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Evolution of Computing Machinery
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Successor to ITRS (International Technology Roadmap for Semiconductors)
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 Size

Still road mapping near term
semiconductors (Moore Moore)

YEAR OF PRODUCTION 2020 2022 2025 2020 2031 2034

G48M36 G45M24 G42M20 G40M16 G38M16T2 G38M1614

Logic industry "Node Range" Labeling (nm) "15" "1.0 eq" "0.7 eq"

lOM-Foundry node labeling 17-15 i5-f3 i3-f2.1 i2.1-f1.5 11 .5e-f1.0e i1.0e-f0.7e

Logic device structure options FinFET
finFET
LGAA

LGAA LGAA LGAA-30 LGAA-30

Mainstream device for logic tinFET finFET LGAA LGAA LGAA-3D LGAA-30
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Gate pitch inn il 48 45 42 400 38

L. Gate Length - HP tom) 18 16 14 12 12
1

12
Lg Gate Length - HD (nrn) 20 18 14

Channel overlap ratio - Mb-sided 0.20 0.20 0.20 0.20 0.20 0.20

Spacer width Mat) 7 6 5
20 IEE 18Contact CD nm - finFET LGAA 16 17 18

Contact CD nm - VGAA
Device architecture key ground rules

FinFET pitch (nrn) 28.0 24.0
FinFET Fin width (nm) 7.0 6.0
FinFET Fin hatght (nm) 50 60

Footprint drive efficiency - finFET 3.82 5.25
Lateral GAA lateral pitch (nml 
Lateral GAA vertical pitch Om)

22.0
18.0

20.0
16.0

20.0
14.0

20.0
14.0

Lateral GAA inanosheetl thickness (ninJ 7.0 6.0 5.0

1=MM:MI
15

5.0

10
Number of vertically stacked nanosheets 3 3

LGAA width (nm) - HP
_ -

30 20
LGAA wodth (nrn)- HD 20 11 6 6

LGAA width (nm) - SRAM 7 6 6 6
LGAA total height (nwn) 53 48 57 57

Footprint drive efficiency - lateral GM - HF 4.80 4.59 6.52 5.00
Device effective width (nm)- liF 107.0 126.0 192.0 156.0 160.0

88.0
120.0
88.0Device effective width (am). HD 107.0 126.0 132.0 102.0

Device lateral pitch (am) 28 24 22 20 20 20
Device height (rant 50.0 60.0 53.0 48.0 57,0 57.0

Device width (nm) - HP 7 6 25 20 15 10
Device width (nm) - HD 7 6 15 11 6 6

Device width (rim) - SRAM 7 6 7 6 6 6
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What's the Minimum Energy to Operate a Transistor?

Consider a signal Energy Esignai

The probability of an error due to thermal noise is:

P(Error)= e
-Esignal 1 kT

In order to ensure a full system with billons of
transistors is reliable, we need:

Esignal ..' 50 kT

Landauer — Shannon Limit



How Efficient are Current Systems?

Communications Bus Memory

Current Transistors - 10 aJ
50kT Noise Limit - 0.2 aJ

Cross chip communications - 1 pJ
DRAM Access >10 pJ
Ethernet - lnJ

Only 50X Improvement Left Cross Chip communications are 5
for Transistors! orders of magnitude more energy!



Beyond Moore Technologies

CPU
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Communications Bus

Current Transistors - 10 aJ
50kT Noise Limit - 0.2 aJ

Extending Von Neumann

• Low Voltage or Novel Transistors
• Optical Communications
• Reduced Data Movement
• New On-Chip Memory
• Processing near Memory

Memory

Cross chip communications - 1 pJ
DRAM Access >10 pJ
Ethernet - 1 nJ

Alternate Computing Paradigms

• Neuromorphic
• Analog
• Computing with

memory devices

• Quantum
• Stochastic
• Approximate

Going Below 50 kT
• Error Correction
• Reversible Computing

• Adiabatic Computing / Energy Recycling
• Superconducting
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1 0 . Extending Von Neumann New Transistors

Lowering voltage lowers CV2 energy of communications

Logic and Information Processing Devices

State v riabk

2D Channel FET-11

F T

Transistor laser

Magnetoelectric

DWL

NML

Topological insulator

Spin wave Excitonic

pm

Neg-Cg FET

Mott FET NEMS

Conv all Nov Structure

/materials

Domain Wall Logic

a
OUT bit

DW

L MTJ  bit 0

J.A. Incorvia et al, Nature
Comm 7, 2016

Negative Capacitance FET
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channel drain

Wong and Salahuddin, TED 2019



A New Switch has to Satisfy Three Specifications
log{I}

Low Active Power (CV2 energy)
• Steepness (or sensitivity)

o switches with only a few milli-volts
o 60mV/decade lmV/decade

Low Leakage Power
• On/Off ratio: 105 : 1

High Speed (RC delay)
• High Conductance Density
0 1 milli-Siemen/micron

steeper
sub-threshold

swing

Gate Voltage



12 Need Restoring Logic for Novel State Variables

Need to be able to drive multiple output transistors across multiple stages
of logic Not Restoring

Figure from Elad Elon, 2010 E3S Retreat

Inputs slightly below Vdd restored to Vdd and
inputs slightly above 0 are driven to zero

V(in)

1

flps 1Ops 12ps 141.0

Restoring

2.44w

1.8V.

1.5V.

1.2V.

0.9V.

0.6V.

0.3V.

V(out)

/(in)

https://www.allaboutcircuits.com/technical-articles/restoring-digital-signals-in-pass-transistor-logic/



1 3 The Memory Hierarchy
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Storage Class Memory - Intel/Micron 3D XPoint

SRAM
Latency: 1X

Size of Data: 1X
DRAM

Latency: -10X

Size of Data: -100X

MEMORY

3D XPoinr
Latency: -100X

Size of Data: -1,000X

STORAGE

NAND
Latency: -100,000X

Size of Data: -1,000X
HDD

Latency: -10 MillionX

Size of Data: -10,000 X

Also Samsung Z-NAND:
• Re-optimize flash for speed rather than density (single level per cell)
• Comparable to Intel Optane (3D XPoint) products



1 5 Extending Von Neumann Reduced Data Movement

Optical Interconnects

-

•

••• •

http://www.bu.e
dulipl/research.html

Processor Layer Photonic Layer

•

100 fJ to 1 pJ

2.5D a 3D Integration

1 Wk10 YO ORM& lace down
1-;1eLdl sta..

Set: fa

$0,C:fa e down'

P

 ' 

=VC10 TSYe

Package
molding

040 p-burn1

713Dorrios

PachoeBal:s 421 bon

Richard Goering, "Three Die Stack -- A Big Step "Up" for 3D-ICs with TSVs" Cadence blog

Embedded Memory

• Embed new denser nonvolatile memories in the processor
• Add simple processing to DRAM or disk drive controllers

"Processing in Memory"



16 I Emerging Memory Devices

Memory

Vvlatile

Storage Class
Memory

SRAM

DRAM

Nonvolatile

Baseline

Stand-alone

I Embedded

Flash

NOR

L

Successfully

Prototypical

FeRAM

MRAM

STT-RAM

tracked and ReRAM

transferred to
More Moore

STT-MRAM

Free Layer

Tunnel Barrier

Fixed Layer

Emerging

Novei Magnetic Memory

Ferroelectric Memory

FeFET

FTJ 
Il

Macromolecular Memory

Mott Memory

Massive Storage Devices

SOT Memory

WWL

BL

• Poly

Active

M1

M2

BL

RWL—I N1

I Read

SL

 / \ 
N2 N1

Z. Wang EDL 39, 2018

DNA Memory
STORAGE LIMITS
Estimates based on bacterial genetics suggest that digital DNA
could one day rival or exceed today's storage technology.

WEIGHT

r- OF DNA
NEEDED

Hard Flash JRacterial TO STORE
disk memory DNA WORLD'S

Read-write speed , -3,000- DATA

(ps per bit) / 5,000 
-100 <100

Data retention ,
>10 >10 >100

(years) 

Power usage
-0.04 -0.01-0.04 <10-"(watts per gigabyte)

Data density
'(bits per cma) 1 -10 -10 -io" ©nature



17 Advantages of Emerging Memories

Back end of line integration
Can integrate in the metal layers directly on top of logic

3D stackable

Higher endurance (109 to 1012) relative to flash (104), but not as
good as DRAM (>1016)

Nonvolatile: >10 year retention, no standby leakage

0(10ns) read and write times



1 8 The Need for a Select Device for Resistive Memories

V/3 write scheme

Vw/3

-Vw/3

-Vw/3

-Vw/3

Target device sees Wwrite

-2Vw/3 0 0

Half selected device sees Vwrite/ 3

Memory Selector Devices

Transistor

Planar

Vertical

Diodes

--I Si diodes

Volatile switch

Oxide/oxide
hetergjunctions

Threshokl
switch

d N fetal/oxide Schottky
junctions

Mott switch

Reverse-conduction
diodes

—I Self-rectification

Nonlinear devices

Tunneling-based
nonlinear selector

NIIEC

H ('ompleinentaly
structures

d Intrinsic
nonlinearitv

Reverse bias
• Need a nonlinear 2 terminal back end of line compatible device to block current from  )110,,v

half selected and unselected devices
• The larger the on/off ratio, the larger the possible array and therefore density
• Typically needs to be bi-directional



Beyond Moore Technologies

CPU
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Alternate Computing Paradigms
20

Crossbar Based Computing Architectures

Vector Matrix Multiplication

Outer Product Update

Crossbar Based Matrix Solvers

Ternary Content Addressable Memory

Neuro-inspired Computing

Hyperdimensional Computing

Local Learning Rules

Spiking Neural Networks

Probabilistic and Stochastic Circuits

Computing With Dynamical Systems

Simulated Annealing

Coupled Oscillator based energy minimization



Alternate Computing Paradigms
21

Crossbar Based Computing Architectures

Vector Matrix Multiplication

Outer Product Update

Crossbar Based Matrix Solvers

Ternary Content Addressable Memory

Neuro-inspired Computing

Hyperdimensional Computing

Local Learning Rules

Spiking Neural Networks

Probabilistic and Stochastic Circuits

Computing With Dynamical Systems

Simulated Annealing

Coupled Oscillator based energy minimization

4 .,_ Neural Network
Training Accelerators



Use Resistive Memories for Local Computation

.1\AAr. 
• A resistive memory or ReRAM is a

programmable resistor
V = IXR • Apply small voltages allows the conductance

I = G><V to be read: l = G x V
• Apply large voltages to change the resistance

multiplication

Ii •-/Mr•

12

Addition: '41+12

Current

Read Window
•,\

VRESET
: :

\

:(—
VREAD VSET

SET

Voltage

OFF ON

Pt

TaOx
e e e 8
0 ® e

Pt

0 ® 0 0
8 8 e 0
8 e 8 0
o o e o
o e 0

L___ Ta Ta
I 

Write ' RESET

I

I

I1



23 Vector Matrix Multiply: Directly Process in the Memory Itself

Mathematical

v2 v31

i1=Evi,1w,,1

VTW=1

W1,1 W1,2 W1,3

W2,1 W2,2 W2,3

W3,1 W3,2 W3,3

12=Evi,2NIVi,2 13=EvolNi,31

v1

Electrical

Gi„

412/3,10
G G G3N3t.

62,1

11=Evi,160. 12=Evi,26i,2

1.2

13=EVi,3101i3

<10 fJ MAC
<10 fJ Update
>100 TOPS/W

Analog is efficiently and naturally able to combine computation and data access

Large-scale processing in memory with a multiplier and adder at each real-valued memory location

• Energy to charge the crossbar is CV2

• E oc C oc number of RRAMs NxNA



SRAM Arrays Require Charging Columns Multiple Times

`)o
z

WIAIld >0_

WL[1]

WL[2]I I _ I I I
.F7_.

BL[0] BL[1] BL[2]

M columns
SRAMs must be read one row at a time, charging M columns

Each column wire length is O(N).

Energy = N Rows x M Columns x O(N) wire length
Energy - 0(N2x1V1)

O(N) times worse than a crossbar!



The Noise Limited Energy to Read a Crossbar Column is
Independent of Crossbar Size

= G„V

V\A/ 

Thermal Noise = (A/2)

= N x x G x Af

= (NI 0 )2SNR 2 
KA/2)

1 1
 = 4k

b 

Tx SNR2 x 
Af V2G0 x N

Measure N resistors and determine the total output
current with some signal to noise ratio (SNR)*

What is the minimum energy?

*we are assuming we need some fixed

1
Energy = V2 Go x N x

Power in each resistor x

number of resistors

Af

Determined by

noise and SNR

lf we double the number of resistors, we can double
the speed to get the same energy and SNR.

This is because the noise scales as sqrt(N) while the

signal scales as N

Energy = 4kbT x SNR2

precision on the output, and don't need full floating point accuracy



I Need to Use Analog to Efficiently Discard Precision

V1=x1

V2=x2

V3=x3

V4=x4

Sum 1024 8 bit weights X 8 bit inputs:
• Result has 26 bits of information!
• A 26 bit ADC would eliminate any analog advantage!

The sum can be done at full precision in analog, but a
lower precision approximation is needed when digitizing
• i.e. digitize only 8 bits or fewer

To get the highest 8 bits of information, digital would
need to keep a 26 bit intermediate result

Can design an ADC to choose
non uniform values to digitize

/
..••••• 

•

,

Analog Sum

2 6



1 Outer Product Update: Parallel Write

x1=0
vT  

x2=0.33

v

v
=0.66

VT

yi=0.25 y2=0.5 y3=0.75 y4=1

11=-T>1=-1-=

v ,Vr V II V ir

* wi7111111 wi4

* 
w27111111 w27

* w371111/1 vv34

* w 1
41

w
42 W43 W44

Energy to charge the crossbar is CV2
E cx C a number of RRAMs NxM

E 0(N)<M)



28 1
Example: Design an Neural Network Training Accelerator

Vector Matrix Multiply

Temporal
Coding
Logic

Register 2

Chip Architecture
40.. Router

Bus

Neural
Core(s)

Digital

Core

Bu

Neural
Core(s)

Digital

Core

Bus

[Neural
Core(s)

Matrix Vector Multiply

Temporal
Coding
Logic

Edge Logic
Counter

Mesh
Bus

Digital

Core

Bu

Neural
Core(s)

Digital

Core

ADC

Ramp

VI, v2, -vs, -1741

''Voltage Coding

Two
1024 x 1024
Crossbars

This,. ppp
1 tqd

Offset
A Correction

iE, Integrators

 I
> Comparators*

  Register 2

R,

Outer product Update
[v. v2 -141

Temporal
Coding
Logic

Mesh
Bus

jvoltage Coding

Row
Drivers Two

1024 x 1024
Crossbars

ADC

A Offset
Correction

Integrators

Ramp2

=f1.1 . 2

Neuron Circuitry

Cf.

Integratin.
Cap

Reset
Switch

Bus Bus



Energy Area and Latency Advantages of an Analog Accelerator
29

1024 x1024 = 1M array operations, sum over 1 training cycle, 3 operations:
• Vector Matrix Multiply
• Matrix Vector Multiply
• Outer Product Update

Energy
430 - 6,900X over SRAM

105 

10°

10

10-2

Latency
35 - 800X over SRAM

106

io5

10

Area
11 - 20X over SRAM

Analog Digita SRAM Analog Digi a SRAM Ana og Di t a S
Re M ReRAM ReRAM ReRA e Re RAM

8 bit in/out 4 bit in/out 2 bit in/out
8 bit weights 11 8 bit weights 8 bit weights

Used a commercial 14/16 nm PDK ***Requires 100 MO on state devices

1

M. J. Marinella, S. Agarwal, A. Hsia, I. Richter, R. Jacobs-Gedrim, J. Niroula, S. J. Plimpton, E. lpek, and C. D. James, "Multiscale Co-Design Analysis of Energy, Latency, Area, and
Accuracy of a ReRAM Analog Neural Training Accelerator," IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2018.



Go from Measurement to Accuracy
Fabricate
Device

TiN
Ta0), — 10 nm

Ta— 50 nA

TiN
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weights

D/A
-0 

D/AF—

<i) 
negative
weights v
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-1 a
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31 Multiscale Model of a Neural Training Accelerator

— mental
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Target Algorithms Rohn 1MI77=
• Deep Learning Algorithms Frliare 2

• Sparse Coding Feature 3 • t- , /7.

• Liquid State
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CROSS SIM
Sandia Cross-Sim:

Translates device measurements and

crossbar circuits to algorithm-level

performance

Vlemristor

Fabrication and

reasurements

'n MESAFab

DFT of model of oxide

physics, bands

T T T

Architecture

Circuits

Devices

Materials

anode/gate 

elecIrolyteansuletor i

___ LtCo02 —e. Lt,.,Co,a ati' a ah

 • source cathotlelehannel drain

In situ TEM of filament switching: Use

DFT model to interpret EELS signature

Neural Digital
Core Core

Digital Neural
Core Core

Modified McPAT/CACTI:

Model performance and

energy requirements

Sandia's Xyce Circuit Sim: Simulate

crossbar circuits based on our devices

Drift-diffusion model of ReRAM band diagram

& transport (REOS, Charon)

VTE

oned•-.1..Iftwor 0,•0

W.4
Ta TaO, Pt



I [CROSS SI

https://cross-sim.sandia.gov

Sandra National Laboratories:

+ https://cross-sinn.sandia.gav

C) Sandia
National
Laboratories

e Search

CROSS SIM

Locabons Contact Us Employee Lc =at= r

Crossbar Simulator

CROSS SIM
About CrossSinn

CrossSim is a crossbar simulator designed to model resistive memory

crossbars for both neuromorphic computing and (in a future release)

digital memories. It prcorides a clean python API so that different

algorithms can be built upon crossbars while modeling realistic deWce

properties and vanability. The crossbar can be modeled using multiple

fast approximate numerical models including both analytic no:se

models as well as experimentally derived lookup tables. A slower. but

more accurate circuit sImulation of the devices usIng the parallel spice

simulator Xyce is also being developed and MI be included In a future

release.

Download
Download the user manual here: CrossSim manuarodf

Download CrossSim v0.2 here: cross sim-0.2.Rtarv

Download example scripts here: exanu

Contact Us

- c X

,irEn.s- KV

Q.

ED 2

Please email Sapan Agarwal for any questions or rt you would like to contribute to the source code: sasarwaOsandia.sov.

Selected Publications Using CrossSinn
• S. Agarwal, R. B. Jacobs-Gedrim, A. H. Hsia, D. R. Hughart, E. J. Fuller, A. A_ Talin, C. D. James, S. J. Phmpton, and M.

J. Marinella, "Achieving Ideal Accuracies in Analog Neuromorphic Computing Using Periodic Carry," in 2017 IEEE

Symposium on VLSI Technology Kyoto, Japan, 2017.

Xyce
Crossbar

Circuit Model

Simple Python API:
a matrix vnrtnr multinliratinn

result = neural core.run xbar mvm(vector)

Detailed but
slow

3

28
26

‘Z 241,

16

Learning
Algorithm

Neural Core
Simulator

1111
 Physical
Hardware
Crossbar

Measured
Devices

0 200 4 0 6 0 0 00
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W11

w21

W31

W12 14213

w22 w23

W32 W33 }

Numeric
Crossbar

— Simulator
Fast but

approximate

1M 
Algorithmic
Performance

99
Ta0„—MNIST

Ideál Nuineric

Periodic Carry

!reimilerftmeIrow"owiAm.eimereo.wrieosel•o="aer‘•••11

Single Device =
=
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Training Epoch



33 I Compare Analog Devices

ReRAM

TiN
TaOx — 10 nm

To— 50 nm

TiN

SONOS
Silicon-Oxygen-

Nitrogen-Oxygen-Silicon

R. B. Jacobs-Gedrim et al., "Impact of
Linearity and Write Noise of Analog
Resistive Memory Devices in a Neural
Algorithm Accelerator," IEEE
International Conference on Rebooting
Computing (ICRC) Washington, DC,
November 2017.

V

miirra

tao bAce

silcon nItrice or crgnItride
cxiciq

r.; • till&

Ionic Floating-Gate Memory

S. Agarwal et al., "Using Floating Gate Memory
to Train Ideal Accuracy Neural Networks," IEEE
Journal of Exploratory Solid-State Computational
Devices and Circuits, 2019

E. J. Fuller et al., "Parallel programming of an
ionic floating-gate memory array for scalable
neuromorphic computing," Science, vol. 364, no.
6440, pp. 570-574, 2019.
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Three Terminal Devices Tend to Have Higher Accuracy

MNIST Handwritten Digits

00

deal -

IFG

SO OS -

TaOx -

0 10 20 30
Training Epoch
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0.4
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0

ReRAM

• Lower write noise
• Lower write asymmetry
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Compare Architectural Advantages

120-430X Energy Advantage 2-34X Latency Advantage 5-11X Area Advantage
10
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1 0
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1 0
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Total
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.< 0 
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Total

al) v) on
< 2, 0 o

.on ce on (r5 Z (175
1-r) E 'a) 9,

0.9

0.8

0.7
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E 13.5
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0.0 • • •
gn gn
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1024 x1024 = 1M array operations, sum over 1 training cycle, 3 operations:
- Vector Matrix Multiply - Matrix Vector Multiply - Outer Product Update

Used a commercial 14/16 nm PDK ***Requires 100 MO on state devices



1 Compare Architectural Advantages:
Vector Matrix Multiply

120-430X Energy Advantage

10
VMM

MVM

OPU

Total

on 
0 
Lt) on

o 0

< Lc)

Z
—

<

2-34X Latency Advantage

10-7
Tci 0 °I) i0ll

z
icu c oIE III— Lc)

on
0

(75
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OPU

Total
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0.8

0.7
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0.5

0.4

0.3

0.2

0.1

0.0

5-11X Area Advantage

•
TE,5 gn gn
:Fr) L t "En Z

c 9,

All Analog Vector Matrix Multiply and Matrix Vector Multiply
have same energy and latency
• Entirely dominated by ADC, device properties irrelevant

36
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Compare Architectural Advantages: Outer
Product Update

120-430X Energy Advantage 2-34X Latency Advantage 5-11X Area Advantage
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Outer Product Update is device dependent
• SONOS has slow write (-1 ms) and high write voltage (11V)
• IFG and ReRAM write energy negligible compared to VMM
• IFG has extra delay over ReRAM for access device to turn off 37



1 Compare Architectural Advantages:Area

120-430X Energy Advantage 2-34X Latency Advantage 5-11X Area Advantage
10
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1 10
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OPU

Total

7,c5 7.6 Of) Lf1 Of)
< 0 0

.on ce on (r5 (r5
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SONOS area cost
reasonable, roughly

doubles area
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IFG and ReRAM go over
transistors, area dominated
by ADC and DAC

38
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Analog Devices Summary for Training

ReRAM

TiN
Ta0x — 10 nm

TiN

SONOS
Silicon-Oxygen-

Nitrogen-Oxygen-Silicon

source

• -V

-type poly

rrio .rtride.

— Silicon iltride or annitride
%urnyl c*iOci

r•• drain.

irr

Ionic
Floating-Gate Memory
A

• Large Energy/Area/Latency • Moderate • Large Energy/Area/Latency
advantage over digital Energy/Area/Latency advantages over digital

• Accuracy not good enough advantages over digital • High Accuracy
• Back end of line compatible. High Accuracy • Not clear how to integrate
• Under commercial •

development •

Commercially available
Need to prove endurance and
device to device variability

• Has retention challenges



Alternate Computing Paradigms
40

Crossbar Based Computing Architectures

Vector Matrix Multiplication

Outer Product U•date

Crossbar Based Matrix Solvers

Ternary Content Addressable Memor

Neuro-inspired Computing

Hyperdimensional Computing

Local Learning Rules

Spiking Neural Networks

Probabilistic and Stochastic Circuits

Computing With Dynamical Systems

Simulated Annealing

Coupled Oscillator based energy minimization



41 Analog Matrix Inversion

Analog matrix inversion can perform a dense approximate matrix solve

b = Ax

1 b1

2 b2

mw =IGrow,col(Vcol —My

col

V = x1 V = X2 V = X3 Challenges:
Matrix inversion is non-linear, limiting how the
computation can be split for large matrices

Analog non-idealities can cause significant
errors



42 .
Ternary Content Addressable Memory (TCAM)

• Can do very efficient fast pattem matching to search stored data
• Data analytics, k-nearest neighbors machine leaming
• Sparse matrix multiplication
• Associative Computing

• Crossbars can implement extremely efficient TCAMs

Input

Output

Input
Stored

State

Mi

State

Mi

Output

M2

State

M2

Output

Total

Output

0 0 0 0 1 1 1

1 0 0 0 1 0 0

0 1 1 0 0 0 0

1 1 1 1 0 0 1

0 x 1 0 1 1 1

1 x 1 1 1 0 1

1
I

1
‘ ‘. ik. 

I> .7t. '''k ‘.

°it. ik ì k.

->"704 skv ‘. I

—>0 it,,,
‘,. ‘,. 'it. 1

sczt. 'it.. . 1



Alternate Computing Paradigms
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Crossbar Based Computing Architectures

Vector Matrix Multiplication

Outer Product Update

Crossbar Based Matrix Solvers

Ternary Content Addressable Memory

C Neuro-inspired Computing

Hyperdimensional Computing

Local Learning Rules

Spiking Neural Networks
 }

Probabilistic and Stochastic Circuits

Computing With Dynamical Systems

Simulated Annealing

Coupled Oscillator based energy minimization
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1 Hyper-Dimensional Computing

Store data in redundant high dimensional vectors
1 0 0 1 0 1 1 0 1 1 0 1 1 0 0 1 0 1 0 1 1 1 0 0 0 1 1 0 0 1 0

As dimensionality increases, two random vectors
are nearly orthogonal

90 ] —

80

70
1-i)-
(,:1; 60 -
ce 50 -
7:3
— 40 -(1)
F 30 -
<

20

10

0  
1 1 110° 101 102 103

Dimensionality

104

Justin C. Wong. "Negative capacitance and hyperdimensional
computing for unconventional low-power computing." PhD thesis,
EECS Department, University of California, Berkeley, Dec 2018.

Encode data by combining vectors such that the
more similar the data is, the smaller the angle
between the vectors

Use ferroelectric content addressable memory
to enable pattern matching

SL SL

BL

New hardware allows for processing large scale
vectors and therefore new algorithms that would
otherwise be computationally inefficient

Figures from Justin Wong and Sayeef Salahuddin _



45 Local Learning Rules

Minimizing Data Movement Directly Minimizes Energy and Latency

Training neural networks requires
backpropagating information across all layers
resulting in long range communication and
storage of intermediate values

Fo
rw

ar
d 
Pr

op
ag

at
io

n 
of
 I
np
ut
 

Error

Input

Backward Propagation of Error 

Want learning rules that can train using only local
information that is present at a given moment in time

1'4

Each neural network layer has its
own local classifier

Kaiser, Jacques, Hesham Mostafa, and Emre Neftci. "Synaptic
Plasticity Dynamics for Deep Continuous Local Learning (DECOLLE)."
Frontiers in Neuroscience 14 (2020): 424.



46 Spiking Neural Networks

Minimizing Data Movement Directly Minimizes Energy and Latency

For sparse data, communicating only non-zero values is more
energy efficient than communicating all data
Need to account for overhead of including an address in flexible routing
based networks

Analog system energy is limited by analog to digital
conversion
Binary outputs from an analog system are far more efficient

Key challenge is developing high accuracy algorithms with
binary inputs and outputs

Analog Neural Network Training
Accelerator

110

io4

Re
og Digital SRAM

RAM ReRAM

8 bit in/out
8 bit weights

4 bit in/out
8 bit weights

2 bit in/out
8 bit weights



Alternate Computing Paradigms
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[
Probabilistic and Stochastic Circuits

Computing With Dynamical Systems

Simulated Annealing

Crossbar Based Computing Architectures

Vector Matrix Multiplication

Outer Product Update

Crossbar Based Matrix Solvers

Ternary Content Addressable Memory

Neuro-inspired Computing

Hyperdimensional Computing

Local Learning Rules

Spiking Neural Networks

Coupled Oscillator based energy minimization  i



48 Probabilistic and Stochastic Circuits

Generating good random numbers is very computationally intensive

Compact devices that provide true randomness with tunable probabilities
enable new stochastic computing paradigms

Magnetic Tunnel Junction
a

'Free layer
!
Tunnel barner

Reference
layGr

b

Capping layer

CoFeEl (tcoFen)

Mg0

Coke

Ta

[Co/Pt12/Co

Ru

[Co/PthICo

Underlayer

• Single Electron Bipolar Avalanche Transistor
• Avalanche breakdown is stochastic

• ReRAM
• The intrinsic variability of memristive

switching provides a source of
randomness

• Contact-Resistive RAM
• CMOS - ring oscillator jitter
• Stochastic Josephson Junctions

Borders, William A., et al. "Integer factorization using stochastic rnagnetic tunnel
junctions." Nature 573.7774 (2019): 390-393



49 1
Can map optimization problems to a set of connected
stochastic bits: The Ising problem

v 40
41' 0

minimize: H

spins
coupling {-1, +1}

A. Lucas, "Ising formulations of many NP problems," 2014

Slide from Tianyao P. Xiao and Eli Yablonovitch
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A

Landscape of the !sing problem

'-- global minimum
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII >

possible solutions

Slide from Tianyao P. Xiao and Eli Yablonovitch
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A

Method 1: Simulated annealing
(and other digital heuristics)

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII >

possible solutions

Slide from Tianyao P. Xiao and Eli Yablonovitch
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Method 2: Adiabatic quantum optimization

Prepare the ground state Transform the system into the
of a simple problem desired problem

A I

!s
in

g 
e
n
e
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y
 H
 

111111111111111111111111111111111111111111111 > 111111111111111111111111111111111111111111111111111111111111111111 >

possible solutions possible solutions

If done slowly enough, the system is guaranteed to remain in the
ground state during the full evolution

1

Slide from Tianyao P. Xiao and Eli Yablonovitch



53 Method 3: First to threshold

Map the rate of power loss
A in each mode to H

)

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII >

possible solutions = physical modes

Slide from Tianyao P. Xiao and Eli Yablonovitch



54 Method 3: First to threshold

A power loss

t power gain t

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII >

possible solutions = physical modes

No mode is stable — noise dominates in circuit

Slide from Tianyao P. Xiao and Eli Yablonovitch



5 5 Method 3: First to threshold

A power loss

power gain

ground state

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII >

possible solutions = physical modes

A stable mode emerges, representing the ground state!

Slide from Tianyao P. Xiao and Eli Yablonovitch
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Analog electronic !sing machine

(high-level view)

,---A.A.Ar---- ------AAA9-----,

bistable LC
oscillators

Slide from Tianyao P. Xiao
and Eli Yablonovitch

---AAN .,---A.AA/----

(

resistive coupling
elements

T. P. Xiao, "Optoelectronics for refrigeration and analog circuits for combinatorial
optimization," Ph.D. dissertation, Chapter 6, University of California, Berkeley, 2019



Beyond Moore Technologies

CPU

11.11111

Communications Bus

Current Transistors - 10 aJ
50kT Noise Limit - 0.2 aJ

Extending Von Neumann

• Low Voltage or Novel Transistors
• Optical Communications
• Reduced Data Movement
• New On-Chip Memory
• Processing in Memory

IL

Memory

Cross chip communications - 1 pJ
DRAM Access >10 pJ
Ethernet - 1 nJ

Alternate Computing Paradigms

• Neuromorphic
• Analog
• Computing with

memory devices

I • Superconductinq

Going Below 50 kT
• Error Correction
• Reversible Computing

• Adiabatic Computing / Energy Recycling

• Quantum
• Stochastic
• Approximate



58 I Temporal Error Correction

Driving

gate

Inputs

E signal = CV2 P(Error) = 11(77
e signal --

Gate being

analyzed

g fan

out

Flip flop,
delay, etc.

MAJ

Equivalent to C gates

Logic level 1 2 ...in

Signal energy Esig„/

Other outputs

Use multiple samples and take the
majority of the result

Inputs

g fan

out

Logic level 1 2 ...in

Signal energy Esig.„/

Large Capacitance
Buffer (requires extra
energy to switch /

/guarantee stability)

Other outputs

Use high capacitance stage / low
pass filter to integrate out transient

thermal errors
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How Much Energy is Saved by a Majority
Gate?

3

20

Take the majority of a samples

Signal Energy Needed to
Maintain a Given Accuracy

No Error Correction

5

Minimum
Energy
10 kT

With Error Correction

10 15 20 25
N rnber of Sa ples )

Consider a 16x16 multiplier
• 48 levels of logic depth
• 32 inputs/outputs (any input can affect

any output)

60

cu 50

40

>30

20

O
o

Error correction circuitry
starts to dominate

10 20 30 40 5 60
B seline Signal Energy (kT)

(Determines error rate)

Can get around a 2X
reduction in energy



60 Reversible Computing

Consider a signal Energy Esignai

The probability of an error due to thermal noise is:

P(Error)= e
-Esignai 1 kT

In order to ensure a full system with billons of
transistors is reliable, we need:

Esignal ..' 50 kT

Landauer— Shannon Limit

What is Esignai?

It could be the energy on a single
irreversible gate

It could also be the energy in a
reversible system that computes
a complex logic function the
comprises many logical functions

In both cases the signal energy is
the same!



1 Adiabatic Computing
To switch, need Q= C x Vdd

Conventional 
• supply charge through a resistor, R, with voltage Vdd across it.
• The time it takes is RC

E=
2

V
dd  RC = CVdd2 =Vdd xQ

Adiabatic 
• Reduce the power burned in the resistor, by minimizing the voltage across it

• Charge the circuit with a lower current, Ilow
• This takes a longer time, T, to get the required charge: Q = C X Vdd X I

E = 110,,2 xRxr Energy Reduced by: 

low x R x (1 10,, x r)

Ii0w xRxQ

x

CVdd  R
=  V low  = IlowR =  RCEadiabatic 

Eclassical Vdd Vdd V dd

Delay Increased By: 
RC

(ignoring factors of 2 for simplicity)



Summary: There are many ways to extend Moore's Law!

CPU

iiim

Communications Bus

Current Transistors - 10 aJ
50kT Noise Limit - 0.2 aJ

Extending Von Neumann

• Low Voltage or Novel Transistors
• Optical Communications
• Reduced Data Movement
• New On-Chip Memory
• Processing near Memory

Memory

Cross chip communications - 1 pJ
DRAM Access >10 pJ
Ethernet - 1 nJ

Alternate Computing Paradigms

• Neuromorphic
• Analog
• Computing with

memory devices

• Quantum
• Stochastic
• Approximate

Going Below 50 kT
• Error Correction
• Reversible Computing

• Adiabatic Computing / Energy Recycling
• Superconducting
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