SAND2020- 7555PE

Containers in HPC:
Testbeds, Production, and Towards Exascale

PRESENTED BY
Andrew J. Younge

Sandia National Laboratories

' '
ajyoung@sandia.gov

Sandia National Laboratories is a multimission

laboratory managed and operated by National
Technology & Engineering Solutions of Sandia, LLC, a
Ber k e l e y La b CS Sem i nar wholly owned subsidiary of Honeywell International

Inc., for the U.S. Department of Energy’s National
Nuclear Security Administration under contract
DE-NA0003525.

July 24tE, 2020

Abstract:

Container_computing has revolutionized how many industries and enterprises develop and deploy software and
services. This model has _recentIY gained traction in the High Performance Computing (HPC) community through the
enablement of HPC-specific container runtimes. As the complexity of HPC applications expand, workload ensembles
are becoming increasingly complex and, as a result, difficult to maintain when the target platforms' environments are
increasingly diverse and continually changing. The advent of containers in HPC offer the ability for developers to
dlffcalrenttlatetsoftware components and containerized environments makes novel software stacks readily attainable for
application teams.

This talk provides an overview of containers in HPC, starting with initial testbed performance characterizations of
containers and spanning into a multi-laboratory DOE effort, named SuperContainers, which looks to enable containers
for Exascale workloads.” This talk highlights the system software research efforts for ensurln? efficient container
utilization, |ncIud|n% overhead evaluation, scalability considerations, deployment assessments on non-traditional
architectures, and best practices for using containers in HPC. The talk will"also provide an exemplar DevOps process
which utilizes Podman to build containers and Singularity to deploy containers on an Arm-based computin ecos%/stem
and the challenges associated therein. Finally, we will define new challenges in interoperability and investigate the
ability to enable portable container solutions across DOE facilities, ranging from laptops to Exascale platforms

Bio:

Dr. Andrew J. Younge is a Computer Scientist in the Scalable System Software department at Sandia National
Laboratories. His research interests include containers, high performance computing, system software, distributed
s¥f$t_ems, and energy efficient supercomputing. The cornerstone of his research focuses on |mprovm? the usability and
efficiency of supercomputing system software. Andrew currently serves as the PrmmP_aI Investigator for the
Supercontainers effort under the DOE Exascale Computing Project and is a key contributor to the Vanguard Astra
ﬁ)(stem, the world’s first Petascale ARM supercomputer. Prior to joining Sandia, Andrew held visiting positions at the

ITRE Coré)oratlon the University of Southern California’s Information Sciences Institute, and the University of
Maryland, College Park. He received his PhD in Com_lputer Science from Indiana University in 2016 and his BS and MS
in Computer Science from the Rochester Institute of Technology in 2008 and 2010, respectively.

Outline

*\What is a container and do they matter in HPC?
= |Initial experimentation with containers in HPC

" Petascale & Production

= Containers at Exascale = Supercontainers

= Into the future?

= Tupperware

What is a Container?

What is a Container?

necessary to execute single process or task

= Encapsulates the entire software ecosystem (minus the kernel)

= OS-level virtualization mechanism
= Different than Virtual Machines
= Think "chroot” on steroids, BSD Jails
= Dependent on host OS, which is (usually) Linux
= Uses namespaces (user, mount, pid, etc)

|
= Unit of software which packages up all code and dependencies B |

= Docker is the leading container runtime
= Used extensively in industry/cloud enterprise
= Foundation for Kubernetes and Google cloud
= Supported in Amazon AWS cloud

HPC in the Cloud?

= Public cloud computing is often prohibitive
= Cost — expensive to run millions of CPU hours
= Security — Can we trust public clouds?

= However, HPC is not traditionally as flexible as “the cloud”
= Shared resource models
= Static software environments
= Inflexible for emerging apps and workflows

= What about Containers?
= Can we support containers in HPC in the same way as clouds do?
= Does this model fit for _both_ HPC and emerging workloads across DOE? \
= Can we adapt our programming environments into container images? /‘

ASC

Initial look at Containers in HPC

HPC Container Vision \
y \
AsSC

= Support HPC software development and testing on laptops/workstations
= Create working container builds that can run on supercomputers
= Minimize development time on supercomputers

= Developers specify how to build the environment AND the application
= Users/analysts just import and run on a supercomputer
= Many containers, but with different manifests target platforms & deployments
= Not bound to vendor release cycles, sysadmin requirements, etc

= Performance matters
= Use mini-apps to “shake out” container implementations on HPC
= Expand to mission workloads & applications
= Envision features to support future workflows (ML/DL/in-situ analytics)

Containers in HPC |

Wanted Features Conflicting Features |
= BYOE - Bring-Your-Own-Environment = Overhead
= Developers define the operating environment and = HPC applications cannot incur significant overhead
system libraries in which their application runs from containers
= Composability = Micro-Services

= Developers have control over how their software = Micro-services container methodology does not
environment is composed of modular components apply to current HPC workloads

as container images = 1 app/node with multiple processes or threads per
= Enable reproducible environments that can container
potentially span different architectures o
- = On-node Partitioning
= Portability = On-node partitioning with cgroups unnecessary
= Containers can be rebuilt, layered, or shared]
across multiple different computing systems = Root Operation
= Potentially from laptops to clouds to advanced Containers allow root-level access control to users
supercomputing resources = Root is a significant security risk for HPC facilities |
= DevOps Commodity Networking
- Integrate with revision control SyStemS like Git = Common network control mechanisms are built
= Include build manifests and container images around commodity networking (TCP/IP)
using container registries = Supercomputers utilize custom interconnects w/ OS

kernel bypass operations

HPC Container Runtimes

= Docker is not good fit for running HPC workloads
= Building with Docker on my laptop is ok
= Security issues, no HPC integration

= Several different container options in HPC
]S
>

SHIFTER \J Charliecloud

= All 3 HPC container runtimes are usable in HPC today!

= Each runtime offers different designs and OS mechanisms
= Storage & mgmt of images
= User, PID, Mount namespaces
= Security models
= OCI vs Docker vs Singularity images
= [mage signing, validation, registries, etc

» | Container DevOps F

L I
H

= Impractical to use large-scale
supercomputers for DevOps and

testing
= HPC resources have long batch queues -
= Large effort to port to each new machine $ docker pul gitlab.sandia.gov/usr/app1-iates T P
X i Lot STt
ags . . . qsub a .
= Deployment portability with containers N 7

= Develop Docker containers on your laptop or S
workstation ‘ V
= Leverage registry services A \
= Import container to target deployment $ docker buildapp1 $ singularity pull app1.img
.) . $ docker login gltlab..sandla.gov docken/lgmab:sandla'.govluserlappj ‘latest
= Integrate with vendor libs (Vla ABI Compat) sm“p“s"?'am' $apmn-nXsmgulantyﬁcappt-mgapptexe
and local resource manager (SLURM)

= Separate networks maintain separate
registries

Singularity on a Cray Supercomputer (in 17')

= Cray supercomputers can represent pinnacle of HPC
= 4 of the 10 fastest supercomputers are Cray (Nov 17 Top500)

= Cray systems are different than Linux clusters

= Specialized compute OS, no node-local storage, custom interconnect,

specialized and tuned libraries, etc

» Modified Cray CNL kernel to build in necessary features
= Loop mounting and EXT3 support, soon SquashFS and Overlay

= Create /opt/cray and /var/opt/cray mounts on all images

= Use LD LIBRARY_PATH to link in Cray system software
= XPMEM, CrayMPI, uGNI, etc

= Now much easier — just install RPM from Sylabs

| Singularity on a Cray Supercomputer (in 17’)

& c,\'@ﬂi
° :
“\e’i‘:?se apercomputers can represent pinnacle of HPC
ne (Qi\ 4 of the 10 fastest supercomputers are Cray (Nov 17 Top500)
xe
123 ~—Gray systems are different than Linux clusters

= Specialized compute OS, no node-local storage, custom interconnect,

specialized and tuned libraries, etc

Modified Cray CNL kernel to build in necessary features
= Loop mounting and EXT3 support, soon SquashFS and Overlay

Create /opt/cray and /var/opt/cray mounts on all images

Use LD LIBRARY_PATH to link in Cray system software
= XPMEM, CrayMPI, uGNI, etc

Now much easier — just install RPM from Sylabs

le
\S)

s | Tale of Two Systems — HPC vs Cloud

Volta Amazon EC2

Cray XC30 system = Common public cloud service from AWS
NNSA ASC testbed at Sandia = 48 c3.8xlarge instances:
56 nodes: = 2x Intel “IvyBridge” E5-2680 CPUs

= 2x Intel "lvyBridge” E5-2695v2 CPUs * 16 cores total 32 vCPUs (HT), 2.8Ghz

= 24 cores total, 2.4Ghz = 10 core chip (2 cores reserved by AWS)

= 64GB DDR3 RAM = 60 GB RAM
Cray Aries Interconnect = 10 Gb Ethernet network w/ SR-IOV
No local storage, Shared DVS = 2x320 SSD EBS storage per node
filesystem = RHEL7 compute image
Singularity 2.X « Docker 1.19
Cray CNL ver. 5.2.UP04 = Run in dedicated host mode

= Based on SUSE 11 = 48 node virtual cluster = S176.64/hour

= 3.0.101 kernel
32 nodes used to keep equal core count

HPCG VMs and container performance

. 99.8%
Modified Cray XC testbed to run A

Singularity containers 72.9%

Create /opt/cray and
/var/opt/cray on all images 100.00

Link in Cray system software

- XPMEM, CrayMPI, uGNI, etc 5
HPCG Benchmark in Container ?
= Singularity with CrayMPI = native
= KVM with MPICH = slower
= AWS faster but does not scale
10.00
48 96 192 384 768
Cores
—+-Native_CrayMPI KVM_MPICH +-Singularity_CrayMPI
~-Singularity_IntelMPI ——AWS_Docker_IntelMPI

Younge, Pedretti, et. al, A Tale of Two Systems: Using Containers to Deploy HPC Applications on Supercomputers and Clouds, IEEE CloudCom 2017

Petascale and Production

—1

Hewlett Packard
Enterprise

s
| -
g

| 2.3 PFLOPs peak
>5000 TX2 ARM CPUs, ~150k cores
‘885 TB/s memory bandwidth peak
332 TB memory

1.2 MW

,,,,
i

. —1
Vanguard Astra: At a Glance Hewlett Packard

Enterprise I
* 2,592 HPE Apollo 70 compute nodes * Mellanox IB EDR, ConnectX-5
- 5,184 CPUs, 145,152 cores, 2.3 PFLOPs (peak) * 112 36-port leaf, 3 648-port spine switches ‘
« Marvell Thunder-X2 ARM SoC, 28 core, 2.0 * ATSE software stack
GHz « TOSS Base Operating system
- Memory per node: 128 GB HPE Apollo 4520 All-flash Lustre storage
16 x 8 GB DDR DIMMs » Storage Capacity: 990 TB (usable)

« Upgrade to 3X memory

» Storage Bandwidth: 250 GB/s
* 400 GB/s stunt mode, 432 GB/s peak

» Aggregate capacity: 332 TB, 885 TB/s (peak)
» 247 GB/s per node STREAM

| Astra System Architecture

36 compute racks
(9 scalable units, each 4 racks)

2592 compute nodes
(5184 TX2 processors)

3 IB spine switches
(each 540-port)

WANGUARD
Astra

ATSE & Collaboration with HPE, OpenHPC, and ARM

e |
Advanced Tri-lab Software Environment = ATSE a r’ Hewlett Packarc
, Enterprise
Many pieces to the software stack puzzle
HPE's HPC Software Stack e
« HPE Cluster Manager o |
+ HPE MPI (+ XPMEM) Sysadmin | _ _ _ | oooppleationSute
Tools

Arm
 Arm HPC Compilers
« Arm Math Libraries
* Allinea Tools

Open source tools - OpenHPC
e Slurm, OpenMPI, etc

Mellanox-OFED & HPC-X
RedHat 7.x for aarch64 - TOSS

Math Routines

LEyciiu

LLNL | Sandia

0SS

MLNX | ScMD

Arm

HPE

ARM and Containers — will it blend?

= Little understanding of container mechanisms on Arm
= Especially for HPC
= |t should ‘just work’ - but does it?

= Action Plan:
= Draw from existing containers & virtualization R&D at Sandia
= Leverage Astra and various ARM testbeds

= Develop initial container workflow model
= Build ARM-based containers?
= How to map such containers on Astra?
= Can we deploy mission applications?

= Will it blend scale?

. | Container DevOps F

L I
H

= Impractical to use large-scale
supercomputers for DevOps and

testing
= HPC resources have long batch queues -
= Large effort to port to each new machine $ docker pul gitlab.sandia.gov/usr/app1-iates T P
X i Lot STt
ags . . . qsub a .
= Deployment portability with containers N 7

= Develop Docker containers on your laptop or S
workstation ‘ V
= Leverage registry services A \
= Import container to target deployment $ docker buildapp1 $ singularity pull app1.img
.) . $ docker login gltlab..sandla.gov docken/lgmab:sandla'.govluserlappj ‘latest
= Integrate with vendor libs (Vla ABI Compat) sm“p“s"?'am' $apmn-nXsmgulantyﬁcappt-mgapptexe
and local resource manager (SLURM)

= Separate networks maintain separate
registries

s | Container DevOps on ARM =

Ll
P

= Impractical to use large-scale
supercomputers for DevOps and

testing
= HPC resources have long batch queues -
= Lar ff ort to each new machine s I gitiab sandia.gov/usr/app1 | e :
PGS SR p L e T L W
. . . Ssshcu-C'mpitun-anapre $ qsub app1.pbs
= Deployment portability with containers 7
= Develop Docker containers on your laptop or S omeal
workstation ‘ V
= Leverage registry services A L
= Import container to target deployment $ docker buildapp1 $ singularity pull app1.img
$ docker login gitlab.sandia.gov docker://gitlab.sandia.gov/user/app1:latest
= Integrate with vendor libs (via ABl compat) B—— y“‘“' P S r——

and local resource manager (SLURM)

= Separate networks maintain separate
registries

arml,

Tracks | & 2: Workstations & Remote Container Builder

1. Marvell TX2 build workstations to build ARM containers

2.

Inflexible, clunky, isolated
Need many workstations

Codesigned a Remote Builder for containers with Sylabs

Enables users to build for alternate architectures:
Ex. build AARCH64 container from AMD64 workstation
Can be used as part of CI/CD process (GitHub, etc.)

Builds run natively on alternate architecture, giving great performance

Centralized resource pool:
Lowers TCO by decreasing the need for workstations of multiple architectures

Enables users to build containers without privilege
Native integration with Singularity CLI

Track 3: Podman for Un-privileged Container Builds

Build containers directly on the

Sup_el‘COmpUt_er . podman build -t "gitlab.doe.gov/atse/astra:1.2.4" .
= Doing so requires root level privs

= root in HPC is bad, Docker is root equivalent

...........

= Leverage user namespaces for _building
containers

Podman and Buildah to provide container
builds while maintaining user-level
permissions

= CLI equivalent to Docker
= User namespaces GitLab
= Set uid/gid mappers l |

= TBD Overlay & FUSE for mount f“\
_ _ singularity build atse-astra-1.2.4.sif docker://gitlab.doe.gov/atse/astra:1.2.4 s]
= Ongoing Collaboration &2/

with RedHat ‘ I

TYTTIIIIYYY

podman push gitlab.doe.gov/atse/astra:1.2.4

Pedretti, Younge, et. al, Chronicles of Astra: Challenges and Lessons from the First Petascale Arm Supercomputer , to appear in SC20

. :‘.f:'. By

-

Production Usage for NNSA Mission

System Software Stack Testing & Debugging

= Astra ATSE programming environment release consists of:
= TOSS base operating system + Mellanox InfiniBand stack
= {2 compilers} * {3 mpi implementations} * {~25 libraries} = 150 packages
= Each release packaged as a container for testing and archival purposes

E |
L |
b
|
Ll
1]
i
el
s |

Astra ATSE Astra ATSE Astra ATSE Astra ATSE

1.2.0 1.2.1 1.2.2 1.2.3

Container Container Container Container
Then roll out release) STRA) STRA SIRA \ f?ff
on system natively i \ iy ’ ‘
= ATSE Container use cases:

= Release testing: Enables full applications to be built and run at scale (2048+ nodes) before rolling out
natively

= Rollback debug: If issues are identified, ability to easily go back to a prior software release and test
= Cross-system synchronization: Move full user-level software environments between systems. |n one

Test release in
container first

instance, this allowed an Astra InfiniBand library bug to be debugged off platform on another Arm cluster.

I L | 5

10000 A

Time (seconds)

| Case Study |: SNL ATDM App

SPARC HIFIRE-L1 Native v Container

s - = -Containeg

Points:
e, « SPARC containerized build & deployment
e, Deployed on Astra with Singularity
| * Near-native performance using a container
NG « Container faster due to testing new
optimizations for TX2
« Testing HIFIRE-1 Experiment (MacLean et
al. 2008)

1000 - « UNCLASSIFIED problem

128 (7168) 256 (14336) 512 (28572) 1024 (57344)
Nodes (cores)

Younge, et. al, (U) Practice and Experience with Containers and ARM64 on Astra, NNSA/AWE JOWOG 34

31 _ Case Study 2: Nalu CFD

Nalu - Container vs. Native - Strong Scaling

7,000 : 1.200
=, 000 SESS : == 1.150
O 5 000 -
%\ 1.100
(] m—
£ 4,000 E——————+——— 1
= 1.050
< 3,000
% ;
= 1.000
o 2,000
=
1.000 0.950
0 0.900
0 2 4 6 8 10 12 14 16 18 20
Nodes

Nalu: A generalized unstructured massively parallel

low Mach CFD flow code designed to support)) .
energy applications of interest —+—Native —x—Container Ratio

Agelastos, Younge, et. al, (U) Quantifying Metrics to Evaluate Containers for Deployment and Usage of NNSA Production Applications, NECDC 2018

Container Speedup

Case Study 3: Reinforcement Learning Algorithms

* An evolutionary approach for multi-objective optimization
« Evolutionary Algorithms are gradient-free population-based methods

* EA benefits from parallelization and does not require GPU acceleration
« Population of agents is generated and attempts a problem in parallel
* High performance agents are used for next population generation

Astra has been ideal for experimenting with EA

We are using Astra for scaling of ASTool

- Coevolves an agent’s decision making
policy and body

Built Singularity container
» Ubuntu 16.04, NumPy, PyBullet, ...

- Simple to use and modify

Credit: https://designrl.github.io/ I

500 nodes - 7.5 hours ‘

| 1

ECP Supercontainers

ECP Supercontainers

= Joint DOE effort - LANL, LBNL, LLNL, Sandia, U. of Oregon

= Ensure container runtimes will be scalable, interoperable, and well integrated across DOE ‘
= Enable container deployments from laptops to Exascale

= Assist Exascale applications and facilities to leverage containers most efficiently
= Activities conducted in the context of interoperability k
= Portable solutions

= Optimized E4S container images for each machine type SUPERCONTAINERS

= Containerized ECP that runs on Astra, A21, El-Capitan, ...
= Work for multiple container implementations

= Not picking a “winning” container runtime
= Multiple DOE facilities at multiple scales

= Three-fold approach
= Scalable R&D activities
= Collaboration with related ST and AD projects
= Training, Education, and Support

Emerging workloads on HPC with Containers

= Extreme-scale Scientific Software Stack (E4S)

= Container image contains everything and the kitchen-sink
= |Includes all ECP software activities

= Lightweight base images now available

= Support merging Al/ML/DL frameworks on HPC
= Containers may be useful to adapt ML software to HPC
= Already supported and heavily utilized in industry

= Working with DOE app teams to deploy custom ML tools in containers

= |nvestigating scalability challenges and opportunities

E4S PYTSRCH

Credit: Sameer Shende (U. Oregon)

Spack environments help with building containers

= We recently started providing base images with Spack preinstalled. ‘
= Very easy to build a container with some Spack packages in it:
FROM spack/centos:7 [Base image with Spack
spack-docker-demo/ . in PATH
Dockerfile —»WORKDIR /build
vaml COPY spack.yaml . Copy in spack.yaml
SPRCIC) RUN spack install Then run spackinstall

spack:

& Build with docker build. Specs:

docker - hdf5 @1.8.16 . .

r Run with Singularity — openmpi fabrics=libfabric List of packages to install,
- nalu

\sj (or some other tool)

with constraints |

Credit: Todd Gamblin (LLNL)

Future Containerized Cl Pipeline

Warning: Currently just Slideware

= As a developer | want to generate container builds from code pull requests so

that containers are 115ed tfo test new code on taraet HPC, machines.

Gitlab

I\
|

[|

!
Contirfuous Integration

|[i Build I’ Test I Deploy
‘l
! -

Spack Binary Mirror

ARM IEM

Heterogeneous Build Farm

Internal Network

Dy
£
)

“HPC container runtimes have minimal or no performance impact”

HPCG benchmark
102

= LANL team confirms all HPC container
runtimes perform well 101 -
= Performance delta < 1% @ 512 nodes

= “we hypothesize that the performance impact
of containerization itself is nil.”

= Memory consumption may differ

100 - -

99 |-

= Pick a container runtime, any runtime!
= More about features and experience

97 ——— bare metal
—s— Charliecloud
Shifter
CL - Singularity

= Need to confirm experiments scale to e S S T S SR SR

1 2 4 8 16 32 64 128 256 512

EanCa|e hode count

FLOPS percent of median bare metal

From: Alfred Torrez, Tim Randles, and Reid Priedhorsky, “HPC Container Runciiics i1iuve
Minimal or No Performance Impact”, IEEE CANOPIE-HPC Workshop @ SC19, Nov 2019.

Custom OC| Image Labels

= HPC apps require special system libraries
= CrayMPI linked in at runtime

e

IFTE
FROM centos:7 SHIFTER

LABEL org.supercontainers.mpi=mpich
LABEL org.supercontainers. glibc=2.17

RUN yum —y update && \

= Fix: Leverage OCIl-compatible image LABELs yum —y install geec make gec—gfortran \

= Insert directly in Dockerfile

= Embedding metadata into spec

= Labels specify expectations from the host

gcc—c++ wget curl

RUN B=mpich.org/static /downloads && V=3.2 && \
wget $B/$V/mpich—$V. tar.gz && \
tar xf mpich—$V.tar.gz && \
cd mpich—$V && \

= HPC container runtime intercepts labels, makes appro /configure && \
= Specify MPI version, Glibc expectation, etc

* Implemented prototype solution in Shifter

= Working with OCI container community

Credit: Shane Canon (LBNL)

make && \
make 1nstall

ADD helloworld.c /src/helloworld.c

RUN mpicc —o /bin/hello /src/helloworld.c

I
Label Values Comment | |
org.supercontainers.mpi {mpich,openmpi} Required MPI support, ABI compatibility
org.supercontainers.gpu {cuda,opencl,rocm, etc} Required GPU library support
org.supercontainers.glibc | Semantic version: XX.YY.Z | Specific version of GLIBC

Future Views

[readily available for critique]

Containers and Reproducibility?

= Reproducibility is a cornerstone of science!

= Consistent results across studies aimed at answering the
same scientific question

= Critically important in conducting computational science today

= DOE/NNSA must extend the lifecycle without underground testing \

= Rely on modeling and simulation apps to perform this task
= Incorporate a multitude of physics and engineering models
= Executed on leadership-class supercomputers

= Long-term studies take years
= Any particular simulation may not seem important at the time
= Later analysis may prove to demonstrate value in an old simulation
= Need to reproduce & reevaluate runs many months or years later!
(=

= Containerized builds can help future reproducibility efforts meﬂ)) ‘ kRS

mr

= Containers alone are not the answer
= Can be part of the solution

of Success

Container Performance Portability Continuum |

Portability

Performance

How do we strike the right balance?

= Portable container images can be moved form
one resource deployment to another with ease

= Reproducibility is possible
= Everything (minus kernel) is self-contained
= Traceability is possible via build manuscripts
= No image modifications

= Performance can suffer - no optimizations
= Can’t build for AVX512 and run on Haswell

= Unable to leverage latest GPU drivers

Performant container images can run at near-
native performance compared to natively build
applications

Requires targeted builds for custom hardware
— Specialized interconnect optimizations
— Vendor-proprietary software

Host libraries are mounted into containers
— Load system MPI library
— Match accelerator libs to host driver

Not portable across multiple systems

Kubernetes is coming...

kubernetes

» Containers are changing the software
ecosystem for application deployment

= Container orchestration tools are now
mainstream
= \/ERY different than traditional HPC

* No batch job scheduler, no jobs, just services and and
orchestrator

» Study Opportunities container
orchestration frameworks in HPC
» Performance, Usability, and Constraints

» Orchestration and batch?
» Separate solutions deployed today
= Orchestration _and_ batch!

Credit: Angel Beltre (Binghamton University)

Application Pod Al

Flannel

==

/" /| AwlcaionPod
' iniband .. _ | ______ N ____ Infiniband U
device |78 device

\
[Host Linux Kernel D;\
0,

/
. \[Host Linux Kerne

'J

M
%\,

| Applcation Pod |

Bare Metal Docker Swarm Kubernetes

......... S e
§ N o &

|
|
'
'
| ‘
|
)
|
|
'
)
|

Position |: Heterogeneity is the Future of HPC... |

I
SUEHEREE I ELE1IA2018 |

= HPC workloads are becoming more diverse

, , _ PRODUCTIVE COMPUTATIONAL SCIENCE
= |t's not just BSP simulations any more IN THE ERA OF EXTREME HETEROGENEITY

= Data is a cornerstone in ML, analytics, ...

= And HPC hardware will be more diverse
= “Era of predictable [hardware] improvements is ending.”

= Expecting custom aggregated components at the system
level

= How will system software cope and support
system-level heterogeneity?
= How will programmers be efficient in such a landscape?

= Will abstractions help or hinder performance?

Report for

- We n eed m O re AP I S " DOE ASCR Basic Research Needs Workshop on Extreme Heterogeneity

January 23-25, 2018

Position 2: ... and so is the Cloud

= The hyperscalers are finally paying attention to HPC ‘

= “The physical network topology does affect performance; particularly important is the
performance of MPI Allreduce, grouped by splitting the mesh by a subset of the dimensions,
which can be very efficient [5] [6] if each such group is physically connected.” — Shazeer et al
Google Brain, Mesh-TensorFlow: Deep Learning for Supercomputers.

= As learning techniques grow in scale, HPC becomes more important.

= HPC cannot compete with the hyperscalers
= Let’s stop trying and start integrating
= That doesn’t mean adopting Cloud as-is
= That doesn’t mean dissolving HPC either
= The closer HPC and cloud paradigms get, the better we all are
= Encourage open source infrastructure
= Collaborative partnerships

= Avoid boutique solutions without sacrificing performance

Tupperware

Container Takeaways (Tupperware?)

= Use DPocker Podman to build manifests of full apps
= Developers specify base OS, configuration, TPLs, compiler installs, etc
= Use base or intermediate container images (eg: TOSS RPMs in a container)

= Leverage container registry services for storing images

= Import/flatten OCI images into Singularity & run on HPC resources
= Also works for Charliecloud and Shifter

= Containers have demonstrated minimal overhead for HPC apps

= Enabling On-prem unprivileged containers builds now
= More to come with Podman & Buildah for HPC

= HPC Container Advantages
= Simplify deployment to analysts (just run this container image)
= Simplify new developer uptake (just develop FROM my base container image)
= Decouple development from dependency release cycles
= Reproducibility has a new hope?

= HPC Container Caveats
= ABI compatibility with MPIl an ongoing issue
= Still can’t build an ARM64 container image from my Mac laptop (yet)
= Containers are currently an option in HPC, not a mandate

Conclusion

= Can containers play a role in HPC? Yes

= HPC container runtimes work. Many options exist

= Demonstrated containers are viable in HPC
= Deployments in testbeds to production Petascale
= Modern DevOps approach with containers is useful

= Confirmed viability on Arm supercomputer
= Scaled production apps to 2048 nodes on Astra

= Podman helping expand the ecosystem

= Supercontainers for Exascale

= Prepare to enable containers at Exascale

= Simplify HPC application deployment via modern DevOps

= Support next generation Al & ML apps

= Containers can increase software flexibility in HPC

E(C)

P

FROIECT

\
Z\

H[A50C

Acknowledgements:
Kevin Pedretti (1422)
Si Hammond (1422)
Jim Laros (1422)
Anthony Agelastos (9326)
Stephen Olivier (1423)
Justin Lamb (9326)
Aron Warren (9327)
Erik Illescas (9327)
Ron Brightwell (1423)
Mike Heroux (1400)

Collaborators:

Shane Canon (NERSC)
Todd Gamblin (LLNL)
Reid Priedhorsky (LANL)
Sameer Shende (Oregon)
Todd Munson (ANL)

Angel Beltre (Binghamton)

Greg Kurtzer (CTRL CMD)
Eduardo Arango (Red Hat)

Questions?

ajyounge.com - ajyoung@sandia.gov

CANOPIE-HPC Workshop!

= https://www.canopie-hpc.org

= 2nd International Workshop on Containers and New Orchestration Paradigms for
Isolated Environments in HPC (CANOPIE-HPC) at SC20

= Principal venue for leaders in the field to stimulate research and interactions in
relation to cutting-edge container technologies, virtualization, and OS system
software as it relates to supporting High Performance Computing (HPC).
Encourage you to submit a paper!
= Papers due: September 3, 2020

= HPC-Containers Slack channel: http://bit.ly/hpccslack

