12]. In this work, we analyze the assumptions which underlie these methods.
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The first assumption of most calibration methods is that experimental data has some measurement
uncertainty, related to the hardware and experimental process, which can be treated as random. In
addition to measurement uncertainty, some statistical models used for calibration attribute uncer-
tainty to the model parameters themselves. In the most common paradigm, the model parameter
uncertainty is assumed to be epistemic. In other words, all parameter variation is due to a lack of
knowledge or data. This implies that the parameter distribution would converge to a point value
as more knowledge is obtained. In addition to epistemic parameter uncertainty, some calibration
methods attribute aleatory uncertainty to the parameters. Aleatory uncertainty is due to natural
variation, and is not reduced as more data is gathered. With these methods, the parameter distribu-
tion converges to the aleatory uncertainty distribution as more knowledge is gathered.

The two types of statistical models have very different physical interpretations. The first, with
only epistemic uncertainty, implies that each model parameter has a true but unknown value. This
idealized case would be exemplified if an input parameter were some physical constant, such as
the acceleration of gravity or speed of light. If an experiment is assumed to have both aleatory
and epistemic parameter uncertainty, the input parameter is acknowledged to have an unknown
distribution. This parameter treatment could potentially represent any experiment where lack of
knowledge prevents parameters from being known precisely. For example, low quality data or
physics that are not represented in the empirical model.

In[Section 2, the methods used in this work are outlined. Results are presented in for (1)
verification of the calibration methods when they are applied to consistent data, and (2) demonstra-
tion of the consequences when statistical models are misapplied. provides a discussion
of the results and possible impacts on BEPU analyses.

2 METHODS
The vector y = [y1,y2,...,yn] represents N experimental measurements corresponding to state
settings x = [x1,x2,...,xy]. An empirical model f(x,0) is formulated to relate y and x. Here,

0 is a vector of parameters which will be calibrated. The statistical model is formed as

y:f(x59)+8- (1)

The observational error € represents measurement uncertainties and other errors associated with the
experiment. In this work, the observational error ¢ is assumed to be identically and independently
distributed about zero with a constant variance: € ~ .#(0,62). The two statistical models dis-
cussed in have the following treatment of model parameters: (1) they each have a single
fixed unknown value, or (2) they are assumed to have joint distribution. The aleatory uncertainty
distribution is assumed to be a joint Gaussian distribution 8 ~ .4"(6y, ¥), where the parameter
means 6y and covariance W have fixed unknown values. We employ an empirical model that has
a single model parameter; therefore, the covariance simplifies to a single standard deviation which
will be denoted as y.
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2.1 Bayesian Calibration

Bayesian analysis assumes a joint prior parameter distribution 7, (0), which characterizes previous

knowledge about the distribution. The goal of Bayesian calibration is to estimate the posterior

distribution 7(6]y), which incorporates information about both the prior and the experimental

data [12]. The posterior and prior functions are related by Bayes’ Formula using the likelihood
function 7(y|6):

el — - FU1O(0)

J7(y|6)7,(6)d6

Greater likelihood values correspond to combinations of parameters that are most likely to have
generated the observed experimental data. In most engineering applications of Bayes’ formula,
direct solution of is impossible because (1) the numerator has no closed form solution
and cannot be directly sampled, or (2) the denominator involves an integration over the—often
high-dimensional—parameter space. In these cases, Markov Chain Monte Carlo (MCMC) meth-
ods can be used to solve Bayesian Calibration problems. These are a general class of methods
which are used to construct a sampling-based chain whose stationary distribution is the desired
posterior.

2)

In this work, a different Bayesian method is employed for each statistical model. Detailed al-
gorithms for each method are contained in the citations in this section (particularly [7] and [8]).
The conclusions of this work are independent of the particulars of the calibration methods, so ex-
traneous details are not described here. This allows the reader to focus on the simple delineated
example.

The first Bayesian method, which treats only epistemic uncertainty, is Delayed Rejection Adaptive
Metropolis (DRAM) [3]. DRAM improves upon the most basic MCMC method, Metropolis-
Hastings [5], in two ways. First, the covariance matrix is updated throughout the calibration,
which makes the algorithm adaptive [4]. This increases the efficiency of the algorithm because
the high-probability parameter space is preferentially sampled. The second improvement is that
second stage candidates are proposed, which is termed delayed rejection and encourages sampling
of the entire parameter space [9].

For Bayesian calibration, estimating both epistemic and aleatory parameter uncertainty requires a
hierarchical algorithm. In this work, the method used is a hierarchical Metropolis-within-Gibbs
algorithm. The epistemic variation is estimated using the Metropolis algorithm, and the aleatory
uncertainty is estimated via a nested Gibbs algorithm. For more details of Gibbs sampling, see [1].
The implementation used in this work is detailed in [7, 8, 13].

2.2 Synthetic Data

To verify that the selected calibration methods are accurate, this work utilizes simple synthetic
data. The synthetic data is created using a linear function which relates x and y: f(x, 6) = 6x. This
linear function is both the underlying physical basis of the synthetic data and the empirical model
to be calibrated. Note that this model is selected so that the calibration is tractable and easy to
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understand. Real physics models can be much more complex and can exhibit mismatches between
the physics and the empirical model.

Each set of data uses the statistical model in with different assumptions. The statistical
model with only epistemic uncertainty will be consistent with data sampled from:

y=0x+.4(0,6%). (3)

For this model, 8 = 1 and ¢ = 0.1. The statistical model with both epistemic and aleatory uncer-
tainty will be calibrated to data sampled from:

y =N (60, y*)x+.4(0,07). 4)

Here, y is the standard deviation of the aleatory distribution of 6. For this model, 6y =1, y =0.1,
and o = 0.01. One hundred synthetic data points are shown for each model in Figure 1. The base
linear model, f(x,0) = Ox, is also shown.
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(a) Only epistemic uncertainty (Equation 3) (b) Epistemic and aleatory (Equation 4))

Figure 1: Example synthetic data for each statistical model

2.3 Area Metric

In this work, convergence to the expected value or distribution will be quantified using the so-
called area metric. This metric, which is widely used in engineering disciplines, quantifies the
area between two cumulative distribution functions (CDFs) [11]. So, if F(x) and G(x) characterize
the known and calibrated CDFs, the area metric is defined as

ey = / IF(x) — G(x)|dx. )
Note that this metric was chosen because it can be calculated when either F(x) or G(X) (or both)

are characterized by a point value. Therefore, the same metric can be used when 0 is expected to
converge to a single value or when it converges to the underlying aleatory distribution.
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3 RESULTS

In this section, the results of calibration to synthetic data are reported as a function of the number
of synthetic data points N. The first example is a traditional calibration to data with only epistemic
uncertainty. The second example includes both aleatory and epistemic parameter uncertainty. The
final example calibrates data with both sources of uncertainty using a model which only accounts
for epistemic uncertainty.

3.1 Only Epistemic Uncertainty

In this section, synthetic data is created using and a consistent statistical model is used
to estimate the underlying parameters. The DRAM method is used with 10* burnin samples. By
comparing the calibrated 6 and ¢ to the values used to compute the synthetic data, we verify that
the calibration functions properly.

The results for 6 and o are respectively shown in Figure 2 and Figure 3. Note that the synthetic
data is sampled without replacement to reduce statistical noise in the results. As the number of data
points increases, epistemic uncertainty in 6 is reduced. As the epistemic uncertainty is eliminated,
0 converges to the expected point value. This is shown qualitatively by the CDF and quantitatively
by the area metric in [Figure 2. The observational error variance ¢ is also shown to converge to the
correct point value as data set size increases in Figure 3.
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Figure 2: Convergence of 6 for data and statistical model with only epistemic uncertainty

The assumptions of the statistical model are consistent with the data, so the calibration parameters
converge to the correct values.

3.2 Epistemic and Aleatory Uncertainty

Now, synthetic data is created using Equation 4, which includes both epistemic and aleatory
sources of parameter uncertainty. The hierarchical Metropolis-within-Gibbs algorithm is employed
in this section with 10° burnin samples. Through comparison of the calibrated 6y, Y, and o to the

5
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Figure 3: Convergence of ¢ for data and statistical model with only epistemic uncertainty

synthetic values, the calibration accuracy can be verified. Smaller data set sizes are used in this
section due to the computational requirements of the hierarchical Bayesian calibration.

The results for 0 and y are summarized by the distributions in [Figure 4. To maintain continuity be-
tween the results in each section, these distributions represent the total uncertainty in 0, including
both aleatory and epistemic. This type of distribution is known as an unconditional distribution;
it is constructed by statistically sampling from a family of epistemic realizations of the aleatory
uncertainty [10]. It is shown that, as the data set size is increased, the distribution of 6 converges
to the expected aleatory distribution. The results for o are shown in Figure 5. As the data set size
increases, d,q decreases; therefore, the observational error converges to the expected distribution.
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Figure 4: Convergence of 0 for data and statistical model with both sources of uncertainty

3.3 Mischaracterization of Data

In this final exercise, we employ the incorrect statistical model for a set of synthetic data. Synthetic

data with both sources of uncertainty is sampled from and the statistical model with
only epistemic uncertainty is applied. The DRAM algorithm is used for the calibration with 10*
burnin samples.
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Figure 5: Convergence of ¢ for data and statistical model with both sources of uncertainty

The parameter distribution results are shown in Figure 6. Because the statistical model does not in-
clude aleatory parameter uncertainty, the calibration incorrectly converges to a point value. There-
fore, the area metric increases and starts to approach a constant value.

The standard deviation of the observational error is shown in as data set size increases.
Since the statistical model fails to account for the aleatory uncertainty in 6 (see Figure 6)), all
uncertainty in the data gets apportioned to the observational error. This results in an overprediction
of the observational error variance by an order of magnitude.
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Figure 6: Non-convergence of 6 for the mismatched data and model

4 CONCLUSION

In this work, the underlying assumptions of two statistical models were analyzed for a linear em-
pirical model with a single model parameter. By using simple synthetic data, relationships between
the statistical models, parameter distributions, and data were easily identified. First, it was shown
that calibration is accurate when statistical model assumptions are consistent with underlying data.
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Figure 7: Non-convergence of ¢ for the mismatched data and model

This was demonstrated for both types of statistical model: when only epistemic uncertainty is
present, and when both epistemic and aleatory uncertainty are considered.

Because the experimental data is synthetic, there are no unknown sources of uncertainty. There-
fore, the epistemic uncertainty is eliminated as the number of data samples is increased. For sta-
tistical models without aleatory uncertainty, this means that the parameter distribution converges
to a point value. For statistical models with aleatory uncertainty, parameter distributions converge
to the aleatory uncertainty. The observational error, which is included in both statistical models to
quantify measurement uncertainty and other sources of error, is also better characterized as more
data is collected. This was demonstrated by the first two calibration exercises. This can be viewed
as an additional source of epistemic uncertainty that is reduced with more information.

In the final exercise, a calibration to data with aleatory uncertainty was performed using a statistical
model which assumed no aleatory uncertainty. Because the statistical model mischaracterized the
underlying parameter distribution, all error was apportioned to the observational error term. This
resulted in a drastic overestimation of the observational error by about an order of magnitude.
Additionally, the shape of the data is mischaracterized by the calibrated model. The observational
error is constant, whereas the parameter uncertainty scales with x. Since all error is apportioned to
the observational error, the calibrated model approximates data with the shape of using
the data shape of Figure 1(a). The error is spread evenly over the state space, and therefore it is
mischaracterized.

The parameter distribution was completely mischaracterized during the final exercise. This is an
important result because, in general, BEPU analyses propagate the model parameter distribution
through a computational tool. If epistemic and aleatory uncertainty are not separated in a real
analysis, the uncertainty of the quantity of interest can be underestimated. Moreover, an underesti-
mation of uncertainty is often nonconservative, meaning that it can have drastic real-world conse-
quences. Therefore, it is imperative that all sources of both epistemic and aleatory uncertainty are
understood, fully characterized, and included in statistical models.
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To compensate for underestimating the parameter uncertainty, an analyst might propagate the ob-
servational error as well. Since this would include all sources of error in the propagation, the
uncertainty magnitude would be less drastically underpredicted. However, this would mischar-
acterize the uncertainty shape, since the parameter error scales with x whereas the observational
error does not. Therefore, in this case, propagating the observational error through a simulation
tool would result in uncertainty distributions shaped like when the underlying data is

characterized by Figure 1(b).

This methodology can be applied to real problems with experimental data; however this introduces
many complexities that are difficult to address: heteroskedastic observational error, unknown hu-
man errors, and model discrepancies between experimental data and assumptions made by statis-
tical models. For clarity, these effects are left as topics for future study. In addition, future work
can include additional statistical models and calibration methodologies, analysis of multiple model
parameters, and nonlinearity between model parameters.
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