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Powder River Basin

* Powder River Basin
(PRB) is the largest coal
productlon (36% of total)
reservoir in US; “sub-
bituminous” coal

* Annual ash production:
8.9 million metric tons;
est. annual potential 3630

metric tons REOs (38%
of US annual demand)
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REE recovery potential from PRB Coal byproducts ¥E ENERGY
LABORATORY

* Ca-rich Ash samples from Powder River Basin (PRB) content have more mobile REEs compared to Al-rich Appalachian
ash, due to different REE deposition environments (Ca/Mg oxides as opposed to glass phase) during coal combustion.
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Characterization studies o understand the higher REE release from Ca-Mgrich PRB ash samples.

Demonstrated approximately 12wi% REE conceniraterecovered from PRB fly ash.
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Solid Characterization Elemental Distribution Acid Leaching

- 4 PRB samplevs. 1 - Synchrotron micro-XRF - Rotator 24hr, 10:1 L:S
APP fly ash mapping and micro- ratio

- Elemental )C(':(T\E)S er il ane - Inorganic acid: HNO3,

HCl, H2504

- Organic acid: Citric,
acetic, oxalic, EDTA

Composition: ICP-MS, C

and S content - 7-step sequential

extraction
-Mineralogy: XRD and

SEM
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Ash samples (PRBvs. APP) N ERNOLOGY

Powder River Basin (PRB), MO plant, High Ca, Mg content, from Electric Power Research Institute (EPRI) TL LABORATORY
Ca contentin fly ash 345 from Appalachian basin (APP), OH plant: 4.25%
All units in ppm as whole-basis, unless stated otherwise

%Al %Ca %Mg "¢

Sample Label Coal basin Description Sc Y Ce REY anomaly %Ash
ECO PRB EPRI Coal 1.9 3 1 24 0.59% 2.02% 0.34% 0.991 9.01
EFA PRB EPRI Fly Ash 26 38 91 264 945% 20.8% 3.46% 0.980 97.40
EBA PRB EPRI BottomAsh 21 32 79 248 816% 17.1% 2.75% 1.001 79.98
EPA PRB EPRI Ponded Ash 18 33 87 266 829% 16.3% 2.82% 0.994 93.71
34512 APP Fly Ash 141 92 166 524 11.3% 4.25% 0.53% 1.003 89
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Solid characterization L.
EPRI fly ash SEM backscatterimage (left) and SEM-EDS analysis (right) LABORATORY
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ﬁﬁfz @, | e 345 APP fly ash
P03 J oxide-

20 pm

SEM backscatter image
of fly ash article
(Montross et al. /3016)).
Phases identified:

ain blue, Si in green -~ . ‘. Be. TS | Si-Al phase -purple

Fe-oxide - red
and Al inred REE mineral - yellow

* Preliminary XRD results found that PRB while predominantly amorphous, generally consists of Ca,Mg-
rich mineral phases (e.g.,lime, periclase, anhydrite, merwinite, calcite and brownmillerite), in contrast to
the aluminosilicate phases (e.g. mullite) commonly found in APP ash.

* SEM results showed amorphous glass phases with Ca-rich crusts in EPRI fly ash
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Synchrotron-based Micro-analysis (3 samples 6 mapping areas)

, TL [EsHoroey
Example: EPRI Ca-, Mg-rich Botfom Ash LABORATORY
Light REEs (e.g. Ce, Nd) w/ Ca-rich AlSi, and heavy REEs (e.g., Sm, Gd) w/ Fe * During coal combustion, Ce

diffused into Ca phases, thus
susceptible to Ce oxidation
during coal combustion

+ Ce(III) + O2 = Ce(IV)0O2
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Sequential Extraction for Characterization T [rcsmorocy

Informing extractability of REEs associated with different mineral fractions LABORATORY

* Fly Ash 345 (313ppm REE+Y) « EPRI-FA (264ppm REE+Y) derived

derived from Appalachian Basin from Powder River Basin coal (20%wt
coal (4% wt Ca) Ca)
* REE associated mainly with * >60% REE released in “carbonate”
Residual phase (aluminosilicates) phase extraction
345 B Water soluble EFA avg Norm B EFA S1 avg Water soluble p H7
1:2:;: BB EER = _ B Exchangeable 122: H EFA S2 avg Exchangeable
80% ¥ Bond to carbonates 80% = EFA S3 avg Carbonates
70% 70%
60% Bond to manganes oxides 60% EFA S4 avg Mn oxides
Zg:f ® Bound to amorphous iron 0% B EFA S5 avg Amorphous Fe
0 oxides 40% oxides
30% B Bound to crystallines iron 30% M EFA S6 avg Crystalline Fe
20% oxides 20% oxides l
10% ® Bond to organic matter and B EFA S7 avg Sulfides and
0% sulfides 10% Organic carbon D H 2
Sc Y La Ce Pr NdSmEuGdTh DyHo ErTmYbLlu Residual O e arwEsTa x> omEg 3 " EFAR avg Residual
w a8 > o wor T w = > ]

% U.S. DEPARTMENT OF
i




——INATIONAL

Acid Leaching: Room temperature and mild acid = |EnERGY
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10mL solution/1 gsolid, 24hr LABORATORY
* Different dilute acids tested (~ 0.1 -1.7 M)
» HNO3, HC], citric acid, and sulfuric acid (inefficient due to gypsum coating)
* Observations:
* Other than Sc, about 90% REE extracted by different acids
* 100% Ca, Mg and Mn were extracted during acid leaching
* Citricacid extracted more Fe and P, slightly more Al and Si (gel formed)
YREE extracted %Major Elem extracted
120% 120%
- 100% @ 100%
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S 80% CEANT 2 80%
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T 60% L 0o
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diluted acid androom temperature, L:S ratio=10:1, 24 hr on rotator LABORATORY
. REE recovery from EPRI-FA via nitric acid 100% EPRI - FA nitric acid extraction 9
100% ? Ca dissolution : REE dissolution
% 8
90% B ' —e—Sum REY
80% o 7
E 70% ——EFA1.6 Mnitric % 6 . Al
g 60% —e— EFA 1.4 M nitric E -5 _
o 0% EFAL2M nitric S 4 * - Fe
& 40% —— EFA 1.0 M nitric E 3
X 30% =+—EFA 0.8 M nitric % 2 G
20% oo X 1
——EFA 0.4 M nitric
10% , ~PH
0% 0.2 0.6 1.0 1.4 1.8

Sc La Ce PrNdSmEuGdTh Dy Y Ho Er TmYb Lu o
Nitric (M)

* Compared to 345, REY from PRB ash samples can be mobilized

* Acid will first dissolve Ca phases(End pH > 5, @ 1M HNO3 for EFA) and
then REYSs together with Al and Fe (End pH < 5)
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Organic extraction

diluted acid androom temperature, L:S ratio=10:1, 24 hr on rotator

REY dissolution occurs @ End pH<5 . . . . .
P e Citric acid will first extraction MHREESs

100% . .
° Ca dissolution REY dissolution 5 (EU-LU) via Chelatlng Fe
90%
° | 00.1cit 1HNO3 1
80% 00.5¢it 1HNO3 @ L ! REE recovery from EPRI-FA via citric acid Y trend with Fe and Al
R X %
< 70% | 00.1ace 1HNO3 N\ 100% 100%
o .
$60% | 0O0.5ace IHNO3 @ 1.2 M HNO3 80% T Ladwic 80%
© c 1.0citric
550% | ©O0.1EDTA 1HNO3 s T e |
) g 60% 0.7citric s
Z40% | COSEDTA1HNO3 N £ eosie § o | -
=309 | ©0-10x1HNO3 S a0 o= 0.3citric © ——Fe
=o=0.1citric 20% ——5Sc
A 0.50x 1HNO3
20% @ A 20% . e
HNO3 only 0% !
10% @ o 01 03 05 07 09 11 13
0% o ® Sc La Ce Pr Nd Sm Eu Gd To Dy Y Ho Er Tm Yb Lu Citric Acid added (M)
(o]
10 8 6 4 2 0
End pH
IM HNO3
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Highlights

* End pH vs. %REE: pH < 4 for etficient
%REE from PRB EPRI samples

* REE released due to mineral phase
dissolution: Ca dissolution threshold for
LREEs; Fe and Al dissolution for HREEs

e Dilute acid extractions results in 100%

REE extraction with end pH 3.05, final
solution 20ppm REE+Y
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Benefit for REE separation: Traditional vs. PRB Fly Ash
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~ Physical sepatation
Pretreatmen- eatment

018)
_ Roasting
Leaching
1. Leaching from feedstock

Precipitation 2. REE purificationand separation (e.g., L:L extraction, or sorbent)

3. Oxalic ppt (and oxidation)

REE Oxides
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EPRI fly ash Acid Leaching

FLY ASH OXALATE PRECIPITANTS, 12%WT REE

TmYb!
Ho Er

Dy
(Mostly HREEs:
27%Y, 19% Nd,
10% Sm, 9% Gd,
8% Dy)

La

Tb

Gd

Sm Ce

Nd

Aqueous Phase:
- Feand HREE+Y

& Oxalic acid precipitation
L:L extraction

HREE+Y oxalate
precipitates (~12%wt REY)
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Conclusions and Implications TL [cioroey

LABORATORY

The preliminary results * Possible organic acid extraction for PRB ash samples

demonstrate 100% REE . . . .
extractability from PRB ashusing | Dilute acids will save the cost for REE extraction from

dilute acids at room temperature. ash samples.

N RERERREE:E388 o Leachate will be more environmental friendly and save
extraction the cost for later REE purification

e Demonstrated high REY recovery (12wt%)

Heavy REEs and light REEs can be . R .
leached from the fly ash o Step leaching for fly ash for initial separation of LREE

separately using different acid and HREE

U CHEREREL IEREEIVAED U RIS o Sgve the cost for REE purification and separation
Ca phases and Fe phases.
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