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2 Introduction

• Wellbore Integrity is a significant environmental and energy security
problem for our nation

• 30% of the 4 million wells worldwide show signs of integrity failures
(Davies et al., 2014)

• Current industry paradigms for well design include using cement as a
barrier, however many cementing problems go undetected (Yakimov,
2012)

• Evaluation, characterization and remediation of wells has become a
priority for industry, regulators and the public



3 Challenges and Approach

• Wellbore integrity assessment relies on a combination of indirect
measurements (through casing) and models to assess these very
complex systems
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• We propose a new capability to drill
precision holes (at depth) through
the sidewall casing

• These small diameter holes would
enable direct, precise measurements
in the cement that indicate potential
failures



4 Current methodologies

• Existing methods require fiber optic or sensor placement during
well construction
• Expensive, technically challenging, could introduce fluid leaks

• Applies only to NEW wellbore installation does not address aging wells
that may be failing

• Our approach would entail intentionally breaching the casing in a
controlled manner to enable precise assessment
• Enables the future development of smarter, effective, remediation
techniques/materials that are tailored to the wellbore flaw, reducing risk
to the entire well



5 Focus

• Data analysis to characterize mechanisms of micro-drilling in
wellbore material (shale, cement, steel)
• Develop ability to predict properties and transitions ahead of drilling

• Enables optimization of drilling conditions to suit wellbore formation

• Enables precise placement of sensor package for long term monitoring

• Foundational step towards the development of fully autonomous
well drilling that could automatically adjust drilling parameters to
minimized or avoid drilling dysfunctions



6 Bench Top Testing Set-up

• Simulates micro-drilling into a wellbore casing

-ball-screw driven

-carriage mounted spindle

actuated using servo-driven ball

screw

-Linear rail guides

-Plastic shield for protection

-EMO switch

-servo motor that acts as pulse

generator and controls step size

and direction

-CNC machine controller software

-NEMA23 stepper motor

-Lathe head with multi-axis

bearings



7 Test Samples

• Simulates materials in a wellbore Mancos
shale, cement, and 1018 steel

• Bonded together with epoxy

• Samples were made with the materials in
different orders and separately
• Allows better understanding of the force

interaction between the drill and the individual
material



8 Drilling Data Analysis

• "Standard" data was collected at 1800 RPM with a 4.5 in/min feed
rate

I

• Force and torque data were collected from the bi-axial load cell
highly correlated

• Chose to focus on force data I
• Focusing on fewer measurements better simulates real world applications
and makes it easier to scale-up diagnostic tool later

• Early indications show that the force data has a higher SNR than the
torque data which allows for easier statistical analysis



9 Drilling Data Analysis Material Sandwich

• Drill through 3 wellbore materials in succession, but in different
order for each sample

• Shows unique force signature for each given material (steel,
cement, shale) independent of drilling order
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Drilling Data Analysis-Individual Material

• Also shows unique force signature for each material
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Drilling Data Analysis Shale

• Nonhomogeneous composition that could caused unexpected
force variability from sample to sample

Shale Only Example 1, 1800 RPM, 4.5 inlmin 

2

I it
/Ato00400440
10

Time (5)

15 20

Shale Only Example 3, 1800 RPM, 4.5 inlmin

Shale Only Example 2, 1800 RPM, 4.5 inimin

25 0 s 1a 1s 20

Time (5)

4

.ra

Shale OW Example 4, 1800 RPM, 4.5 inlmin

10

Tirie (s)

23 0 5 70 75 20 25

Time (S)



12 Drilling Data Analysis Temporal Kurtosis

• Shows the extreme values of either tail of a distribution representing the
"tailedness" of the distribution (Decarlo, 1997, Song and Cha, 2016)

• Identify any rapid changes in the force data which we hypothesize to be
related to the drill's transition between materials in real time

TK = 
1 N
(N Ei,101i - 102)2

1 N
N Ei,101i — ill)4

• Temporal kurtosis was chosen for a variety of reasons:
• Variance alone proved to not be a reliable statistical measurement
• Higher order statistics can reveal changes not seen at lower statistical levels
• Simple measurement that could be performed quickly in real time and used as a
feedback to our control system

• Heuristic approach based on past algorithms we have used
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• Interesting phenomenon
observed around 15 seconds
could be epoxy?



„ Drilling Data Analysis Epoxy Only Samples
• Epoxy only samples show that it is possible that the material interfaces in the

material "sandwich” test samples were affected by the epoxy
• Epoxy depth is unknown and could be affecting depth offset extrapolated from feed

rate
• A linear position sensor was been obtained and hopefully will allow true depth of the

drill bit with relation to the material.
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15 Drilling Data Analysis Shale Cement Comparison

• Greatest Similarity observed between shale and cement materials

• Noticeable difference between variance observed in force data
between the shale and cement materials

• Compared temporal variance between cement and shale materials

• Highlights inhomogeneous nature of the shale material versus the
cement material

Shale leg:4
Temporal
Variance

Cement Test #
Temporal
Variance

Shale 1 0.5773 Cement 1 0.2278

Shale 2 1.2759 Cement 2 0.2117
Shale 3 1.607S Cement 3 0.2199

Shale 4 0.932.3 Cement 4 0.232.6
Shale 5 1.32.84 Cement 5 0.2114

Shale 6 1.2656 Cement 6 0.2316
Shale 7 3.6535 Cement 7 0.2186

Shale 8 4.0809 Cement 8 0.2232.
Shale 9 0.8130 Cement 9 0.2.694



16 Future Work

• Experiment drilling at different rotational speeds, different feed rates,
and/or different drill bit sizes

• Preliminary data was collected with a larger drill size of 3/16 inches
(1200 RPM, 4.5 in/min feed rate)

• Seems to confirm inhomogeneity in shale material (independent of drill
bit size)
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17 Future Work

• Collect data with position sensor
• Allow us to more precisely and accurately define exact moment of material

transition with relation to depth placement
• Better correlate temporal kurtosis as drill bit transitions between material

• Develop algorithm based around material variance differences chi-
square test?
• IE: Large variance change = drill bit is in shale

• Explore machine learning applications and methods

• Explore higher order statistical methods to be used in coordination I
with machine learning algorithms

• Deeper analyze of torque data to possibly remove ambiguity seen in
force data

• Determine whether there is a frequency dependence with variance

I
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