
Automated Incorporation of Machine Learning (AIM)
Olawale E. Salaudeen
University of Illinois at Urbana-Champaign, PhD Computer Science
Sandia National Laboratories, Albuquerque, NM; U.S. Department of Energy
Manager: Michael J. Haass (Org. 09365), Mentor: Eric Goodman (Org. 09365)

Abstract Method
The efforts of researchers and growth of compute in the
last decade has yielded many Machine Learning (ML)

algorithms that have been proven to outperform traditional

statistical algorithms and sometimes human experts on a

variety of tasks. Accordingly, the applications of ML in

industries such as communication, healthcare, and defense
grow rapidly. One consequence of this growth is the

development of standard architectures that are proven to

be most effective for certain types of tasks, standard
libraries for implementing said architectures, and a
seemingly endless and diverse supply of examples via

opensource repositories, such as Github. We utilize the

corpus of opensource ML code to learn an ML model that

can automatically generate ML code from inputs containing

information about the type of task we would like to solve.

Background
Sequence to sequence models are designed to solve a class
of problems where the input is a sequence and the output
is also a sequence. The class of models have seen much

success in tasks such as text summarization, audio to text,

etc. The most prevalent models used for these class of

problems are recurrent neural networks (RNN), however,

these methods suffer from mismatches in training and real

world evaluation metrics, and exposure bias. Though

techniques have been developed for mitigating these often

crippling limitations of RNNs, a class of models,
Reinforcement Learning (RL), are designed to overcome
these limitations by default. The recent success and
developments in RL make them a prime candidate for

automatic machine learning code generation.

Results and Discussion
The goal of this current iteration of the project is to

accurately complete a line in machine learning code; a

simple example would be — input.• {import, tensoiow, as} ,
oulput: {f, \n} . One of the challenges of this project has
been reducing the complexity of the problem, specifically

the action space. Since the dataset used to train the model

is a combination of python code written by different users
for different tasks, there is a lot of noise in the data. We try

to increase the signal-to-noise ratio by limiting our action

space, or vocabulary, to tokens that occur more frequently

than a certain rbrf shnld. In_additian,_thcre are issues cf 
class-imbalance and many contradictory samples. For

instance we could have input: {from tensoiow import} and
ouut: {keras, \n} (2) {estimator, \n}, both of which are
valid sequences. These all have negative implications on the

optimization landscape of the problem and decrease the
learnability of the task. Currently, our model seems to get

stuck at a bad local minima where it is effectively a constant

predictor of the most frequent token in the data.

Our training data consists of 1 million Tensorflow code pulled from

Github. The data is tokenized by spaces and non-alphanumeric
character — comments are removed. The training data is composed of

input sequence and output sequence; each sample is consecutive

tokens of length l. The input sequence is the first m tokens of the

sample sequence and the output sequence is the last o tokens, where
the sample sequence length / = m + o.

We utilize the Deep Q Network (DQN) architecture, also known as
Actor-Critic with Q Function Estimation, for automatic machine
learning code generation. DQN is a special case of the more general

Actor-Critic model with advantage function:

Arr(st, Yt) = (st, yt) Vir (St)
where Q7 = rt yEst,-7(selso[177(std, the expected discounted

reward of the state-action pairs, (si, yi) respectively. In the DQN
however, Vir (st) = O.

The actor is a sequence to sequence model implemented as an

encoder and attention decoder utilizing long short-term memory

layers (LSTM) — trained with crossentropy loss + the future rewards
estimated by the critic.

I relu 
•

out

INN
output

prev_hidden

hidden

prev_hidden input

dropout

embedded

attn

attn_softmax

attn_weights

out

softmax

output

encoder_outputs

attn_applied

atin combine

relu

hidden

Figure 1: Left: hncoder, Right: Attention Decoder. GRU layers are replaced with LSTM

Layers. Figures source:

https://pytorch.org/tutorials/intermediate/seq2seq translation tutorial.html 

We learn a critic as a regression model where the hidden units of the

decoder are states and the output sequence are actions,

(si,yi) respectively:

•

Lop )=2.4 11(2,p(soli) - r2
i

qi = rt y max QV (s'i, y;) •
37'

References
Keneshloo, Yaser & Shi, Tian & Ramakrishnan, Naren & Reddy,
Chandan. (2019). Deep Reinforcement Learning for Sequence-to-

Sequence Models. IEEE Transactions on Neural Networks and
Learning Systems. PR 1-21. 10.1109/T NLS.2019.2929141.

Sandia National Laboratories is a multimission laboratory managed and
operated by National Technology& Engineering Solutions of Sandia, LLC,

a wholly owned subsidiary of Honeywell International Inc., for the U.S.

Department of Energys National Nuclear Security Administration under
contract DE-NA0003525.
SAND No.SAND2019-8104 PE

Sandia
National
Laboratories

SAND2020-7558D


