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ABSTRACT

One of the major challenges for evaluating the
effectiveness of data visualizations and visual analytics
tools arises from the fact that different users may be
using these tools for different tasks. In this paper, we
present a simple example of how different tasks lead to
different patterns of attention to the same underlying
data visualizations. We argue that the general approach
used in this experiment could be applied systematically
to task and feature taxonomies that have been
developed by visualization researchers. Using eye
tracking to study the impact of common tasks on human
attention to common visualization types will support a
deeper understanding of visualization cognition and the
development of more robust methods for evaluating the
effectiveness of visualizations.
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1 INTRODUCTION

What makes a data visualization effective? Evaluating
visualizations can be very challenging and is the subject
of much research and debate [6, 15, 19, 22, 24, 26].
Members of the visualization research community have
called for evaluation approaches that assess how well
visualizations support their viewers' cognitive needs [5,
9, 17, 29]. From this perspective, an effective
visualization successfully exploits its viewers' cognitive
processes to draw their attention to relevant
information, minimize their attention to irrelevant
information, and increase the likelihood of correct
interpretation. In order to meet those requirements,
visualization designers need to be able to account for
the experience, expectations, and biases of the viewer in
addition to the low-level, perceptual properties of the
data visualization.

There is a growing body of research on how the
perceptual aspects of visualizations influence viewers'
cognitive processes. For example, researchers have
demonstrated that increasing the visual saliency of task-
relevant information can improve task performance [8,
11, 12, 14, 16, 18, 25] and that changing the visual
representation of a dataset can change how viewers
interpret it [7] and their biases in interpretation [21].
However, there has been relatively little research on how
different high-level tasks impact viewers' attention to
different aspects of visualizations. In this paper, we present
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a simple experiment as an illustration of why this is an
important topic, in need of additional research.

1.1 An Experiment on the impact of Task
This simple example is taken from one task in a larger
study. In this task, thirty participants recruited from the
University of Illinois community were asked to describe
either the trend or the outliers in a series of
scatterplots. There were 32 scatterplots consisting of
four unique plots for each of eight types of trends:
positive linear, negative linear, flat, sinusoidal, positive
logarithmic, negative logarithmic, positive quadratic,
and negative quadratic. The simulated data were drawn
from Gaussian distributions and the data points
representing the trend were constrained to fall within
two vertical standard deviations of the trend function.
Half of the plots of each type had two outliers and half
had four. The outliers were at least four standard
deviations away from the trend function. An example is
shown in Figure 1.
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Figure 1: Two representative scatterplot stimuli, one with four
outliers (left) and one with two outliers (right).

The stimuli were divided into two blocks. For one block,
the participants were asked to describe the trend
depicted by the scatterplot, and for the other block they
were asked to describe the outliers. The task-block
pairing and the order of the two tasks were
counterbalanced across participants. Each scatterplot
was shown on a computer screen for 10 seconds, or
until the participant pressed a key to advance. While the
participants were viewing the scatterplots, their eye
movements were recorded with a Smart Eye Pro eye
tracker. After the scatterplot disappeared from the
screen, the participant verbally described the stimulus
from memory.

1.2 Results
Two raters independently scored each participant's
description of each scatterplot. The participants were
generally successful at describing all five types of
trends, but they had the most difficulty with describing
the quadratic trends. When describing the outliers,
participants missed one or more of the outliers on 200
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out of 398 trials (50.3%). There were only 20 trials in
which participants falsely identified an outlier (5.0%).

Fixations were calculated using Smart Eyes default
algorithm, where any sample for which the velocity over
the preceding 200 ms is less than 15°/s is deemed a
fixation. The first fixation in each trial was excluded
from the analysis, as was any fixation with a duration
less than 100 ms. A mixed effects model (fit with the
lme4 package in R software [2]) with a fixed effect for
task and random intercepts for participant and stimulus
(using Satterthwaite approximation for degrees of
freedom) revealed that overall, participants had more
fixations in the outlier task (mean = 22.83 fixations,
stdev = 4.78) relative to the trend task (mean = 19.90
fixations, stdev = 5.37; t(885) = 10.04, p < .001). A
similar mixed effects model with fixation duration as
the fixed effect revealed that fixation durations in the
trend task (mean = 325.38 ms, stdev = 293.92) tended
to be longer than those in the outlier task (mean =
279.84 ms; stdev = 232.53; t(20015) = 12.43, p < .001).

Task also influenced which regions of the graph
participants fixated most frequently. Each stimulus was
divided into the following regions of interest (ROIs):
Outliers, Trend, Title, X-axis, X-axis Label, Y-axis, Y-axis
Label, and Other. The "Othee ROI corresponded to the
white space inside of the scatterplot that did not contain
any data points. The proportion of fixations to each type
of ROI was calculated for each participant and stimulus
(see Figure 2).
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Figure 2: Average proportion of fixations to each region of interest.

The participants' task had a substantial impact on
where they allocated their attention within the
scatterplots. A mixed effects model was used to predict
the proportion of fixations as a function of the fixed
effects of task and ROI, with random intercepts for
subject and stimulus (using Satterthwaite
approximation for degrees of freedom). This analysis
showed that for the trend description task, there were
significantly higher proportions of fixations to the trend
ROI as well as the title, axis, and axis label ROIs. For the
outlier description task, the proportion of fixations was
significantly higher for the outlier ROI and the "other"
ROI (all t-statistics > 2.00 and p-values < .05). The high
proportion of fixations to the Other ROI was likely due
to participants searching the graphs for outliers as well
as the relatively small size of the outlier ROIs.

2 DISCUSSION

In this task, we observed differences in patterns of
attention when participants were given different tasks
that use the same stimuli. The behavioral results
indicate that participants performed the two different
tasks successfully, although some types of trends were

more difficult to describe than others and some outliers
were overlooked. The eye tracking data indicated that
there are differences in the overall allocation of
attention to different elements within the graphs. The
trend and axes received a relatively high proportion of
the participants' attention, regardless of condition, but
the attention to the outliers and the area around them
was dramatically influenced by the participants' task.

The classic experiment by Yarbus (1967) demonstrated
that a person's task and goals impacted their eye
movements, and numerous subsequent studies have
found similar effects for visual search tasks using
natural scenes [3, 10, 13]. Our simple experiment
demonstrates that the viewer's task also changes
patterns of eye movements when the stimuli are data
visualizations. While this is a very straightforward
example, where the attention to outliers increased
when the outliers were important to the task, we posit
that it is possible to characterize general patterns of
attention that are associated with other common
visualization types and tasks.

There are several taxonomies that break down common
visualization types and common modes of interaction
with visualizations, cf. [1, 4, 19, 23]. We suggest that it
would be fruitful to apply methods from the visual
cognition literature to the taxonomies that have been
developed by visualization researchers. Using eye
tracking to characterize how different tasks or goals
within these taxonomies relate to different patterns of
attention will help to further the understanding of how
people make sense of data visualizations and where
visual-spatial and cognitive biases [20, 27]. are most
likely to impact their interpretations. Systematic
research along these lines could also help to develop
more widely applicable evaluation methods that take
both bottom-up and top-down features into account to
determine whether a visualization effectively meets the
cognitive needs of its intended users.
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