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Motivation

m While privacy breaches continue to be a huge concern, it has
not stopped the requests for data sharing or data release.

m Government agencies, business, survey and research
organizations, and medical institutions are constantly being
asked to release and share more and more of their data for
transparency and accountability.

m So handling all this data in a way that protects the
confidentiality of the data subjects’ identities and sensitive
attributes while maintaining the statistical usability/accuracy
of the data set has developed into a critical area of study.

m One of the most common ways to “protect” data is to simply
anonymize the data (i.e. remove identifying information or
sensitive characteristics).
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Motivation ) .

m The old ways of anonymizing data do not always work!

m It has been shown that anonymized data can be linked with
other publicly available datasets. This record linkage can
possibly lead to re-identification.

m So instead of using the old techniques of anonymization, new

privacy techniques have been formulated in the field of
differential privacy.
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Differential Privacy

Differential privacy ensures that the addition or removal of a single
database item does not substantially affect the outcome of any

analysis.
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Queries in Differential Privacy

m Queries are defined to be the questions of interest with
regards to a data set or a database.
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Queries in Differential Privacy

m Queries are defined to be the questions of interest with
regards to a data set or a database.

m A data curator manages queries sent to a data set.

m The curator can provide a response either using differential
privacy or not.
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Differential Privacy (Dwork 2006)

Let K be a mechanism (to be defined later), and let D; and Dy be
two databases that differ in at most one element. A randomized
function IC gives e-differential privacy if for all data sets D; and Dy
differing on at most one element, and all S C Range(K),

PriKC(Dy) € S]
~ Pr[(Ds) € S]

—€

<€

July 29, 2020
—



Differential Privacy (Dwork 2006) =

Let K be a mechanism (to be defined later), and let D; and Dy be
two databases that differ in at most one element. A randomized
function IC gives e-differential privacy if for all data sets D; and Dy
differing on at most one element, and all S C Range(K),

PriKC(Dy) € S]
~ Pr[(Ds) € S]

—€

o
The total privacy budget for a set of queries is €, based on the

definition of e-differential privacy.
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Differential Privacy

— Pr[IC(Dl) = 5] ¢
S k(D) eS| = °©

Amount of Privacy Used
E= or

Information Leaked
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2019 Notre Dame
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Adversary
Query: How many

people in the room are Room without
2019 Notre Dame
graduates? me
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Differential Privacy Example: Notre Dame students wik.

ﬁ 1

Adversary
Query: How many

people in the room are Room without
2019 Notre Dame me 0
graduates?

Can deduce that | am the
only one who is a 2019 Notre
Dame graduate.
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N\ /7
Room with me [uundi)iq
7/ \
Query: How many
people in the room are Room without oo
2019 Notre Dame x
me 7’ \

graduates?

Under Differential Privacy should
not be able to distinguish
between results.
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Room with me \

Add noise under

e-differential
Adversary P—
Query: How many

people in the room are Room without /
2019 Notre Dame
graduates? me

Under Differential Privacy should
not be able to distinguish
between results.

July 29, 2020 12
e



Differential Privacy Example: Notre Dame students wik.

Room with me \

Adversary 1
Query: How many

people in the room are Room without /
2019 Notre Dame
graduates? me

Under Differential Privacy should
not be able to distinguish
between results.
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Differential Privacy Example: total income W=

Database for South Bend, IN
with ME
1 300K
2 50K
3 21K
4 32K
5 150K
100,000 78K
Total income = f(X)
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Differential Privacy Example: total income

Database for South Bend, IN Database for South Bend, IN
with ME without ME
| D income | | D income |
1 300K 1 300K
2 50K 2 50K
3 21K 4 32K
4 32K 5 150K
5 150K
100,000 78K
100,000 78K
Total income = f(X) Total income = f(X5)
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Differential Privacy

m If the curator answered WITHOUT any differential privacy,
and if you knew that | was going to move to another area,
then simply querying this database before and after my move

would allow you to deduce my income.
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then simply querying this database before and after my move
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m If the curator answered WITH differential privacy, then the
risk to my privacy would not be substantially (as bounded by
€) increased as a result of participating in the statistical
database.

July 29, 2020 14
e



Sandia

Differential Privacy

m If the curator answered WITHOUT any differential privacy,
and if you knew that | was going to move to another area,
then simply querying this database before and after my move
would allow you to deduce my income.

m If the curator answered WITH differential privacy, then the
risk to my privacy would not be substantially (as bounded by
€) increased as a result of participating in the statistical
database.

m To apply differential privacy, we can add some noise using the
mechanism K to the result of a query on our dataset to
ensure the formula for e-differential privacy holds.
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m Differential privacy requires some noise to be added to queries
of interest in order to protect privacy.
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m Differential privacy requires some noise to be added to queries
of interest in order to protect privacy.
m Many noise adding mechanisms exist for general query release.
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m Differential privacy requires some noise to be added to queries
of interest in order to protect privacy.

m Many noise adding mechanisms exist for general query release.
They include
m Laplace mechanism,
m Exponential mechanism,
m Gaussian mechanism, and
m median mechanism.
m Also, many noise adding mechanisms exist for specific
statistical analyses. They include
m contingency tables,
m principal component analysis,
m location privacy, and
m graphs and social networks.
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Laplace Mechanism

Sensitivity (Dwork 2006)
For f : D — R, the sensitivity of f is

AF = mEB(Hf(Dl) — f(D2)[l1

D1,D;

for all Dy, Do differing in at most one element.
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Laplace Mechanism @

Sensitivity (Dwork 2006)
For f : D — R, the sensitivity of f is

AF = mEB(Hf(Dl) — f(D2)l1

D1,D;

for all Dy, Do differing in at most one element.

Captures how large a difference between the value of f on two
databases (differing in a single element) must be hidden by the
additive noise generated by the curator.
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Laplace Mechanism (Dwork 2006) BE.

When the query is numeric, adding Laplace random noise
independently to each of the components of f(X) guarantees
e-differential privacy.

F(X) + Lap(Af/e)
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Laplace Mechanism (Dwork 2006) .

When the query is numeric, adding Laplace random noise
independently to each of the components of f(X) guarantees
e-differential privacy.

0 1 T
-10 8 6 -4 -2 0 2 4 6 8 10

Image credit: https://en.wikipedia.org/w/index.php?title=Laplace_distribution&oldid=697827002
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The total privacy budget for a set of queries is €, based on the
definition of e-differential privacy.

Types of Composition (McSherry 2009)

m Sequential Composition: Each query uses ¢; privacy, so for
‘ 3 .5
each query the portion of the total privacy budget used is .
This places a restriction on the number of queries that can be
asked or the amount of privacy that the query actually has.
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Privacy Budget

The total privacy budget for a set of queries is €, based on the
definition of e-differential privacy.

Types of Composition (McSherry 2009)

m Sequential Composition: Each query uses ¢; privacy, so for
‘ 3 .5
each query the portion of the total privacy budget used is .
This places a restriction on the number of queries that can be
asked or the amount of privacy that the query actually has.

m Parallel Composition: If D; are disjoint subsets of the original
database and M; provides differential privacy for each D;, then
the sequence of M; provides differential privacy. The ultimate
privacy guarantee only depends on the worst of the guarantees

of each analysis, not the sum.
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m Queries allow one to answer very specific questions about the
data set.
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Beyond Queries

m Queries allow one to answer very specific questions about the
data set.

m What happens when we want to do more with the data?

m Can perform differentially private data synthesis, which yields
differentially private synthetic data sets.
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Why should | care about differential
privacy?’
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What about outside the tech world?

A HISTORY OF CENSUS PRIVACY PROTECTIONS
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What about outside the tech world?

2020 Census data products will be
protected using differential privacy.
World'’s first large-scale application of
new privacy system. (2020)
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What about outside the tech world?

2020 Census data products will be
protected using differential privacy.
World'’s first large-scale application of
new privacy system. (2020)

Image credit:
https://www.census.gov/library/visualizations/2019/comm/history-privacy-protection.html

July 29, 2020




What else can differential privacy be used for?

July 29, 2020 24
e



What else can differential privacy be used for?

m Contact tracing which can include mobility reports or
movement patterns.
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What else can differential privacy be used for? .

m Contact tracing which can include mobility reports or
movement patterns.

m Mobile data sharing.

m Models and model parameters being shared across boundaries
(federated learning).
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Ongoing Research in Differential Privacy

m Ensuring that differential privacy is understood by the general
public.
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DP Library or Microsoft/Havard’'s OpenDP).
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Ongoing Research in Differential Privacy =

m Ensuring that differential privacy is understood by the general
public.

m Open-sourcing tools to allow researchers to apply differential
privacy themselves (e.g. Google DP Library, IBM Research
DP Library or Microsoft/Havard’'s OpenDP).

m Differentially private mechanism design for other statistical
analyses or model types.

m Applying differential privacy to new applications areas.
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