
Containers in HPC: -:kb.
Testbeds, Production, and Towards Exascale

PRESENTED BY

Andrew J. Younge

Sandia National Laboratories

ajyoung@sandia.gov

Berkeley Lab CS Seminar

Sandia National Laboratories is a multimission
laboratory managed and operated by National

Technology Et Engineering Solutions of Sandia, LLC, a
wholly owned subsidiary of Honeywell International
Inc., for the U.S. Department of Energy's National
Nuclear Security Administration under contract

DE-NA0003525.

July 24th, 2020

SAND2020-7555PE

Abstract:

Container computing has revolutionized how many industries and enterprises develop and deploy software and
services. This model has recently gained traction in the High Performance Computing (HPC) community through the
enablement of HPC-specific container runtimes. As the complexity of HPC applications expand, workload ensembles
are becoming increasingly complex and, as a result, difficult to maintain when the target platforms' environments are
increasingly diverse and continually changing. The advent of containers in HPC offer-the ability for developers to
differentiate software components and containerized environments makes novel software stacks readily attainable for
application teams.

This talk provides an overview of containers in HPC_, starting with initial testbed performance characterizations of
containers and spanning into a multi-laboratory DOE effort, named SuperContainers, which looks to enable containers
for Exascale workloads. This talk highlights the system software research efforts for ensuring efficient container
utilization, including overhead evaluation, scalability considerations, deployment assessmenfs on non-traditional
architectures, and best practices for using containers in HPC. The talk will also provide an exemplar DevOps process
which utilizes Podman to build containers and Singularity to deploy containers on an Arm-based computing ecosystem
and the challenges associated therein. Finally, we will define new challenges in interoperability and investigate the
ability to enable portable container solutions across DOE facilities, ranging from laptops to Exascale platforms

Bio:

Dr. Andrew J. Younge is a Computer Scientist in the Scalable System Software department at Sandia National
Laboratories. His research interests include containers, high performance computing, system software, distributed
systems, and energy efficient supercomputing. The cornerstone of his research focuses on improving the usability and
efficiency of supercomputing system software. Andrew currently serves as the Principal Investigator for the
Supercontainers effort under the DOE Exascale Computing Project and is a key contributor to the Vanguard Astra
5ystem, the world's first Petascale ARM supercomputer. Prior to joining Sandia, Andrew held visiting positions at the
MITRE Corporation, the University of Southern California's Information Sciences Institute, and the University of
Maryland, College Park. He received his PhD in Com_puter Science from Indiana University in 2016 and his BS and MS
in Computer Science from the Rochester Institute of Technology in 2008 and 2010, respectively.

Outline

What is a container and do they matter in HPC?

Initial experimentation with containers in HPC

Petascale & Production

Containers at Exascale = Supercontainers

Into the future?

Tupperware

What is a Container?

FIE

a.

The conta

What is a Container?

Unit of software which packages up all code and dependencies
necessary to execute single process or task

Encapsulates the entire software ecosystem (minus the kernel)

OS-level virtualization mechanism
Different than Virtual Machines

Think "chroot" on steroids, BSD Jails

Dependent on host OS, which is (usually) Linux

Uses namespaces (user, mount, pid, etc)

Docker is the leading container runtime
Used extensively in industry/cloud enterprise

Foundation for Kubernetes and Google cloud

Supported in Amazon AWS cloud

HPC in the Cloud?

Public cloud computing is often prohibitive
Cost — expensive to run millions of CPU hours

Security — Can we trust public clouds?

However, HPC is not traditionally as flexible as "the cloud"
Shared resource models

Static software environments

Inflexible for emerging apps and workflows

What about Containers?
Can we support containers in HPC in the same way as clouds do?

Does this model fit for _both_ HPC and emerging workloads across DOE?

Can we adapt our programming environments into container images?

A
Initial look at Containers in HPC

HPC Container Vision \
Ell--- t

Fl 6 C '

Support HPC software development and testing on laptops/workstations
• Create working container builds that can run on supercomputers

• Minimize development time on supercomputers

Developers specify how to build the environment AND the application
Users/analysts just import and run on a supercomputer

Many containers, but with different manifests target platforms & deployments

Not bound to vendor release cycles, sysadmin requirements, etc

Performance matters
Use mini-apps to "shake out" container implementations on HPC

Expand to mission workloads & applications

Envision features to support future workflows (ML/DL/in-situ analytics)

I

1

Containers in HPC
Wanted Features

BYOE - Bring-Your-Own-Environment
Developers define the operating environment and
system libraries in which their application runs

Composability
Developers have control over how their software
environment is composed of modular components
as container images
Enable reproducible environments that can
potentially span different architectures

Portability
Containers can be rebuilt, layered, or shared
across multiple different computing systems
Potentially from laptops to clouds to advanced
supercomputing resources

DevOps
Integrate with revision control systems like Git
Include build manifests and container images
using container registries

Conflicting Features

Overhead
HPC applications cannot incur significant overhead
from containers

Micro-Services
Micro-services container methodology does not
apply to current HPC workloads
1 app/node with multiple processes or threads per
container

On-node Partitioning
On-node partitioning with cgroups unnecessary

Root Operation
Containers allow root-level access control to users
Root is a significant security risk for HPC facilities

Commodity Networking
Common network control mechanisms are built
around commodity networking (TCP/IP)
Supercomputers utilize custom interconnects w/ OS
kernel bypass operations

I

1

I HPC Container Runtimes
Docker is not good fit for running HPC workloads
Building with Docker on my laptop is ok

Security issues, no HPC integration

Several different container options in HPC

Char iec oudSHIFTER

All 3 HPC container runtimes are usable in HPC today!

Each runtime offers different designs and OS mechanisms
Storage & mgmt of images

User, PID, Mount namespaces

Security models

OCI vs Docker vs Singularity images

Image signing, validation, registries, etc

12 Container DevOps

Impractical to use large-scale
supercomputers for DevOps and
testing
HPC resources have long batch queues

Large effort to port to each new machine

Deployment portability with containers
Develop Docker containers on your laptop or
workstation

Leverage registry services

Import container to target deployment

Integrate with vendor libs (via ABI compat)
and local resource manager (SLURM)

Separate networks maintain separate
registries

eon EC2

$ docker pull gitlab.sandia.gov/usr/appl:latest
$ docker run -d -p 12500-13:00 ... appl
$ ssh ctl -C "mpirun -np X appl .exe

S docker build appl
S docker login gitlab.sandia.gov
S docker push appl :latest

CTS Cluster

$ singularity pull appl .img
docker://gitlab.sandia.gov/user/appl :latest
$ qsub71.pbs

Gitlab out:litter Registry

Ser% ice

S singularity pull appl img
docker://gitlab.sandia.gov/user/appl:latest
S aprun -n X singularity exec appl .img appl .exe

Singularity on a Cray Supercomputer (in 17')

• Cray supercomputers can represent pinnacle of HPC
• 4 of the 10 fastest supercomputers are Cray (Nov 17 Top500)

• Cray systems are different than Linux clusters
• Specialized compute OS, no node-local storage, custom interconnect,

specialized and tuned libraries, etc

• Modified Cray CNL kernel to build in necessary features
• Loop mounting and EXT3 support, soon SquashFS and Overlay

• Create /opt/cray and /var/opt/cray mounts on all images
• Use LD_LIBRARY_PATH to link in Cray system software

• XPMEM, CrayMPl, uGNI, etc

• Now much easier — just install RPM from Sylabs

Ho 7does running Singularity on7rFayTompare to Docker on a Cloud?

Singularity on a Cray Supercomputer (in 17')

esc.*24
tdt

44‘e Ise ,Apercomputers can represent pinnacle of HPC
'kW tellps 4 of the 10 fastest supercomputers are Cray (Nov 17 Top500)
°‘ - Cray systems are different than Linux clusters

• Specialized compute OS, no node-local storage, custom interconnect,
specialized and tuned libraries, etc

• Modified Cray CNL kernel to build in necessary features
• Loop mounting and EXT3 support, soon SquashFS and Overlay

• Create /opt/cray and /var/opt/cray mounts on all images
• Use LD_LIBRARY_PATH to link in Cray system software

• XPMEM, CrayMPl, uGNI, etc

• Now much easier — just install RPM from Sylabs

Ho7does running Singularity on7rFayTompare to Docker on a Cloud?

15 Tale of Two Systems HPC vs Cloud

Volta

• Cray XC30 system
• NNSAASC testbed at Sandia
• 56 nodes:

• 2x Intel "IvyBridge" E5-2695v2 CPUs
• 24 cores total, 2.4Ghz
• 64GB DDR3 RAM

• Cray Aries Interconnect
• No local storage, Shared DVS

filesystem
• Singularity 2.X
• Cray CNL ver. 5.2.U1304

• Based on SUSE 11
• 3.0.101 kernel

• 32 nodes used to keep equal core count

Amazon EC2

• Common public cloud service from AWS

• 48 c3.8xlarge instances:
• 2x Intel "IvyBridge" E5-2680 CPUs

• 16 cores total 32 vCPUs (HT), 2.8Ghz

• 10 core chip (2 cores reserved by AWS)

• 60 GB RAM

• 10 Gb Ethernet network w/ SR-IOV

• 2x320 SSD EBS storage per node

• RHEL7 compute image
• Docker 1.19

• Run in dedicated host mode

• 48 node virtual cluster = $176.64/hour

HPCG VMs and container performance

• Modified Cray XC testbed to run
Singularity containers

• Create /o-ot/cray and
/var/o-ot/cray on all images loom

• Link in Cray system software ,._
• XPMEM, CrayMPI, uGNI, etc 9

LQL
• HPCG Benchmark in Container

9-

• Singularity with CrayMPl = native

• KVM with MPICH = slower

• AWS faster but does not scale

10.00

r

--•- Native CrayMPI

48 96 192
Cores

KVM MPICH

-&-SingularitylnteIMPI —AWS_Docker_InteIMPI

384

99.8%
89.3%
81.9%
72.9%

768

Singularity_CrayMPI

Younge, Pedretti, et. al, A Tale of Two Systems: Using Containers to Deploy HPC Applications on Supercomputers and Clouds, IEEE CloudCom 2017

A
Petascale and Production

cTk
"Per aspera ad astre

Hewlett Packard
Enterprise

RM SUPERCOMPUTER

2.3 PFLOPs peak
>5000 TX2 ARM CPUs, -150k cores
885 TB/s memory bandwidth peak

332 TB memory
1.2 MW

19
Vanguard Astra:At a Glance

• 2,592 HPE Apollo 70 compute nodes
• 5,184 CPUs, 145,152 cores, 2.3 PFLOPs (peak)

• Marvell Thunder-X2 ARM SoC, 28 core, 2.0
GHz

• Memory per node: 128 GB
• 16 x 8 GB DDR DIMMs

• Aggregate capacity: 332 TB, 885 TB/s (peak)
• 247 GBIs per node STREAM

Hewlett Packard
Enterprise

• Mellanox IB EDR, ConnectX-5
• 112 36-port leaf, 3 648-port spine switches

• ATSE software stack
• TOSS Base Operating system

• HPE Apollo 4520 All-flash Lustre storage
• Storage Capacity: 990 TB (usable)

• Upgrade to 3X memory

• Storage Bandwidth: 250 GB/s
• 400 GB/s stunt mode, 432 GB/s peak

I

I
1
I

I Astra System Architecture

36 compute racks
(9 scalable units, each 4 racks)

2592 compute nodes
(5184 TX2 processors)

3 IB spine switches
(each 540-port)

fit psi 11:t
Astra

ATSE & Collaboration with HPE, OpenHPC, and ARM

• Advanced Tri-lab Software Environment = ATSE
• Many pieces to the software stack puzzle
• HPE's HPC Software Stack

• HPE Cluster Manager
• HPE MPI (+ XPMEM) Sysadmin

T
• Arm

ools

• Arm HPC Compilers
• Arm Math Libraries
• Allinea Tools

• Open source tools - OpenHPC
• Slurm, OpenMPl, etc

• Mellanox-OFED & HPC-X
• RedHat 7.x for aarch64 - TOSS

arm Hewlett Packarc
Enterprise

NNSAApplication Suite

Math Routines

App

■
Ai MAL-

0 /-1)01
ATSE
stack

Container

co

E

o_

•

1

ARM and Containers will it blend?

Little understanding of container mechanisms on Arm
Especially for HPC

It should 'just work' - but does it?

Action Plan:
Draw from existing containers & virtualization R&D at Sandia

Leverage Astra and various ARM testbeds

Develop initial container workflow model
Build ARM-based containers?

How to map such containers on Astra?

Can we deploy mission applications?

Will it blend scale?

1
11

24 Container DevOps

Impractical to use large-scale
supercomputers for DevOps and
testing
HPC resources have long batch queues

Large effort to port to each new machine

Deployment portability with containers
Develop Docker containers on your laptop or
workstation

Leverage registry services

Import container to target deployment

Integrate with vendor libs (via ABI compat)
and local resource manager (SLURM)

Separate networks maintain separate
registries

eon EC2

$ docker pull gitlab.sandia.gov/usr/appl:latest
$ docker run -d -p 12500-13:00 ... appl
$ ssh ctl -C "mpirun -np X appl .exe

S docker build appl
S docker login gitlab.sandia.gov
S docker push appl :latest

CTS Cluster

$ singularity pull appl .img
docker://gitlab.sandia.gov/user/appl :latest
$ qsub71.pbs

Gitlab out:litter Registry

Ser% ice

S singularity pull appl img
docker://gitlab.sandia.gov/user/appl:latest
S aprun -n X singularity exec appl .img appl .exe

25 Container DevOps on ARM

Impractical to use large-scale
supercomputers for DevOps and
testing
HPC resources have long batch queues

Large effort to port to each new machine

Deployment portability with containers
Develop Docker containers on your laptop or
workstation

Leverage registry services

Import container to target deployment

Integrate with vendor libs (via ABI compat)
and local resource manager (SLURM)

Separate networks maintain separate
registries

ton EC2

..00

Ilk
$ docker pull gitlab.sandia.gov/usr/appl:latest
$ docker run -d -p 12500-13:00 ... appl
$ ssh ctl -C "mpirun -np X app

N

l .exe

S docker build appl
S docker login gitlab.sandia.gov
S docker push appl :latest

CTS Cluster

eiHig
$ singularity pull appl .img
docker://gitlab.sandia.gov/user/appl :latest
$ qsub71.pbs

ontainer Registry

Ser% ice

1
1

S singularity pull appl img
docker://gitlab.sandia.gov/user/appl:latest
S aprun -n X singularity exec appl .img appl .exe

arm 1

Tracks I & 2: Workstations & Remote Container Builder

1. Marvell TX2 build workstations to build ARM containers
Inflexible, clunky, isolated
Need many workstations

2. Codesigned a Remote Builder for containers with Sylabs
Enables users to build for alternate architectures:

Ex. build AARCH64 container from AMD64 workstation
Can be used as part of Cl/CD process (GitHub, etc.)

Builds run natively on alternate architecture, giving great performance
Centralized resource pool:

Lowers TCO by decreasing the need for workstations of multiple architectures
Enables users to build containers without privilege
Native integration with Singularity CLI

cs

Track 3: Podman for Un-privileged Container Builds
Build containers directly on the
supercomputer
Doing so requires root level privs
root in HPC is bad, Docker is root equivalent

Leverage user namespaces for _building_
containers

Podman and Buildah to provide container
builds while maintaining user-level
permissions
CLI equivalent to Docker
User namespaces
Set uid/gid mappers
TBD Overlay & FUSE for mount

Ongoing Collaboration

with RedHat

podman build -t "gitlab.doe.gov/atse/astra:1.2.4" .

ATSE Pro ramming Environment

gi2
0_

O

O

Sy tem
L bs

BMC

TOSS Runtime Libraries
Lus re
Client

MOFED

UCx

MOFED

Userspace

Tri-Lab Operating System Stack (TOSS)

podman push gitlab.doe.gov/atse/astra:1.2.4

singularity build atse-astra-1.2.4.sif docker://gitlab.doe.gov/atse/astra:1.2.4

GitLab

Pedretti, Younge, et. al, Chronicles of Astra: Challenges and Lessons from the First Petascale Arm Supercomputer , to appear in SC20

A
Production Usage for NNSA Mission

System Software Stack Testing & Debugging

Astra ATSE programming environment release consists of:
TOSS base operating system + Mellanox lnfiniBand stack

{2 compilers} * {3 mpi implementations} * {-25 libraries} = 150 packages

Each release packaged as a container for testing and archival purposes

Ast ra ATSE
1.2.0

Test release in
container first

Then roll out release
on system natively

Ast ra ATSE
1.2.1

Ast ra ATSE
1.2.2

Ast ra ATSE
1.2.3

■

ATSE Container use cases:
Release testing: Enables full applications to be built and run at scale (2048+ nodes) before rolling out
natively

■ Rollback debug: If issues are identified, ability to easily go back to a prior software release and test

■ Cross-system synchronization: Move full user-level software environments between systems. In one
instance, this allowed an Astra InfiniBand library bug to be debugged off platform on another Arm cluster.

10000 —

T
i
m
e
 (
se
co
nd
s)

1000 -

Case Study I : SNL ATDM App

128 (7168)

SPARC HIFiRE-L1 Native v Container

'4
,
•4..

.
4. •

256 (14336) 512 (28572)
Nodes (cores)

I NO

ConL

1024 (57344)

Points:
• SPARC containerized build & deployment
• Deployed on Astra with Singularity
• Near-native performance using a container

• Container faster due to testing new
optimizations for TX2

• Testing HIFiRE-1 Experiment (MacLean et
al. 2008)
• UNCLASSIFIED problem

Younge, et. al, (U) Practice and Experience with Containers and ARM64 on Astra, NNSA/AWE JOWOG 34

Agelastos, Younge, et. al, (
U
)
 Quantifying

etrics to Evaluate Containers for D
e
p
l
o
y
m
e
n
t
 a
n
d
 U
s
a
g
e
 o
f

's
uo

!_
ic

ol
ld

dv
 u
o
w
n
p
a
i
d
 v
s

K
O
Z
 D
C1
33

-

Mi
lW
a
n
e
=

Mean Wall Time (sec.)
_, Iv t..o -I. yi ss•

c. c. c. c. c. c. c.
c• cp cp cp cp cp cp cp

Iv

ON

00

ON

-t

00

I I

i ill lin l i //lin ¡II/ i ,

•
 u
n
e
D
s

•
 u
o
.
.
n
s
 -
 e
i
t
n
e
N

•
S
A
 J
a
w
l
u
c
o
 -
 1
1
e

cp ci
:0
cic)

:0ui
c)

C) C)ci ui
c) c)

_.
cic)

_. i..)ui
c) cpc:

Container Speedup
Jil.

Case Study 3: Reinforcement Learning Algorithms

An evolutionary approach for multi-objective optimization
Evolutionary Algorithms are gradient-free population-based methods
EA benefits from parallelization and does not require GPU acceleration

Population of agents is generated and attempts a problem in parallel

High performance agents are used for next population generation

Astra has been ideal for experimenting with EA

We are using Astra for scaling of ASTool
Coevolves an agent's decision making
policy and body

Built Singularity container
Ubuntu 16.04, NumPy, PyBullet,
Simple to use and modify

500 nodes - 7.5 hours

■
Credit: https://designrl.github.io/

ontainers help support Emerging HPC workloads like R

•

1

A
ECP Supercontainers

ECP Supercontainers

Joint DOE effort - LANL, LBNL, LLNL, Sandia, U. of Oregon

Ensure container runtimes will be scalable, interoperable, and well integrated across DOE
Enable container deployments from laptops to Exascale

Assist Exascale applications and facilities to leverage containers most efficiently

Three-fold approach
Scalable R&D activities

Collaboration with related ST and AD projects

Training, Education, and Support

Activities conducted in the context of interoperability
Portable solutions
Optimized E4S container images for each machine type SUPERCONTAINERS ■
Containerized ECP that runs on Astra, A21, EI-Capitan,

Work for multiple container implementations E
Not picking a "winning" container runtime

Multiple DOE facilities at multiple scales EXRSCRLE COMPUTING PROJECT

Emerging workloads on HPC with Containers

Extreme-scale Scientific Software Stack (E4S)
Container image contains everything and the kitchen-sink
Includes all ECP software activities

Lightweight base images now available

Support merging Al/ML/DL frameworks on HPC
Containers may be useful to adapt ML software to HPC

Already supported and heavily utilized in industry

Working with DOE app teams to deploy custom ML tools in containers

Investigating scalability challenges and opportunities

E4S PYT RCH

Credit: Sameer Shende (U. Oregon)

I Spack environments help with building containers
We recently started providing base images with Spack preinstalled.
Very easy to build a container with some Spack packages in it:

spack-docker-demo/

Dockerfile

spack.yaml

* Build with docker build .
docker

re Run with Singularity

Vari (or some other tool)

 ►

FROM spack/centos:7

WORKDIR /build
COPY spack.yaml .
RUN spack install

spack:
specs:

— hdf5 @1.8.16
— openmpi fabrics=libfabric
— nalu

IM

Base image with Spack
in PAT H

Copy in spack.yaml
Then run spack install

List of packages to install,
with constraints

Credit: Todd Gamblin (LLNL)

Warning: Currently just Slideware

Future Containerized CI Pipeline

As a developer I want to generate container builds from code pull requests so
that cnntpiners are iiRed tn te.st new cnde nn taraet HPC mpchine.s

Spack Binary Mirror

Gitlab

Git Repo
 A

I
/ ►

Contirit.Jous Integration

Test

Cont iner
Re• istry

Heterogeneous Build Farm

Cluster

(SA

kateraell 1461worlt

"HPC container runtimes have minimal or no performance impact"

LANL team confirms all HPC container
runtimes perform well
i Performance delta < 1% @ 512 nodes

• "we hypothesize that the performance impact
of containerization itself is nil."

Memory consumption may differ

Pick a container runtime, any runtime!
More about features and experience

Need to confirm experiments scale to
Exascale

102

101

100

99

98

97

96

HPCG benchmark

bare metal

—s— Charliecloud

Shifter

—•— Singularity
I I
1 2 4 8 16 32

node count

64 128

From: Alfred Torrez, Tim Randles, and Reid Priedhorsky, "HPC Container RunLiiiic.) I ILAVC

Minimal or No Performance Impact", IEEE CANOPIE-HPC Workshop @ SC19, Nov 2019.

256 512

Custom OCI Image Labels

FROM centos :7

HPC apps require special system libraries LABEL org. supercontainers .mpi=mpich

CrayMPl linked in at runtime

Fix: Leverage OCI-compatible image LABELs
Insert directly in Dockerfile

Embedding metadata into spec

Labels specify expectations from the host
HPC container runtime intercepts labels, makes appro

Specify MPI version, Glibc expectation, etc

Implemented prototype solution in Shifter

Working with OCI container community

Credit: Shane Canon (LBNL)

LABEL org.supercontainers.glibc=2A7

RUN yum —y
yum —y

SHIFTER

update &&
install gcc make gcc—gfortran
gcc—c++ wget curl

RUN B=tripich.org/ static /downloads && V=3_2
wget $B/$11/Inpich—$V. tar . gz &&
tar xf inpich—$V. tar . gz &&
cd mpich—$V &&
./ configure &&
rnake &&
make install

ADD helloworld .c /src /helloworld .c

RUN mpicc —o /bin/ hello /src /helloworld .c

Label Values Comment
orgsupercontainers.mpi
org.supercontainers.gpu
org.supercontainers.glibc

ftnpich,opentnpil
{cuda,opencl,rocm, etc}
Semantic version: XX.YY.Z

Required MPI support, ABI compatibility
Required GPU library support
Specific version of GLIBC

$
Future Views

[readily available for critique]

Containers and Reproducibility?

Reproducibility is a cornerstone of science!
Consistent results across studies aimed at answering the
same scientific question
Critically important in conducting computational science today

DOE/NNSA must extend the lifecycle without underground testing

Rely on modeling and simulation apps to perform this task
Incorporate a multitude of physics and engineering models
Executed on leadership-class supercomputers

Long-term studies take years
Any particular simulation may not seem important at the time
Later analysis may prove to demonstrate value in an old simulation
Need to reproduce & reevaluate runs many months or years later!

Containerized builds can help future reproducibility efforts

Containers alone are not the answer
Can be part of the solution

■

V

tt I 4.14,
„

o

411,1

tir'‘

years
of Success

1
1

Container Performance Portability Continuum

Portability
Performance

How do we strike the right balance?

Portable container images can be moved form
one resource deployment to another with ease

Reproducibility is possible
Everything (minus kernel) is self-contained

Traceability is possible via build manuscripts

No image modifications

Performance can suffer - no optimizations
Can't build for AVX512 and run on Haswell

Unable to leverage latest GPU drivers

• Performant container images can run at near-
native performance compared to natively build
applications

• Requires targeted builds for custom hardware

- Specialized interconnect optimizations

- Vendor-proprietary software

• Host libraries are mounted into containers

- Load system MPI library

- Match accelerator libs to host driver

• Not portable across multiple systems

I Kubernetes is coming...
kubernetes

• Containers are changing the software
ecosystem for application deployment

• Container orchestration tools are now
mainstream
• VERY different than traditional HPC

• No batch job scheduler, no jobs, just services and and
orchestrator

• Study Opportunities container
orchestration frameworks in HPC
• Performance, Usability, and Constraints

• Orchestration and batch?
• Separate solutions deployed today
• Orchestration _and_ batch!

diF

41—[*
Device Pod

Application Pod
r/f

band

r/r

lnfini
device

It\

Host Linux KernelA

Application Pod

60

cno_ 50
0
—I 40-u_

T
46 20

10

0 30

Overlay
Flannel
network

SSH
connection

lnfiniband device

Device Pod }4

Host Linux Kernel

H PCG

Device Pod
,

4/ 4/

ti lnfiniband
device ..,

Application Pod

Host Linux Kernel

Application Pod

Credit: Angel Be(tre (Binghamton University)
0

Bare Metal Docker Swarm Kubernetes

Position I: Heterogeneity is the Future of HPC...

HPC workloads are becoming more diverse
It's not just BSP simulations any more

Data is a cornerstone in ML, analytics, ...

And HPC hardware will be more diverse
"Era of predictable [hardware] improvements is ending."

Expecting custom aggregated components at the system
level

How will system software cope and support
system-level heterogeneity?
How will programmers be efficient in such a landscape?

Will abstractions help or hinder performance?

We need more APIs...

Extreme Heterogeneity 2018

PRODUCTIVE COMPUTATIONAL SCIENCE

IN THE ERA OF EXTREME HETEROGENEITY

Report tor
DOE ASCR Basic Research Needs Workshop on Extreme Heterogeneity

January 23-25, 2018

Position 2: ... and so is the Cloud

The hyperscalers are finally paying attention to HPC
"The physical network topology does affect performance; particularly important is the
performance of MPI Allreduce, grouped by splitting the mesh by a subset of the dimensions,
which can be very efficient [5] [6] if each such group is physically connected."— Shazeer et al
Google Brain, Mesh-TensorFlow: Deep Learning for Supercomputers.

As learning techniques grow in scale, HPC becomes more important.

HPC cannot compete with the hyperscalers
Let's stop trying and start integrating
That doesn't mean adopting Cloud as-is

That doesn't mean dissolving HPC either

The closer HPC and cloud paradigms get, the better we all are
Encourage open source infrastructure

Collaborative partnerships

Avoid boutique solutions without sacrificing performance

A
Tupperware

Container Takeaways (Tupperware?)

Use Docker Podman to build manifests of full apps
Developers specify base OS, configuration, TPLs, compiler installs, etc

. Use base or intermediate container images (eg: TOSS RPMs in a container)

• Leverage container registry services for storing images
• Import/flatten OCI images into Singularity & run on HPC resources

Also works for Charliecloud and Shifter

Containers have demonstrated minimal overhead for HPC apps

Enabling On-prem unprivileged containers builds now
More to come with Podman & Buildah for HPC

HPC Container Advantages
Simplify deployment to analysts (just run this container image)
Simplify new developer uptake (just develop FROM my base container image)
Decouple development from dependency release cycles
Reproducibility has a new hope?

HPC Container Caveats
ABI compatibility with MPI an ongoing issue
Still can't build an ARM64 container image from my Mac laptop (yet)
Containers are currently an option in HPC, not a mandate

Conclusion

Can containers play a role in HPC? Yes
HPC container runtimes work. Many options exist

Demonstrated containers are viable in HPC
Deployments in testbeds to production Petascale
Modern DevOps approach with containers is useful

Confirmed viability on Arm supercomputer
Scaled production apps to 2048 nodes on Astra
Podman helping expand the ecosystem

Supercontainers for Exascale
Prepare to enable containers at Exascale
Simplify HPC application deployment via modern DevOps
Support next generation Al & ML apps

Containers can increase software flexibility in HPC

EXAM:FILM CCIVPUTINC1 PROJECT Fl E

Acknowledgements:
Kevin Pedretti (1422)
Si Hammond (1422)
Jim Laros (1422)
Anthony Agelastos (9326)
Stephen Olivier (1423)
Justin Lamb (9326)
Aron Warren (9327)
Erik Illescas (9327)
Ron Brightwell (1423)
Mike Heroux (1400)

Collaborators:
Shane Canon (NERSC)
Todd Gamblin (LLNL)
Reid Priedhorsky (LANL)
Sameer Shende (Oregon)
Todd Munson (ANL)
Angel Beltre (Binghamton)
Greg Kurtzer (CTRL CMD)
Eduardo Arango (Red Hat)

1

ajyounge.com - ajyoung@sandia.c-ov

I CANOPIE-HPC Workshop!

https://www.canopie-hpc.org
2nd International Workshop on Containers and New Orchestration Paradigms for
Isolated Environments in HPC (CANOPIE-HPC) at SC20

Principal venue for leaders in the field to stimulate research and interactions in
relation to cutting-edge container technologies, virtualization, and OS system
software as it relates to supporting High Performance Computing (HPC).

Encourage you to submit a paper!
Papers due: September 3, 2020

HPC-Containers Slack channel: http://bit.ly/hpccslack

