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| Introduction

* Wellbore Integrity is a significant environmental and energy security
problem for our nation

* 30% of the 4 million wells worldwide show signs of integrity failures
(Davies et al., 2014)

* Current industry paradigms for well design include using cement as a
barrier, however many cementing problems go undetected (Yakimov,
2012)

e Evaluation, characterization and remediation of wells has become a
priority for industry, regulators and the public



.| Challenges and Approach

* Wellbore integrity assessment relies on a combination of indirect
measurements (through casing) and models to assess these very ‘
complex systems

INicrera il Castageti . , |
| . * We propose a new capability to drill
Formation | precision holes (at depth) through

the sidewall casing

* These small diameter holes would |
- enable direct, precise measurements
in the cement that indicate potential I

4 failures
tuses

Proposed drilling capability



.| Current methodologies

 Existing methods require fiber optic or sensor placement during
well construction
* Expensive, technically challenging, could introduce fluid leaks

* Applies only to NEW wellbore installation—does not address aging wells
that may be failing

* Our approach would entail intentionally breaching the casing in a
controlled manner to enable precise assessment
* Enables the future development of smarter, effective, remediation

techniques/materials that are tailored to the wellbore flaw, reducing risk
to the entire well



.| Focus

e Data analysis to characterize mechanisms of micro-drilling in
wellbore material (shale, cement, steel)
* Develop ability to predict properties and transitions ahead of drilling
* Enables optimization of drilling conditions to suit wellbore formation
* Enables precise placement of sensor package for long term monitoring

* Foundational step towards the development of fully autonomous
well drilling that could automatically adjust drilling parameters to
minimized or avoid drilling dysfunctions



| Bench Top Testing Set-up

* Simulates micro-drilling into a wellbore casing

-ball-screw driven

-carriage mounted spindle
actuated using servo-driven ball
screw

-Linear rail guides

-Plastic shield for protection
-EMO switch

-servo motor that acts as pulse
generator and controls step size
and direction

-CNC machine controller software
-NEMAZ23 stepper motor

-Lathe head with multi-axis
bearings




| Test Samples

 Simulates materials in a wellbore—Mancos
shale, cement, and 1018 steel

* Bonded together with epoxy

* Samples were made with the materials in
different orders and separately

* Allows better understanding of the force
interaction between the drill and the individual
material




.| Drilling Data Analysis

» “Standard” data was collected at 1800 RPM with a 4.5 in/min feed
rate

* Force and torque data were collected from the bi-axial load cell—
highly correlated

* Chose to focus on force data

* Focusing on fewer measurements better simulates real world applications
and makes it easier to scale-up diagnostic tool later

* Early indications show that the force data has a higher SNR than the
torque data which allows for easier statistical analysis



.| Drilling Data Analysis—Material Sandwich

* Drill through 3 wellbore materials in succession, but in different
order for each sample

* Shows unique force signature for each given material (steel,
cement, shale) independent of drilling order
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.| Drilling Data Analysis-Individual Material

* Also shows unique force signature for each material
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.| Drilling Data Analysis—Shale

* Nonhomogeneous composition that could caused unexpected
force variability from sample to sample

hale Only Example 1, 1800 RPM, 4.5 infmin Shale Only Example 2, 1300 RPM, 4.5 in/fmin
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, | Drilling Data Analysis—Temporal Kurtosis

* Shows the extreme values of either tail of a distribution representing the
“tailedness” of the distribution (Decarlo, 1997, Song and Cha, 2016)

* |dentify any rapid changes in the force data which we hypothesize to be
related to the drill’s transition between materials in real time
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* Temporal kurtosis was chosen for a variety of reasons:
e Variance alone proved to not be a reliable statistical measurement
* Higher order statistics can reveal changes not seen at lower statistical levels

* Simple measurement that could be performed quickly in real time and used as a
feedback to our control system

* Heuristic approach based on past algorithms we have used



. | Drilling Data Analysis—Temporal Kurtosis
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* Interesting phenomenon
observed around 15 seconds—
could be epoxy?



Drilling Data Analysis—Epoxy Only Samples

* Epoxy only samples show that it is possible that the material interfaces in the
material “sandwich” test samples were affected by the epoxy

* Epoxy depth is unknown and could be affecting depth offset extrapolated from feed
rate

* A linear position sensor was been obtained and hopefully will allow true depth of the
drill bit with relation to the material.
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s | Drilling Data Analysis—Shale Cement Comparison

* Greatest Similarity observed between shale and cement materials

 Noticeable difference between variance observed in force data
between the shale and cement materials

 Compared temporal variance between cement and shale materials

* Highlights inhomogeneous nature of the shale material versus the
cement material

Shale Test # TEII.lp oral Cement Test # Tenl1p oral
Variance Variance
Shale 1 0.5773 Cement 1 0.2278
Shale 2 1.2759 Cement 2 0.2117
Shale 3 1.6078 Cement 3 0.2199
Shale 4 0.9323 Cement 4 0.2326
Shale 5 1.3284 Cement 5 0.2114
Shale 6 1.2656 Cement 6 0.2316
Shale 7 3.6535 Cement 7 0.2186
Shale 8 4.0809 Cement 8 0.2232
Shale 9 0.8130 Cement 9 0.2694




.| Future Work

* Experiment drilling at different rotational speeds, different feed rates,
and/or different drill bit sizes

* Preliminary data was collected with a larger drill size of 3/16 inches
(1200 RPM, 4.5 in/min feed rate)

* Seems to confirm inhomogeneity in shale material (independent of drill
bit size)
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| Future Work

 Collect data with position sensor

* Allow us to more precisely and accurately define exact moment of material
transition with relation to depth placement

» Better correlate temporal kurtosis as drill bit transitions between material

* Develop algorithm based around material variance differences—chi-
square test?

 |E: Large variance change = drill bit is in shale
* Explore machine learning applications and methods

* Explore higher order statistical methods to be used in coordination
with machine learning algorithms

* Deeper analyze of torque data to possibly remove ambiguity seen in
force data

* Determine whether there is a frequency dependence with variance
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