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Evolution of Computing Machinery

Energy Per Mathematical Computation
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Computing Across Power Envelopes

loT, Edge, and Self Driving Cars,
Mobile Unmanned Arial
Computing Vehicles, and Satellite
Computing
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4 I |EEE International Roadmap for Devices and Systems

™
INTERNATIONAL RoADMar FoR DEVICES AND SYSTEMS

I
Successor to ITRS (International Technology Roadmap for Semiconductors) |

Objective of the Beyond CMOS (BC) Chapter Still road mapping near term

semiconductors (Moore Moore)

2020 2022 2025 2028 2031 2034

Novel computing paradigms and application pulls S
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A E fﬁ@iemc y * Big d%m Logic device structure options FinFET T&FAEAT LGAA LG'AA i::::;:: I:.Z::::
r EHeency * IoT and trillions of edge sensors

Mainstream device for logic finFET finFET LGAA LGAA LGAA-3D LGAA-30

* Deep learning and artificial intelligence | 2B
* Exascale supercomputing o a e »
* Robotics and autonomous systems '
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= Emerging Architectures sl ot
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E ® Mat Y Device architecture key ground rules
. :? mewn‘g mals FinFET pitch (nm) 28.0 240
< =

FinFET Fin width (nm) 7.0 6.0
FinFET Fin height (nm) 50 60
Footprint drive efficiency - finFET 3.82 5.25

Lateral GAA lateral pitch (nm) |5

Lateral GAA vertical pitch (nm)

Lateral GAA ( heet) thickness (nm)
Number of vertically stacked nanosheets
LGAA width (nm) - HP

LGAA width (nm) - HD

LGAA width (nm) - SRAM

LGAA total height (nm)
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Footprint drive efficiency - lateral GAA - HP |}
Device effective width (nm) - HP 107.0 126.0
I . Device effective width (nm) - HD | 107.0 126.0
3 Slz@ Device Iateral pitch (nm) 28 24
¥ Device height (nm) 50.0 60.0
‘1 mm Device width (nm) - HP 7 6

Device width (nm) - HD 7 6
Device width (nm) - SRAM 7 4 6
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What’s the Minimum Energy to Operate a Transistor!

Consider a signal Energy Eg;g,,,

The probability of an error due to thermal noise is:

P(Error) = ¢ Vsignal e

In order to ensure a full system with billons of
transistors is reliable, we need:

Esignal ~ 50 kT

Landauer — Shannon Limit



How Efficient are Current Systems?

Current Transistors ~ 10 aJ
50KkT Noise Limit ~ 0.2 aJ

!

Only 50X Improvement Left
for Transistors!

Cross chip communications ~ 1 pJ
DRAM Access >10 pJ
Ethernet ~ 1nJ

!

Cross Chip communications are 5
orders of magnitude more energy!



Beyond Moore Technologies

IL Cross chip communications ~ 1 pJ
Current Transistors ~ 10 aJ DRAM Access >10 pJ
S50KT Noise Limit ~ 0.2 aJ Ethernet ~ 1nJ
Extending Von Neumann Alternate Computing Paradigms
* Low Voltage or Novel Transistors * Neuromorphic * Quantum
» Optical Communications * Analog « Stochastic
 Reduced Data Movement « Computing with « Approximate
* New On-Chip Memory memory devices

* Processing near Memory

Going Below 50 kT
« Error Correction
» Reversible Computing
« Adiabatic Computing / Energy Recycling
« Superconducting



Beyond Moore Technologies

Current Transistors ~ 10 aJ
50KkT Noise Limit ~ 0.2 aJ

Extending Von Neumann

* Low Voltage or Novel Transistors
* Optical Communications

* Reduced Data Movement
* New On-Chip Memory

* Processing near Memory

Cross chip communications ~ 1 pJ
DRAM Access >10 pJ
Ethernet ~ 1nJ

Alternate Computing Paradigms

Neuromorphic * Quantum
Analog « Stochastic
« Computing with * Approximate

memory devices

Going Below 50 kT

 Error Correction

» Reversible Computing
« Adiabatic Computing / Energy Recycling

« Superconducting



0o | Extending Von Neumann — New Transistors

Lowering voltage lowers CV? energy of communications

Logic and Information Processing Devices

Domain Wall Logic

4 State variable %
Transistor laser H DWL e
% Magnetoelectric H NML H
g
;% Topological insulator H
o
Z Spin wave H ‘ Excitonic ]
J.A. Incorvia et al, Nature
; e Comm 7, 2016
o | TFET | 2DChannelFET | SpinFET |
eo ' | Negative Capacitance FET
% } Neg-C, FET 1‘ e '
O . L _k | ’ CFEi
SIFET =~ NWFET Mott FET | st
R — ”" CS—
Conventional Novel Structure l
/materials Wong and Salahuddin, TED 2019



A New Switch has to Satisfy Three Specifications

Low Active Power (CV? energy)
* Steepness (or sensitivity)

o switches with only a few milli-volts
o 60mV/decade = 1mV/decade

Low Leakage Power
*  On/Off ratio: 10°: 1

High Speed (RC delay)

* High Conductance Density
o 1 milli-Siemen/micron

log{I}
A

steeper
sub-threshold
swing

Current

)Vg
Gate Voltage

T




12 I Need Restoring Logic for Novel State Variables

* Need to be able to drive multiple output transistors across multiple stages
of Iogic | - Not Restoring ‘

Restoring

Figure from Elad Elon, 2010 E3S Retreat

Inputs slightly below V4, restored to V4 and
inputs slightly above 0 are driven to zero

https://www.allaboutcircuits.com/technical-articles/restoring-digital-signals-in-pass-transistor-logic/



13 | The Memory Hierarchy

1010 difference in density from
HDD to Registers

1915189y 01 AdH
WwioJj paads Ul 92UaI3LLP ,01

Source: hitoe/'www .Is avnet com/uk/products and solulions/storage/hierarchy.himi




Storage Class Memory - Intel/Micron 3D XPoint

SRAM
Latency: 1X DRAM

Size of Data: 1X atericy: ~10X
nCy: o
Size of Data: ~100X 3D XPoint

Latency: ~100X
Size of Data: ~1,000X

e — NAND
Ui L el Latency: ~100,000X

Size of Data: ~1,000X

HDD

Latency: ~10 MillionX
Size of Data: ~10,000 X

H}

Also Samsung Z-NAND:
« Re-optimize flash for speed rather than density (single level per cell)
 Comparable to Intel Optane (3D XPoint) products




5 | Extending Von Neumann — Reduced Data Movement

Optical Interconnects 2.5D & 3D Integration

Package
malding

T

Processor Layer ~ Photonic Layer iy
100 fJto 1 pJ i
Richard Goering, “Three Die Stack -- A Big Step “Up” for 3D-ICs with TSVs” Cadence blog
Embedded Memory

« Embed new denser nonvolatile memories in the processor
« Add simple processing to DRAM or disk drive controllers
“Processing in Memory”




16 | Emerging Memory Devices SOT Memory

l Memory

|

[ Volatile J Nonvolatile ]

l Eme:'ging J
|

Novel Magnetic Memory I "

| Ferroelectric Memory l h— N
| . Z. Wang EDL 39, 2018

Storage Class

Memory —|_sTT-RAM | { Fu |

Successfully N

i |
tracked and "l ReRAM I OxRAM |
‘ DNA Memory
transferred to
CBRAM
M M STORAGE LIMITS
0 re 00 re . Estimates based on bacterial genetics suggest that digital DNA
STT_MRAM l could one day rival or exceed today’s storage technology.
- — Macromolecular Memory J M S ~ ‘»
[ ' -  '*;;' Flash JBact;rri‘aA A
Mott Memor / : : meme ATA
et ey ot e | o | a3
Data ret((;zgfsy;> - o 100 )
Massive Storage Devices J O oo oo o
Data density =
> ~100 ~10' ~10% .

(bits per cm?®)



17 I Advantages of Emerging Memories

* Back end of line integration
> Can integrate in the metal layers directly on top of logic

* 3D stackable

* Higher endurance (10° to 10%?) relative to flash (10%), but not as
good as DRAM (>1019)

* Nonvolatile: >10 year retention, no standby leakage

* O(10ns) read and write times



| The Need for a Select Device for Resistive Memories

V/3 write scheme

Half selected device sees V

Target device sees W

1

Ad
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N o ot (o)
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0 -2V

N

A%

write

%
%
%

0

/3

write

Memory Selector Devices

1

Transistor Diodes Volatile switch Nonlinear devices
— Planar Si1 diodes Threshold Tunneling-based
switch nonlinear selector
— Vertical Oxide/oxide " ‘
heterojunctions Mott switch MIEC

Metal/oxide Schottky

junctions

Reverse-conduction

diodes

Self-rectification

Reverse bias

* Need a nonlinear 2 terminal back end of line compatible device to block current from

half selected and unselected devices

« The larger the on/off ratio, the larger the possible array and therefore density

« Typically needs to be bi-directional

Complementary
structures

Intrinsic
nonlinearity

Tigpuly A&

Forward bias




Beyond Moore Technologies

IL Cross chip communications ~ 1 pJ
Current Transistors ~ 10 aJ DRAM Access >10 pJ
S50kT Noise Limit~ 0.2 aJ Ethernet ~ 1nJ

Extending Von Neumann Alternate Computing Paradigms

» Low Voltage or Novel Transistors * Neuromorphic ¢ Quantum
« Optical Communications * Analog « Stochastic
 Reduced Data Movement « Computing with « Approximate

* New On-Chip Memory
* Processing near Memory

memory devices

Going Below 50 kT
« Error Correction
» Reversible Computing
« Adiabatic Computing / Energy Recycling
« Superconducting



20

Alternate Computing Paradigms

Crossbar Based Computing Architectures
* Vector Matrix Multiplication

e Quter Product Update

* Crossbar Based Matrix Solvers

* Ternary Content Addressable Memory
Neuro-inspired Computing

* Hyperdimensional Computing

* Local Learning Rules

* Spiking Neural Networks

Probabilistic and Stochastic Circuits
Computing With Dynamical Systems

* Simulated Annealing

* Coupled Oscillator based energy minimization



| Alternate Computing Paradigms
21

Crossbar Based Computing Architectures

<Vector Matrix MultiplicatiD ' Neural Network
«_Outer Product Update Training Accelerators

e Crossbar Based Matrix Solvers

* Ternary Content Addressable Memory
Neuro-inspired Computing

* Hyperdimensional Computing

* Local Learning Rules

* Spiking Neural Networks

Probabilistic and Stochastic Circuits

Computing With Dynamical Systems

* Simulated Annealing

* Coupled Oscillator based energy minimization



| Use Resistive Memories for Local Computation

,.JVV\,_‘ - Aresistive memory or ReRAM is a
programmable resistor
V =1IxR «  Apply small voltages allows the conductance
— toberead: 1=G xV
= (GX
=G V\ . Apply large voltages to change the resistance

multiplication

Il
Current
1 OFF ON
I2
Read Window Pt Pt
Addition: I=I,+1, VRHESE _ ;/ : T:SET -~ » ® §§@g®§
/ : \l/READ '\?ET " oage@©@®x © ®®®® ®
® ® @ ®
& Ta
Write




23 I Vector Matrix Multiply: Directly Process in the Memory Itself

Mathematical

VW=l

I —

|:v1 V, v3] Wi Wy, Wy

2,1 WZ,Z W2,3

31 W3,2 W3,3

— e

|:|1=Zvi,1wi,1 Iz=ZVi,zWi,z |3=zvi,3wi,3

Electrical

=

Analog is efficiently and naturally able to combine computation and data access

Large-scale processing in memory with a multiplier and adder at each real-valued memory location

« Energy to charge the crossbar is CV?

e E x C « number of RRAMs « NxM

<10 f] MAC
<10 fJ Update
>100 TOPS/W



SRAM Arrays Require Charging Columns Multiple Times

WL[O]J_l_L[O<>O]J_l_L %L[O<>O]%L
:NLmlE L‘lE L'LE 1

\ N7 N\NBry” N\Nbrp
|

M columns
SRAMs must be read one row at a time, charging M columns
Each column wire length is O(N).

|_‘

N rows

}

Energy = N Rows x M Columns x O(N) wire length
Energy ~ O(N?xM)
O(N) times worse than a crossbar!



The Noise Limited Energy to Read a Crossbar Column is
Independent of Crossbar Size

I =GV Measure N resistors and determine the total output
A A A current with some signal to noise ratio (SNR)”
I =GV What is the minimum energy?
—AA— 1
1 -GV Energy = VG X N X —
N 0 A
Power in each resistor x Determined by
number of resistors noise and SNR

Thermal Noise = <A[ 2>
= Nx(4k,Tx G, x Af) If we double the number of resistors, we can double
the speed to get the same energy and SNR.

SNR* = (NIOZ) This is because the noise scales as sgrt(N) while the
<M > signal scales as N
2
kT SNR L Eneroy =4k, T x SNR
b 2 b
Af V2G, x N

*we are assuming we need some fixed precision on the output, and don’t need full floating point accuracy



Need to Use Analog to Efficiently Discard Precision

Sum 1024 8 bit weights X 8 bit inputs:

V=X, w » Result has 26 bits of information!
o> Wi « A 26 bit ADC would eliminate any analog advantage!
v SO
2 %) The sum can be done at full precision in analog, but a
o Wai
V=X, _@ — lower precision approximation is needed when digitizing
» w??‘\ * i.e. digitize only 8 bits or fewer
V,=x -
+ _@ _\\ To get the highest 8 bits of information, digital would
W‘”‘ need to keep a 26 bit intermediate result
Vv

Can design an ADC to choose
non uniform values to digitize

/

Neuron
Function

S

Analog Sum

26



Outer Product Update: Parallel Write

y1=0.25 y,=0.5 y;=0.75 y,=1

N

Vv

— l7—|t\ l t/l t
- x=0 ‘V 4 V" V‘

%,=0.33

v
- >t » Wz.l%' Wz‘z%' W2‘3%' Wz'?z'

X,=0.66

y
L™ TR v WA

L Xg=1
Vi—  »
W4\1%r W4‘2%[ W4‘3%I W;?_ﬁ

Energy to charge the crossbar is CV?
E o« C « number of RRAMs o« NxM

E ~ O(NxM)
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Example: Design an

Vector Matrix Multiply

-
R

Temporal| Row
Coding |Drivers Two
T | Logic 1024 x 1024
«3 Crossbars
D>
(=4 P\1/”1.\
Edge Logic
Counter
Offset
E%:I Correction
i, | Integrators
ADC [3 ] meg
|Ramp  / l:{)[ > lComparators
M | | Register 2

Chip Architecture

|—| & Router

Neural Network Training Accelerator

Matrix Vector Multiply

[Vi, Va2, —V3, = V4]
mn

\__/Voltage Coding

Temporal
Coding Two
T | Logic 1024 x 1024
= Crossbars
2 E
Edge Logic
Counter [
Offset
[:%:I Correction
i, | Integrators
ADC / Z

IRamp  / ':{)I ; lComparators

M

Bus

|
r
Neural
Core(s)
.

Digital
Core

I R | Bus
7
Neural

Core(s)
S

Digital

Core

Bus

r

Neural
Core(s)

\

Digital
Core

\,
o]

7~
Neural
Core(s)

J \

Digital

Core

[R]

Bus

| R | Bus

|1

| l | Register 2

Cp =

Load Cap

Outer product Update

Vi, Va, —Va, — V4]
I

\__/Voltage Coding

Temporal| Row
Coding |Drivers Two
T | Logic 1024 x 1024
% Crossbars
e oS-
& . EER
Edge Logic
Counter
L
M | | Register 2

Neuron Circuitry

Al

Cc1

Z

S

v

Integrating
Cap

g D
.

f

Reset
Switch



Energy Area and Latency Advantages of an Analog Accelerator

29
1024 x1024 = 1M array operations, sum over 1 training cycle, 3 operations:
» Vector Matrix Multiply
« Matrix Vector Multiply
* Quter Product Update

Energy Latency Area
430 - 6,900X over SRAM 35 - 800X over SRAM 11 - 20X over SRAM
105 F 1 T T 3 1@4 E T T T % 10& 1 T T
10* | .
5 E ~
£10° 3 £
> ; L0 n5
@ 10° | : o
o <
10%] .
10° | | ; | | M el A |
Analog Digital SRAM Analog Digital SRAM Analog Digital SRAM
ReRAM ReRAM ReRAM ReRAM ReRAM ReRAM
8 bit in/out 4 bit in/out 2 bit in/out
B g it weights T g pit weights B8 g hit weights
Used a commercial 14/16 nm PDK ***Requires 100 MQ on state devices

M. J. Marinella, S. Agarwal, A. Hsia, I. Richter, R. Jacobs-Gedrim, J. Niroula, S. J. Plimpton, E. Ipek, and C. D. James, "Multiscale Co-Design Analysis of Energy, Latency, Area, and
Accuracy of a ReRAM Analog Neural Training Accelerator,” IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2018.



Go from Measurement to Accuracy

Fabricate . Cumulative
) Measured Pulsin AG Scatterplot o
Device | 9 iy P Probability of AG
TiN L A
TaO, — 10 nm 2 o8
g o 06} "
o 0.4 @
% 0.2 - 0.4
o 0.0
~0.2 ‘
TiN L s — A= =0 2= 24 = % Al B 0.0
0 2@&@%%@%@%@@ 000 Starting Conductance {mS} 1?%,&&?%%;%?(,5% 28

R| B T| Bus |R
[r US\ us\':l]

Digital Digital
Core Core
positive [D/A] |D/A :IZIIII( :IIIIII:
weights Neural Neural
\ (D VA @ Core(s) Core(s)
2 —-|k Jr—1k JI'— [
D/A = | "%. $A/D [[R Bus - RI Bus j|1& g
A 3 ‘% | | é Digital Digital é ?g
D/A %. AD Core Core j;%
ar a >m<
ek : : 20-] — Exp.Derived |
negatlve Neural Neural ! -
weights 71 Core(s) Core(s) = Ideal Numeric
2 e T e %8 5 10152025303540
us us y 1015 30354
A/D A/D

~ . u g ‘
Router Training Epoch




1 | Multiscale Model of a Neural Training Accelerator

99 LG DAGES Target Algorithms
i : * Deep Learning Algorithms
_gm L * Sparse Coding

Feature 1 ‘*."*‘ ;T e

i ‘, { — usmmesed | — Ep. Weried | qul‘”d State
: ; § — Mesd Mo - = tehea] Bamaric :
‘ R e "s oy e
'\a«a@mﬁmﬁm}m Tl Epoch Traiinding Epoch R R

Translates device measurements and e
crossbar circuits to algorithm-level

performance
Sandia’s Xyce Circuit Sim: Simulate
Circuits y m @  osshar circuits based on our devices
T T

Memristor
fabrication and Drift-diffusion model of ReRAM band diagram
measurements & transport (REOS, Charon)

g |
20 20 60 80 100
Pulse Number /
In situ TEM of filament switching: Use
DFT model to interpret EELS signature

R R

R
.- w ﬂ L “ - Modified McPAT/CACTI:
Core Core
4 ﬂnoss S[M Architecture R 0 Rim Model performance and
1“®  Sandia Cross-Sim: ﬂ Digital ﬂ Neural energy requirements
§ Core

R

|

L
£ds

DFT of model of oxide
physics, bands




Learning
Algorithm

> :
https://cross-sim.sandia.gov ) "%23‘1"%3};1 v Wir Wiz Wi
L - o x ot L Neural Core

e Simulator

D=, ..

Crossbar Simulator v =S

4

o
g

Q
Jel
b3
iii
-
>
(<]
]]

Xyce Physical Numeric
ZROSS SIM Crossbar Hardware Crossbar

About CrossSim Circuit Model Crossbar Simulator
Detailed but Fast but

CrossSim is a crossbar simulator designed to model resistive memory V.= )

for both and (in a future release) |_X|’le} Wil W W
digital memories It provides a clean python APl so that different V.=xolD ? .
algorithms can be built upon crossbars while modeling realistic device 2 Z;Uwz} A EAES, S I ow a p p rOXI m ate
properties and variability. The crossbar can be modeled using multiple V3=x~r@
fast approximate numerical models including both analytic noise B W;l\ W;} Ws} W_‘}
models as well as experimentally derived lookup tables. A slower, but V4=X4 % w -
more accurate circuit simulation of the devices using the parallel spice Wit Waat Wast Wag = —
simulator Xyce is also being developed and will be included in a future L 4 L 4 $ @ eas u re g o rl m l c
release

Devices Performance

Download

Download the user manual here: CrossSim_manual
Download CrossSim v0.2 here: cross_sim-0.2.0.targz
Download example scripts here: examples tar gz

TaO,—MNIST
Ideal Numeric

O
O

Contact Us

Please email Sapan Agarwal for any questions or if you would like to contribute to the source code: sagarwa@sandia.go

Periodic Carry

Selected Publications Using CrossSim

* S_Agarwal, R. B. Jacobs-Gedrim, A. H. Hsia, D. R. Hughart, E. J. Fuller, A. A Talin, C. D. James, S. J. Plimpton, and M

Accuracy
O
o

J. Marinella, "Achi g Ideal in Analog phic Computing Using Periodic Carry,” in 2017 IEEE
Symposium on VLS| Technology Kyoto, Japan, 2017.
¥ van da Burnt £ 1 E | Fullae @ T Kaona G C Fara Q Ananwal M | Marinalia A Alac Talin and A

| ‘ Single Device
Simple Python API: bt v 0 L L

; . 0 200 400 600 8001000
# Do a matrix vector multiplication Pulse Number 0 Trla?ninzoE %(gh 40
result = neural_core.run_xbar_mvm(vector) 9Ep

il




33 | Compare Analog Devices

ReRAM

Silicon-Oxygen-

SONOS

Nitrogen-Oxygen-Silicon

TiN
TaO, — 10 nm

TiN

R. B. Jacobs-Gedrim et al., "Impact of
Linearity and Write Noise of Analog
Resistive Memory Devices in a Neural
Algorithm Accelerator,” IEEE
International Conference on Rebooting
Computing (ICRC) Washington, DC,
November 2017.

r W

lonic Floating-Gate Memory

n-type pely
tap oxice
- A & A& u:f:: :Egieor axynitride
N soiuren N* drain l

1 p-type silicon
S. Agarwal et al., "Using Floating Gate Memory E. J. Fuller et al., "Parallel programming of an
to Train Ideal Accuracy Neural Networks," IEEE ionic floating-gate memory array for scalable
Journal of Exploratory Solid-State Computational neuromorphic computing," Science, vol. 364, no.

Devices and Circuits, 2019

6440, pp. 570-574, 2019.

5



34|

Accuracy

Three Terminal Devices Tend to Have Higher Accuracy

MNIST Handwritten Digits

100 m I i
95 -
90 B - |deal -
| — IFG
85 — SONOS
80 K — TaOx -
75
70 | i |
0 10 20 30 40

Training Epoch

Delta G {(MS)

ReRAM
1"‘4‘ ?‘o i T i [ H
jﬂ,.z ..: i ° L4
L 1+ Lower write noise
e 1 + Lower write asymmetry
0.2 ..
0.0
—0.2 |-
-0.4 o
18 20 22 24 26 28
Starting Conductance {mS)
0.0" [ |
C
! [
Y | , :
B (SEEmEkAslns el v N s
S05{F s A e e e B R S
0] ! ' e
2 , '
! [
! [
1.0+ T T T T T T T
170 180 190 200 210 220 230 240

Go (uS)

lonic Floating-Gate



Compare Archite

120-430X Energy Advantage

lﬂ—4 ¥ ) 1]
] B VMM
10 B MVM
L0® BN OPU || _
= B Total|] £
a8 107 ?
| -
) g
LE -8 ’ )
10 -
10°
10™"° ‘
53 I3 ¥ 8, B3
by wE €F SL T
AV A <n < <

ctural Advantages

2-34X Latency Advantage

1@~3 ; ; y ]
: B VMM|
P E MVM |
10 B OPU |
| Total |

10°

© =
B
aw

107 |
53888, 83
5% £2 s g3
O <K < <

Area (mm?2)

5-11X Area Advantage

Digital |

Digital |
Analog i
IFG
Analog
ReRAM

z 28
28
x <wv

1024 x1024 = 1M array operations, sum over 1 training cycle, 3 operations:

- Vector Matrix Multiply

Used a commercial 14/16 nm

- Matrix Vector Multiply

- Outer Product Update

PDK ***Requires 100 MQ on state devices



Compare Architectural Advantages:
Vector Matrix Multiply

120-430X Energy Advantage 2-34X Latency Advantage 5-11X Area Advantage
107 — ., u . 107 — ; ; —

. B VMM : B VMM |
ol B MVM | B MVM |

B OPU |
B Total |

B OPU
B Total

Area (mm?2)

All Analog Vector Matrix Multiply and Matrix Vector Multiply
have same energy and latency
« Entirely dominated by ADC, device properties irrelevant
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120-430X Energy Advantage
107 —

Compare Architectural Advantages: Outer

Product Update

BN VMM
B MVM
B OPU |
BN Total

2-34X Latency Advantage
107 —

N VMM |
B MVM

Outer Product Update is device dependent
SONOS has slow write (-1 ms) and high write voltage (11V)

IFG and ReRAM write energy negligible compared to VMM

IFG has extra delay over ReRAM for access device to turn off n

Area (mm?2)

0.9
0.8

0.7}
0.6

0.5

0.4}
0.3}
0.2}
0.1}

0.0

5-11X Area Advantage




Compare Architectural Advantages: Area

120-430X Energy Advantage 2-34X Latency Advantage 5-11X Area Advantage
107 — w ; u . 107 — ; m : —  0.9— .‘ ‘. . ;
' B VMM : B VMM o5l B
10° MMl mm MM || ool
10% B OPU ol EEE OPU |
I Total Bl | Total |

10°®
10
107

= = ohwv on on

OV o <n < <

SONOS area cost IFG and ReRAM go over
reasonable, roughly transistors, area dominated
doubles area by ADC and DAC

38
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Analog Devices Summary for Training

ReRAM

TiN
TaO, — 10 nm

TiN

SONOS
Silicon-Oxygen-

Nitrogen-Oxygen-Silicon

Large Energy/Area/Latency «

advantage over digital
Accuracy not good enough

Back end of line compatible

Under commercial
development

I
n-type paly

tap axide

r | f- " f?siliu:on nitride or caynitride

turnel oxica

| | T | =]
N* souron M* drain l

a-type silizon

)

Moderate
Energy/Area/Latency
advantages over digital

High Accuracy

Commercially available

Need to prove endurance and
device to device variability

lonic
Floating-Gate Memory
A e/

/'ﬁrus.
/ 3 memr.
IS¢,
5i0.:Ag o -
Ox t/‘ansl,
PEDOT:PSS Slor

» Large Energy/Area/Latency
advantages over digital

» High Accuracy

* Not clear how to integrate

» Has retention challenges



| Alternate Computing Paradigms
40

Crossbar Based Computing Architectures
* Vector Matrix Multiplication
* Quter Product Update
< Crossbar Based Matrix Solvers >
«_Ternary Content Addressable Memory

Neuro-inspired Computing

* Hyperdimensional Computing

* Local Learning Rules

* Spiking Neural Networks

Probabilistic and Stochastic Circuits

Computing With Dynamical Systems

* Simulated Annealing

* Coupled Oscillator based energy minimization



« | Analog Matrix Inversion |

Analog matrix inversion can perform a dense approximate matrix solve ‘

b = Ax ﬁ ]row - ZGrow,col (I/col WO |
col

@ Vigxo Var®  VsTX O Cchallenges:

= V A‘u%' A‘%. A?n » Matrix inversion is non-linear, limiting how the
Q )\ computation can be split for large matrices

< : .. L

* Analog non-idealiti n ignifican
N~ A‘%‘ A‘%. A%. alog non-idealities can cause significant
22 21 22 23 errors

S,
I,;=b; V Asy Asz) A?'
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Ternary Content Addressable Memory (TCAM)

* Can do very efficient fast pattern matching to search stored data

* Data analytics, k-nearest neighbors machine learning
e Sparse matrix multiplication

* Associative Computing
* Crossbars can implement extremely efficient TCAMs

Input

Input

Stored

State State Output State Output Output

M,

M,

M,

M,

Total

, Ol O|r

X X |k = |O

N =)

Ol OO

R RO Ok

O ,r O O|O

B R | =R OO




Alternate Computing Paradigms
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Crossbar Based Computing Architectures
* Vector Matrix Multiplication

e Quter Product Update

* Crossbar Based Matrix Solvers

* Ternary Content Addressable Memory

" Neuro-inspired Computing )
* Hyperdimensional Computing
* Local Learning Rules

. ° Spiking Neural Networks )

Probabilistic and Stochastic Circuits

Computing With Dynamical Systems

* Simulated Annealing

* Coupled Oscillator based energy minimization



. | Hyper-Dimensional Computing

, , _ . Encode data by combining vectors such that the
Store data in redundant high dimensional vectors more similar the data is, the smaller the angle

1001011011011001010111000110010 between the vectors

As dimensionality increases, two random vectors Use ferroelectric content addressable memory
are nearly orthogonal to enable pattern matching
90 —
80 - SL SL
__70-
0n
g 60 - .
O 5 - —— K
8 50 BL$|\ STR STR \|T BL
~— 40 A f
o
> 30 A
<
20 - ML
10 A
O n LI A TR A | L LA S O R SR | % LI LR R | 1 L U R .
100 101 102 103 104 New hardware allows for processing large scale
Dimensionality vectors and therefore new algorithms that would

otherwise be computationally inefficient
Justin C. Wong. “Negative capacitance and hyperdimensional
computing for unconventional low-power computing.” PhD thesis,

EECS Department, University of California, Berkeley, Dec 2018. Figures from Justin Wong and Sayeef Salahuddin



s I Local Learning Rules

Minimizing Data Movement Directly Minimizes Energy and Latency

Want learning rules that can train using only local

Training neural networks requires information that is present at a given moment in time

backpropagating information across all layers
resulting in long range communication and
storage of intermediate values

Error = -
- o R
E g - \"' ‘\ “\ “\
: m . . .
o a ' h
- - - .
.4% g y ' h 'b .’/3
a : o
= " "é\" Each neural network layer has its
= = own local classifier
a S
° o
g ;n" Kaiser, Jacques, Hesham Mostafa, and Emre Neftci. "Synaptic
S {;‘ Plasticity Dynamics for Deep Continuous Local Learning (DECOLLE)."
b Input & Frontiers in Neuroscience 14 (2020): 424.



s I Spiking Neural Networks

Minimizing Data Movement Directly Minimizes Energy and Latency

* For sparse data, communicating only non-zero values is more

energy efficient than communicating all data Analog Neural Network Training
> Need to account for overhead of including an address in flexible routing Accelerator
based networks 10° — ﬁ I
* Analog system energy is limited by analog to digital 10 J
conversion I i ]
o Binary outputs from an analog system are far more efficient >
© 10° | E
T |

Key challenge is developing high accuracy algorithms with
binary inputs and outputs 10°

Analog Digital SRAM
ReRAM ReRAM

8 bit in/out 4 bit in/out 2 bit in/out
B g it weights = g it weights B8 g it weights
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Alternate Computing Paradigms

Crossbar Based Computing Architectures
* Vector Matrix Multiplication
e Quter Product Update
* Crossbar Based Matrix Solvers
* Ternary Content Addressable Memory
Neuro-inspired Computing
* Hyperdimensional Computing
* Local Learning Rules
* Spiking Neural Networks
(" Probabilistic and Stochastic Circuits A
Computing With Dynamical Systems

* Simulated Annealing

\ ° Coupled Oscillator based energy minimization




s | Probabilistic and Stochastic Circuits

* Generating good random numbers is very computationally intensive

* Compact devices that provide true randomness with tunable probabilities

enable new stochastic computing paradigms

Magnetic Tunnel Junction

‘L .' Capping layer
I Free layer . . .
CoFeB (teron)
ESQ Q@(*) e Tunnel barrier i
T Reference — | MgO
layer CoFeB
I — e
S  Ru
&5 coruco
b ." Underlayer
p-bit
AP =
\\\\\ |
A/
AE > 60kgT AE = 15kgT

Borders, William A., et al. "Integer factorization using stochastic magnetic tunnel

junctions." Nature 573.7774 (2019): 390-393

Single Electron Bipolar Avalanche Transistor
« Avalanche breakdown is stochastic
ReRAM
» The intrinsic variability of memristive
switching provides a source of
randomness
Contact-Resistive RAM
CMOS - ring oscillator jitter
Stochastic Josephson Junctions



., | Can map optimization problems to a set of connected

stochastic bits: The Ising problem

minimize: H = — Z Ji75:9;

: spins
coupling (1, +1}

A. Lucas, “Ising formulations of many NP problems,” 2014

Slide from Tianyao P. Xiao and ELli Yablonovitch



4 Landscape of the Ising problem
A
Sy
>
2
()
-
()
(@)
=
@
\global minimum
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII)

possible solutions

Slide from Tianyao P. Xiao and ELli Yablonovitch



a1 Method 1: Simulated annealing
(and other digital heuristics)

Ising energy H

HEEEEE NSNS NN SN NN NN NN NN NN RSN EEEEEEEEEE N >

possible solutions

Slide from Tianyao P. Xiao and ELli Yablonovitch



o~ Method 2: Adiabatic quantum optimization

Prepare the ground state
of a simple problem

>

Ising energy H

.I.I.I.LLLLLLLLLLLLLLLLLLLLLLLIJ.LLLLLLLLLLLLLLLLI»
possible solutions

Ising energy H

>

Transform the system into the
desired problem

W
possible solutions

If done slowly enough, the system is guaranteed to remain in the
ground state during the full evolution

Slide from Tianyao P. Xiao and ELli Yablonovitch



>3 Method 3: First to threshold

Map the rate of power loss
in each mode to A

/

Ising energy H

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII)

possible solutions = physical modes

Slide from Tianyao P. Xiao and ELli Yablonovitch



>4 Method 3: First to threshold

A power loss

Ising energy H

T power gain T
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII)

possible solutions = physical modes

No mode is stable — noise dominates in circuit

Slide from Tianyao P. Xiao and ELli Yablonovitch



3> Method 3: First to threshold

A power loss

Ising energy H

power gain

ground state

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII)

possible solutions = physical modes

A stable mode emerges, representing the ground state!

Slide from Tianyao P. Xiao and ELli Yablonovitch



Analog electronic Ising machine

. (high-level view) |

bistable LC resistive coupling |
oscillators elements |

lide f.r om Tianyéo P. Xiao T. P. Xiao, “Optoelectronics for refrigeration and analog circuits for combinatorial
and Eli Yablonovitch optimization,” Ph.D. dissertation, Chapter 6, University of California, Berkeley, 2019



Beyond Moore Technologies

E Cross chip communications ~ 1 pJ
Current Transistors ~ 10 aJ DRAM Access >10 pJ
S50KT Noise Limit ~ 0.2 aJ Ethernet ~ 1nJ
Extending Von Neumann Alternate Computing Paradigms
* Low Voltage or Novel Transistors * Neuromorphic * Quantum
» Optical Communications * Analog « Stochastic
 Reduced Data Movement « Computing with « Approximate
* New On-Chip Memory memory devices

* Processing in Memory

Going Below 50 kT
« Error Correction
» Reversible Computing
« Adiabatic Computing / Energy Recycling
» Superconducting




3 | Temporal Error Correction

2 kT
Egignat = CV"— P(Error) = e Esignal

Driving Gate being
gate analyzed

-

Large Capacitance
' Buffer (requires extra
Flip flop, energy to switch /

Inputs Sialag, i, Inputs > guarantee stability)
F f:
o B o Dt
——1 out N
I Equivalent to C gates ——] | ¥
— DDD Lk - DDD LY
S D —Other Outputs _— D :Othel‘ Outputs
Logic level 1 2..m

Logiclevel 1 2..m
Signal energy E

Signal energy E signal

signal

Use high capacitance stage / low
pass filter to integrate out transient
thermal errors

Use multiple samples and take the
majority of the result



How Much Energy is Saved by a Majority

> Gate!?

Take the majority of a samples

Signal Energy Needed to
Maintain a Given Accuracy

ol No Error Correction
k=
¥50 - _
= .
S0 Minimum -
2.l Energy -~ _
- 10 kT
Sao| "
10} With Error Correction
0 wa , i i A

0 5 10 15 20 25
Number of Samples {a)

Consider a 16x16 multiplier

* 48 levels of logic depth

« 32 inputs/outputs (any input can affect
any output)

h
Lon

Error correction circuitry
starts to dominate

(8]
o
!

£
Lo

I
L
!

fd
o
1

o

Average Energy Per Gate (kT)
; )
o

Error Energy
Dominates

!

il

I

0

10 20 30 40 50 60
Baseline Signal Energy (kT)
(Determines error rate)

Can get around a 2X
reduction in energy



oo I Reversible Computing

Consider a signal Energy Eg;,,,,

The probability of an error due to thermal noise is:

P(Error) = ¢~ Fsignal /KT

In order to ensure a full system with billons of
transistors is reliable, we need:
Esignal ~ 50 kT

Landauer — Shannon Limit

Whatis Eg,,,?

It could be the energy on a single
Irreversible gate

It could also be the energy in a
reversible system that computes
a complex logic function the
comprises many logical functions |

In both cases the signal energy is
the same!




Adiabatic Computing

myyy I I To switch, need Q= C x Vg4

Conventional
* supply charge through a resistor, R, with voltage V4, across it.
* The time it takes is RC

2
EszdeRC=CVdd2 =V, x0

Adiabatic

* Reduce the power burned in the resistor, by minimizing the voltage across it
* Charge the circuit with a lower current, I, ,

« This takes a longer time, 1, to get the required charge: Q=Cx V=1, *1

2
E=1, XRxt Energy Reduced by:

:]ZOWXRX(IZOWXT) —CVdd R
—_ ] % R % Q Eadiabatic — I/Iaw — IIOWR _ T _ RC
o Eclassical Vdd Vdd Vdd T
= I/low X Q .

Delay In dBy: ——

elay Increased By RC

(ignoring factors of 2 for simplicity)



Summary: There are many ways to extend Moore’s Law!

~ Communications Bus @ Memory

I} Cross chip communications ~ 1 pJ
Current Transistors ~ 10 aJ DRAM Access >10 pJ
S50KT Noise Limit ~ 0.2 aJ Ethernet ~ 1nJ
Extending Von Neumann Alternate Computing Paradigms
* Low Voltage or Novel Transistors * Neuromorphic * Quantum
» Optical Communications * Analog « Stochastic
 Reduced Data Movement « Computing with « Approximate
* New On-Chip Memory memory devices

* Processing near Memory

Going Below 50 kT
« Error Correction
» Reversible Computing
« Adiabatic Computing / Energy Recycling
« Superconducting
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Fulfilling Our National Security Mission
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