
Amnesia Radius Versions of Conditional Point Sampling
for Radiation Transport in 1D Stochastic Media

Emily H. Vu1,2 and Aaron J. Olson2
1Department of Nuclear Engineering Radiological Sciences

University of Michigan, Ann Arbor, MI 48109, USA

2Sandia National Laboratories
Albuquerque, NM 87185, USA

emilyhvu @ umich.edu, aolson@sandia.gov

ABSTRACT

Conditional Point Sampling (CoPS) is a newly developed Monte Carlo algorithm for com-
puting radiation transport quantities in stochastic media. CoPS has been demonstrated to
produce results at a high degree of accuracy for 1D [1] and multi-D [2] problems, com-
pute variance in outputs caused by material mixing [1], and is statistically errorless in
1D mixtures with Markovian mixing statistics [1]. However, the algorithm involves a
growing list of point-wise material designations during simulation that causes potentially
unbounded increases in runtime and memory, making the production of probability den-
sity functions (PDFs) computationally expensive. In this work, we use CoPS to produce
PDFs for a set of benchmark problems by omitting material points used in the compu-
tation from being stored in persisting memory based on their proximity to neighboring
material points already defined within a realization, and we conduct numerical studies
to investigate trade-offs between accuracy, required computer memory, and computation
time.
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1. INTRODUCTION

Conditional Point Sampling (CoPS) is a Monte Carlo method developed for radiation transport in
stochastic media that uses Delta tracking [3]. It has been demonstrated to produce mean results [1]
as accurate as other well-known approximate methods for one-dimensional, binary, Markovian-
mixed media such as the Atomic Mix (AM) approximation, Chord Length Sampling (CLS), Local
Realization Preserving (LRP) [4], and Algorithm C (Alg. C) [5] for a set of benchmark problems
of slab geometry defined in Ref. [6]. The algorithm easily extends to and is accurate for multi-D
problems [2], and was demonstrated to accurately quantify the variance in mean results caused by
random material mixing [1] using the Embedded Variance Deconvolution (EVADE) approach [7].

We are interested in characterizing stochastic media problems by producing probability density
functions (PDFs) with Conditional Point Sampling (CoPS). This requires a collection of histo-
ries simulated on the same set of successively sampled material points that essentially are on the
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same material "realization"; in Ref. [1] we began calling such a collection of histories a "cohort."
However, the CoPS algorithm involves a growing list of material points sampled during simula-
tion, which directly increases the algorithm's runtime and required computer memory, making the
construction of a well-resolved PDF using larger cohorts impractical. In Ref. [8], recent mem-
ory versions of CoPS where only the sampled material assignments of the most recently visited
locations by a history rather than that of every location were investigated in hopes of alleviating
runtime and computer memory requirements while maintaining CoPS accuracy. In this work, we
introduce an "amnesia radius" ra, a user-defined parameter used to determine if a sampled material
point is omitted from the composition of a realization, such that, if a sampled material point falls
within the amnesia radius of a neighboring material point, it is not included in the growing list of
points for the remainder of the particles in each cohort. Note that in the limit as ra —> 0.0, the
original version of CoPS is recovered, and memory of all sampled material points is retained.

In this paper, limited-memory versions of Conditional Point Sampling (CoPS) of varying cohort
sizes and amnesia radii using a 2-point (CoPS2) and errorless 3-point (CoPS3P0) conditional prob-
ability function for binary, one-dimensional, Markovian-mixed media are used to perform transport
calculations and construct PDFs. We present these results and benchmark them against reproduced
benchmark results in Ref. [1] and results presented in Ref. [9]. We also present numerical studies
investigating accuracy, memory requirement, and runtime trade-offs for each set of parameters to
support future efforts in CoPS implementation on next-generation computing platforms.

2. THEORY AND CONDITIONAL POINT SAMPLING

Discussion on Markovian-mixing theory and the Conditional Point Sampling algorithm can be
found in Ref. [10] and will be further described in the full paper.

3. RESULTS AND ANALYSIS

A set of problem parameters for planar geometries from the benchmark suite described in Ref. [6]
is used. The problem parameters of Tables 10-18 in Ref. [6] are listed in Table 1, where Eto is the
total cross section, A3 is the average chord length, and c3 is the scattering ratio for each material
j E 0,11. Only a slab length L = 10 is considered here. In this paper, a 2-point (CoPS2)

Table 1: Benchmark Set Parameters

Case Number Et,0 Et,i Ao A1 Case Letter co c1

1 10/99 100/11 99/100 11/100 a 0.0 1.0
2 10/99 100/11 99/10 11/10 b 1.0 0.0
3 2/101 200/101 101/20 101/20 c 0.9 0.9

and errorless 3-point (CoPS3P0) conditional probability function for binary, one-dimensional,
Markovian-mixed media are used in Conditional Point Sampling (CoPS) to perform transport cal-
culations with cohort sizes of 2, 5, 25, 50, and 100 particles; amnesia radii of 0.0, 0.01, 0.1, and
1.0; and 1E6 particle histories.
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Probability density functions (PDFs) for each benchmark case were produced using CoPS2 and
CoPS3P0 and cohort size of 100. Here, we present the PDF produced by CoPS3P0 for Case
la in Figure 1. This figure shows agreement between the benchmark results from Ref. [9] and
CoPS3P0 using amnesia radii of 0.0 and 0.01 with increased deviation using amnesia radii of
0.1 and 1.0. Note that CoPS3P0 with ra = 0.0 is errorless, and therefore it, like the benchmark
approach, produces exact PDFs within statistical uncertainty. Figure 2 shows the average points
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Figure 1: Case la reflectance and transmittance PDF using CoPS3P0.

remembered per realization and total runtime as a function of cohort size. When all points are
remembered (ra = 0.0), the increase in average points remember per realization and total runtime
is unbound as a function of cohort size. For an amnesia radius ra 0.0, there is a limit on total
runtime and required computer memory imposed, correlated to the maximum number of possible
points allowed in a realization, in0). For this set of benchmark problems, both memory and
runtime for 1E6 particles plateau drastically at larger cohort sizes as amnesia radius increases with
memory and runtime savings of a factor of over 10 for a cohort size of 100.

Average Points Remembered and Total Runtime vs. Cohort Size
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Figure 2: Average points remembered per realization and total runtime as a function of
cohort size using CoPS3P0.



4. CONCLUSIONS

In the full paper, we plan to show accuracy comparisons between CoPS2 and CoPS3P0 of varying
amnesia radii, the convergence of PDFs produced using the benchmark approach and CoPS3P0
as cohort size increases for small non-zero amnesia radii, and additonal numerical studies show-
ing CoPS3P0 behavior in accuracy and runtime as a function of average points remembered per
realization. In future publications, we hope to continue this investigation of limited-memory CoPS
and study hybrid limited memory techniques including but not limited to amnesia radius and recent
memory [8]. We would like to extend this to multi-dimension and multi-material CoPS.
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