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Abstract—The increasing penetration of renewable energy
sources in the grid can raise the likelihood of instability in the
power grid, e.g., small signal and voltage instability incidents. To
study the effect of BESS integration on the grid and power
system behavior, accurate battery modeling plays a key role. As
the majority of power system studies including small signal
stability analysis is carried out in the d-q axes, a precise model of
the battery in the d-q axes is necessary. The lack of parametric
based models of the battery in d-q axes makes stability analysis
more challenging especially as the contributions of batteries in
power systems are growing rapidly. In this paper, we develop an
analytical model for the battery and its inverter in d-q axes. To
validate the fidelity of the model, we simulate both the original
and the obtained d-q models and compare the simulation results.
Also, a hybrid control framework based on the presented battery
model is proposed for stabilization of the power grid.

Index Terms-- Battery energy storage system, disturbance
rejection, hybrid control, load frequency control, small signal
stability.

I. INTRODUCTION

The growing interest of battery energy storage systems
(BESSs) in power systems highlights their significant role
in future power grids. At the transmission level of power
grids, large-scale batteries can provide load frequency
control [1]- [2] and backup for large wind farms [3]-[4],
among other services, due to their fast response. Battery
integration in the power grid can effectively reduce
oscillations in frequency and tie-line power profiles caused
by small load disturbances [5]. In general, small time
constants, fast response, and their high energy density
creates a large spectrum of potential applications for
BESSs in power systems. Large-scale battery integration
in the power system can also improve the transient stability
of the power system. In [6], battery integration in the
power system enhances the transient stability during the
active power transferring process through transmission
lines. In [6], it is also shown that the transient stability
performance of the system is enhanced by suitable
placement of a BESS in the system. To analyze the effects
of BESSs in power grids for all the aforementioned
applications, a precise model is required.

The dynamic model for large-scale batteries and their
integration in power grids was first proposed in [7]. In this
model, the battery was represented by a constant voltage
source parallel to a resistance and capacitor (RC) circuit.
The model was later improved and implemented in power
system studies [8]-[9]. The proposed model in [9] has been

used in research studies for load frequency control and
power system stability analysis [7], [10], [11]. However,
nonlinearities in some of these models are a disadvantage
as it complicates the stability analysis. Moreover, in these
studies BESSs are considered as active power sources,
while a major advantage of BESSs is that both its active
power and power factor are adjustable and controllable by
the firing angle of the thyristors in the inverter. Therefore,
by controlling the inverter, it is possible to have reactive
power injection into the power system. As reactive power
directly affects voltage deviation in power systems,
reactive power injection has the potential to mitigate
voltage instability in the grid.

In recent years, the Western Electricity Coordinating
Council (WECC) has developed a new set of simple
generic models for the simulation of grid integrated
renewable energy systems and BESSs in positive sequence
power simulation tools [12], [13]. In the proposed model
[13], the user will be able to emulate, for the purposes of
stability studies, the dynamic behavior of BESSs.
Moreover, both active and reactive power have been
considered, However, in these models the details of the DC
side dynamics in BESSs are neglected [13], [14], [15]. The
ideal dynamic model for large-scale battery integration for
the power grid should be able to represent both the
battery's DC dynamics and active/reactive power models.

The possibility of switching the battery's operating
points between charging and discharging scenarios to
increase the stability of the power system, highlights the
hybrid control application. Hybrid control in frequency
and voltage regulation for load adjustment is well
investigated [16]- [18]. A hybrid control model using the
concept of the Cooperative Home Energy Management
(CoHEM) strategy is proposed in [19], for frequency
regulation. They considered refrigerators as controllable
loads to validate the proposed control model against
system with no controller as well as the centralized
controller strategy. In another study, a hybrid control
algorithm is derived to regulate the output voltage in a
boost converter; which is quite a suitable approach for real-
time implementation. The applicability of the hybrid
control to both the continuous current mode (CCM) and
discontinuous current mode (DCM) operations is a useful
feature, considering that the operating mode of a power
converter may change from CCM to DCM and vice versa
depending on the load conditions [18].

Considering the fact that the batteries in power systems
are accompanied by the inverters, switching and as a result
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hybrid control strategy application is inevitable. This paper
describes a new modeling approach using d-q analysis for
batteries integrated with the power grid. A state space
representation of the battery energy storage model
accompanied by an inverter in the d-q axes is presented. Since
the inverter firing angle in this paper is considered as an input,
enabling the control of the batteiy's power factor, a hybrid
control is proposed to minimize the unnecessary switching in
the inverter.

The advantages of the proposed model with respect to
the other battery models [7] — [10] and [13] — [15] are: i)
the reactive power has been considered such that grid voltage
deviations can be taken into account; ii) the state space model
of the battery has been represented in d-q structure, which is
well suited for stability analysis in power systems; and iii) a
hybrid control algorithm to control frequent switching
between charging and discharging modes of the battery.

The rest of the paper is organized as follows. Section II
describes the problem statement. In Section III, the battery
equations and linearized model in the d-q axes are presented.
Battery integration and proposed control strategy is explained
in Section IV. Finally, Section V presents conclusions and
future study.

II. PROBLEM STATEMENT

Small signal stability in a power system is defined as the
ability of the power system to maintain synchronism in the
presence of small disturbances such as load deviations. In this
context, since the power system is inherently a nonlinear
system, the power system model is linearized in the vicinity
of its operating point for the small signal analysis. This
enables us to apply linear system theory to the power system
even though the system is inherently nonlinear. In this regard,
all power system components can be modeled in the state
space representation as

rfc = Ax + Bu
ty = Cx + Du
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Fig. 1 Power system Structure

A general power system structure is shown in Fig. 1. Based
on the given model, we can define the general equation of the
system as:

[Ybus]avt = — — Als + AlB (2)

where, Ybus is the power system admittance matrix, Avt. is the
voltage deviation in the buses and MG, AIL, Als, and MB are
the changes in generator, load, static var compensator (SVC)
and battery current injections to the power system,
respectively.

A. Generator Model

The generator model in state space representation varies
based on the modeling approaches chosen [19]— [20]. The
generator differential equations after linearization are
represented as:

fAicg = [Ag]kag + [Bg]AlTg + [Eg]frucg

tAlg = [Ca]Ax9 + [DjAV0

where AVg represents the voltage deviation in the generator
bus, Mg is the generator current deviation and Attcg is a small
perturbation in the generator reference input variables for the
generator controllers. Note that, Alg, and ilVg are represented
in d-q axes as

01 
M dg
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To be able to study the power system, all other equipment
such as loads, SVCs and batteries should be written in d — q
format. These devices are modeled in state space
representation in the following subsections.

B. Load model

(3)

Power system loads including induction motors and nonlinear
loads are modeled as

= [11/]6,x1 + [B1]6,171 + [EL] Auc1
[CAA; + [NAV/

(4)

where, tXx1 are the dynamic loads such as induction motor
states and And are the load control inputs. AV1 is the load bus
voltage deviation and /111 is the load (demand) current
deviation. For the static loads the equation will be simplified
to

AIL = [D1] AV1 = [K]A171 (5)

C. Static Var Compensator (SVC) model

Similar to the load equations, static var compensator in state
space representation is modeled as

= [As]Axs + [BJAV, + [E,]Au„
tAIS = [G]boc, + [1MLIV,

(6)

where, Ax, are the SVC states and Attc, are the SVC control
inputs. AK and Ms are the SVC bus voltage and current
deviations, respectively.

D. Battery model

To add the battery dynamics to the power system model, the
battery also should be represented as

{A.tb = [AbPab [BdAVb [EdAttcb

Alb = [Cb]Axb + [Db]AVb (7)



Remarkl: Note that all equations are in d-q axes, hence:

A/ = [
A/d

i and AV = [
Av

g
]

0 41 (.) Avd

where AV0 represents voltages deviations in load, SVC or the
battery buses, 0/0 is the current deviations and Art,0 is the
small perturbation in their reference input variables.

E. Network Equations

As shown in Fig. 1, generators, SVCs, batteries and loads in
the power system network are interfaced to the network as
current injections which leads us to the following equation

[Ybus,Q]AVQD = [PdAIG — [PJAIL — [Paus +
[PB1,61, (8)

Yb„sjx2 is the network admittance matrix in d-q axes and

Pg(i,j) = [01 °I.] if the generator is connected to the jth

bus, otherwise Pg pj) = gj. Same interfacing matrices

are defined for PI, Pwc, and Pb [19]-[20].

After substituting the equations (3), (4), (5), and (7) in (8) and
simplifying, the overall system representation becomes

= [k]X + [E]T, (9)

where

A, = [A] + [B][P],[1'bu,D0-1[P][C] (10)

[11 = [PG PL. Ps Pe] (11)

And

[V,1l,D,2] AVQD = [PG][CG][XG] + [Pd[CL][XL] +

[Ps][Cs][Xs] + [Pu][C s][X u] (12)

At represents the state matrix of the entire power grid, and the
stability of the system is studied based on this matrix.
To be able to study the effect of the battery integration on the
power system stability, we need to model the battery in the
state space model structure given in (7). Then we will be able
to add the battery model to the power system model in (8).
For this purpose, the BESS current equations in d-q axes is
derived and linearized in the vicinity of the operating point.

In. BATTERY MODEL

Batteries are accompanied by inverters in power grids [9].
Figure 2 shows the equivalent circuit model of a battery and
its inverter.
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Fig. 2. Battery and inverter circuit model
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Inverter connection in the battery provide a unique
opportunity for power system control. Considering the
dynamic model of the battery in charging and discharging
modes along with the inverter, allow us to have full control
on four quadrants of active and reactive power by controlling
the inverter's operating point as shown in Fig. 3.

Four quadrant control means the real current flow directions
can indicate either charging or discharging modes, while the
reactive current flows can represent either supplying or
absorbing treactive power simultaneously and independently.
By implementing a proper control strategy, the BESS can
provide the following functionalities in the power grid based
on system requirements [13]:

i) voltage control and regulation at the local terminals of
the BESS, at the point of interconnection (POI) or plant
level (when BESS is incorporated in a power plant);

ii) frequency support by quickly providing or absorbing
real power or being part of automatic generation
control (AGC); and

iii) power oscillation damping and transient stability of the
power system.
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Fig. 3. BESS Four quadrant control and operation diagram

(adapted from [14])

To extract the state space model of the battery, we need to
consider two cases for the charging and discharging modes.
The dynamics of the battery in the charging mode are slightly
different from the discharging mode. In the first case, we
obtain the state space model of the battery for the charging
scenario. In the second case, with slight modifications, we
derive the discharging model from the first case.

A. Case I: Charging Mode

In the charging mode, using Kirchhoff s voltage law, the
output voltage of the battery, VBT, is

v, cos(aR) 
3

VBT -XcolBES7r 7r

VBT = VBOC VB1 (RBT VBS)IBES

(13)

(14)

where, 'BBB is the battery's terminal current. The dynamic
model of the battery for the charging mode is shown in Fig. 4,
where, aR is the inverter's firing angle and v, is the bus
voltage to which the battery is connected.



Fig. 4. Battery and inverter dynamic model in the charging mode

Assuming A. = 1 + xco, and R = RBS R Br the battery

current will be

1  T,
m1BES = —u? vt COS(aR) — lR VBOC 

— v B1 (15)

where VB1 is the overvoltage, and VBOC is the open circuit
voltage of the battery. In the nonlinear model of the battery,
represented in Fig. 3, we consider xbs = rvBOC,VB1, aRr as
the state vector of the battery in charging mode.

By linearizing (15) in the vicinity of the operating point of the
battery in the power grid, aR = aro, Vt = V tO, VBOC = Vb000,
VB1 = Vb10, and IBES = IN, the current deviation is

31/3 3.V5
MBES = --nxR cos(aro) A vt — --,os I'm sin(aro) AL re —

AR AR

u A  A,
Liveoc —  Liv131 (16)

Moreover, using the dynamic block diagram shown in Fig.
3, we have the following state dynamics

1 1

,Bp 

A

AVBOC = BE'S 
CBPRBP 

AVB0c

  „ „
AVB1 MBES 

CR1RB1 
lavm.

RR A 1 A

AerR = aa — — aaR
TR TR

(17)

(18)

(19)

The final state space representation of the battery dynamics
and its inverter for charging case can be summarized as (20)
and (21) in the vicinity of its operating point. More details on
deriving the state space representation of the battery are
provided in [21].

r

H

em. AVBOC

et' Ab_C AVB1 1- B bc
AaR

AVBoc
mbaicc i = Cb_CAVB1 1+rba 

AaR

In this state space mode , the states are the deviation values of
nonlinear states as

Av + EhsAucks

DbC Ov

(20)

(21)

= [Alleoc, AaR]T

The input reference control for the battery is defined as
Attcbc = Aa, which controls the active and reactive output

power of the battery. The output signals are active (A/ba_c)
and reactive (Al bci_c) current deviations of the battery in
charging mode. Note that the voltage input signal is in d-q

axes as Av = 1Avd, Avd 1T . Av is the deviation of the battery's
terminal voltage as a result of the battery connection to the
power grid.

To validate the credibility of the obtained linearized model in
d-q axes, we use simulations results to compare the behavior
of the new model with the original one. For brevity, only the
results for the charging mode are presented. The discharging
mode has the same quality of results. In the simulation study,
the following system operating conditions were
considered: No = 100 V ,

vtdo = 692.82 V,vt0 = 700 V, and cro = 15°.

At this operating point, a small perturbation on the firing
angle of the inverter with the value of Aa = —1.97° was
considered. Figure 5 compares the results of the state vector
xb = r.YBOC,VB1, aRrin both models. The states in the
original model are shown in blue and states of the linearized
d-q axis model are depicted with red.

All states start with the same initial conditions as both models
were in the same operating points. The slopes of deviations
are very close to each other and there are slight differences in
the final values.
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Figure 5. States of the battery for original and linearized model

The bias errors are mainly noticeable in the steady state
because of the linearization approximation whereas the
application of this model is for transient behavior analysis for
no more than a few seconds time duration.

Having the state space model for the battery in the charging
mode, we will derive a similar model for the discharging case
with slight modifications in the battery equations.

B. Second Case: Discharging Mode

To modify the charging model in Fig. 3 for the discharging
mode two slight changes are required: i) changing the firing



angle to ig = rc — a; and ii) changing the current flow
direction. Therefore, the obtained battery voltage is

VBT = Va0C VB1 - (RBT VBS)IBES (22)

Considering the inverse flow of the current, igEs has negative
value in the equation (13). So, (22) is modified to

VBT = VBOC VB1 + (RBT VBS)IBES (23)

The states of the battery for discharging mode with the
discharge current are defined as

= [AVB0C, APR iT

Where

VB1A = —11131 and IBR = 7r — aR

Finally, the state space model matrices of the battery for
discharge case will be similar to the charging case as

{AOC AVBcpc

QVBl = Ab dAVBl d + Bb_d AV + Eb_d Aucb_d (24)

{Albd_d1

Albqd 

= r 
{11VB0C

AVB1_d Db_d Av (25)

Where

[
6,17Boc LXVBOC

A1781 =T..6,17131.4
daR diOR

And

1 0 0
T =0 —1 0

0 0 —1

(26)

Substituting the state space models of the charging and
discharging cases of the battery in the power system equations
given in (10) and (12), the state space model of the power
system in the presence of the battery will be as follows

(4, = Acxc + Bcuc_c

tyc = Ccxc
xd = AdXa BdUC

ya = CaXd

(27)

(28)

where xc, and xd are the augmented states of the power

system for charging and discharging scenarios; Ac, and Ad
represent the state matrices of the entire the power grid for
charge and discharge cases and the augmented input signals
of the system are

uc_c = [Attc9 Ana frac, Aucb_j (29)

itcd = [Aucg Alta &tics Aucb_d]T

IV. BATTERY INTEGRATION AND CONTROL STRATEGY

To simulate the effect of the battery integration on the power
grid, a two-area case study model adapted from [19] is

considered. Considering the battery integration to the bus 6 in
two area case study model, the effect of the linearized battery
model integration, for charging case, is presented in Fig. 6.
Eigenvalue plot of the two-area case study model with the
battery is represented in Fig. 7. It is shown that the battery
connection has improved the small signal stability of the
entire system.
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Considering the state space model of the power system in
presence of the battery and the battery's input as the control
input, (27) and (28) will be rewritten as

(X, = Acx,+

tYc = Cxc

xd = Adxd Bduckd

Yd = CdXd

Since the power system is represented with two state space
models, control design strategy should be able to frequently
switch between charging and discharging operating
conditions (as shown in Fig. 8).

(3 1 )
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(30) Fig. 8. Control design approach based on charge and discharge of the
battery

To prevent frequent unnecessary switching and design a
proper control for the battery, a cost function for each scenario
is defined as (33) and (34).



= ft i (xT Q, + Rc itos) dr (33)
k- 

_ rtk 
- tk se 

n
a •'.(1 + Ucbd Rd Ucks1) dt (34)

A switching policy will be considered to shift between
charging and discharging condition and moving in operating
spectrum (the green arcs in Fig. 3) to minimize the cost
function in each time interval of (tk_l, tk) and consequently
the total cost function of the battery operation in the power
system.

V. CONCLUSION

In this paper an analytical linearized dynamic model of a
large-scale BESS in the d-q axes is presented. The model is
expressed in the state space representation which can be easily
applied in stability studies and dynamic simulations of power
systems. A parametric based model of BESS in d-q axes
makes stability analysis of power grids with BESS integration
more tractable especially as the contributions of batteries to
power system performance are rapidly growing.

To examine the dynamic behavior of this model, the active
and reactive power of the linearized model are compared to
those of the original model with excellent agreement. Battery
integration to a two-area case study model show improved
stability of the power system. Preserving two state space
model for charge and discharge of the battery demands a new
control approach to manage the switching between two
operating points of charge/discharge. In the future study, the
proposed control will be applied to the case study model to
increase the small signal stability of the system in presence of
the disturbances.
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APPENIMX

System parameters are:

X„ = 0.0274 12, CeP = 52600 F, Cal = 1 F, RBT
0.016712, Rgs = 0.013 II, R81 = 0.00112, Rgp = 10000 .0,
KR = 1, TR = 0.001 s, vto = 790 V, -vo = 100 V, a = 15°.
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