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• While privacy breaches continue to be a huge concern, it has
not stopped the requests for data sharing or data release.

• Government agencies, business, survey and research
organizations, and medical institutions are constantly being
asked to release and share more and more of their data for
transparency and accountability.

• So handling all this data in a way that protects the
confidentiality of the data subjects' identities and sensitive
attributes while maintaining the statistical usability/accuracy
of the data set has developed into a critical area of study.

• One of the most common ways to "protect" data is to simply
anonymize the data (i.e. remove identifying information or
sensitive characteristics).
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Motivation

■ The old ways of anonymizing data do not always work!

■ It has been shown that anonymized data can be linked with
other publicly available datasets. This record linkage can
possibly lead to re-identification.

■ So instead of using the old techniques of anonymization, new
privacy techniques have been formulated in the field of
differential privacy.
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Differential Privacy

Differential privacy ensures that the addition or removal of a single
database item does not substantially affect the outcome of any
analysis.
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• Queries are defined to be the questions of interest with
regards to a data set or a database.
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Queries in Differential Privacy

• Queries are defined to be the questions of interest with
regards to a data set or a database.

• A data curator manages queries sent to a data set.

• The curator can provide a response either using differential
privacy or not.
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Differential Privacy (Dwork 2006)

Let K be a mechanism (to be defined later), and let D1 and D2 be
two databases that differ in at most one element. A randomized
function K gives &differential privacy if for all data sets D1 and D2
difFering on at most one element, and all S C Range(K),

e
_
E < 

Pr[K (Di) e
< e€

Pr[K (D2) E
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Differential Privacy (Dwork 2006)

Let K be a mechanism (to be defined later), and let D1 and D2 be
two databases that differ in at most one element. A randomized
function K gives &differential privacy if for all data sets D1 and D2
differing on at most one element, and all S C Range(K),

e
_
E < 

Pr[K (Di) e
< e€

Pr[K (D2) e S] —

The total privacy budget for a set of queries is c, based on the
definition of &differential privacy.
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Pr[1C (D2) E S]

Pr[lC (Di) E S] < e,
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Differential Privacy Example: Notre Dame students

Room with me 1

Adversary
Query: How many

people in the room are Room without
2019 Notre Dame

graduates?
me

0

Can deduce that l am the
only one who is a 2019 Notre
Dame graduate.
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Differential Privacy Example: Notre Dame students DE.

•
3 /Room with me /-•

/ •

Adversary
Query: How many

Room withoutpeople in the room are
• /

2019 Notre Dame
graduates? me / •

Under Differential Privacy should
not be able to distinguish

between results.
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Room with me

Add noise under
c-differential

privacyAdversary ►
Query: How many

people in the room are Room without
2019 Notre Dame

graduates? me

Under Differential Privacy should
not be able to distinguish

between results.
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Database for South Bend, IN
with ME

ID Income

1

2

3

4

5

300K

50K

21K

32K

150K

100,000 78K

Total income = f(X)
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Differential Privacy Example: total income

Database for South Bend,
with ME

IN Database for South Bend,
without ME

IN

ID Income ID Income

1 300K 1 300K

2 50K 2 50K

3 21K 4 32K

4 32K 5 150K

5 150K

100,000 78K

100,000 78K

Total income = f(X) Total income =f(X3)
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Differential Privacy

■ If the curator answered WITHOUT any differential privacy,
and if you knew that I was going to move to another area,
then simply querying this database before and after my move
would allow you to deduce my income.
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Differential Privacy

■ If the curator answered WITHOUT any differential privacy,
and if you knew that I was going to move to another area,
then simply querying this database before and after my move

would allow you to deduce my income.

■ If the curator answered WITH differential privacy, then the
risk to my privacy would not be substantially (as bounded by
€) increased as a result of participating in the statistical

database.

■ To apply differential privacy, we can add some noise using the
mechanism JC to the result of a query on our dataset to

ensure the formula for c-differential privacy holds.

July 29, 2020 14



Noise in Differential Privacy

July 29, 2020 15



Noise in Differential Privacy

■ Differential privacy requires some noise to be added to queries
of interest in order to protect privacy.

July 29, 2020 15



Noise in Differential Privacy

• Differential privacy requires some noise to be added to queries
of interest in order to protect privacy.

• Many noise adding mechanisms exist for general query release.
They include

July 29, 2020 15



Noise in Differential Privacy

• Differential privacy requires some noise to be added to queries
of interest in order to protect privacy.

• Many noise adding mechanisms exist for general query release.
They include
• Laplace mechanism,

July 29, 2020 15



Noise in Differential Privacy

• Differential privacy requires some noise to be added to queries
of interest in order to protect privacy.

• Many noise adding mechanisms exist for general query release.
They include
• Laplace mechanism,
• Exponential mechanism,

July 29, 2020 15



Noise in Differential Privacy

• Differential privacy requires some noise to be added to queries
of interest in order to protect privacy.

• Many noise adding mechanisms exist for general query release.
They include
• Laplace mechanism,
• Exponential mechanism,
• Gaussian mechanism, and

July 29, 2020 15



Noise in Differential Privacy

• Differential privacy requires some noise to be added to queries
of interest in order to protect privacy.

• Many noise adding mechanisms exist for general query release.
They include
• Laplace mechanism
• Exponential mechanism,
• Gaussian mechanism, and
• median mechanism.

July 29, 2020 15



Noise in Differential Privacy

• Differential privacy requires some noise to be added to queries
of interest in order to protect privacy.

• Many noise adding mechanisms exist for general query release.
They include
• Laplace mechanism,
• Exponential mechanism,
• Gaussian mechanism, and
• median mechanism.

• Also, many noise adding mechanisms exist for specific
statistical analyses. They include

July 29, 2020 15



Noise in Differential Privacy

• Differential privacy requires some noise to be added to queries
of interest in order to protect privacy.

• Many noise adding mechanisms exist for general query release.
They include
• Laplace mechanism,
• Exponential mechanism,
• Gaussian mechanism, and
• median mechanism.

• Also, many noise adding mechanisms exist for specific
statistical analyses. They include
• contingency tables,

July 29, 2020 15



Noise in Differential Privacy

• Differential privacy requires some noise to be added to queries
of interest in order to protect privacy.

• Many noise adding mechanisms exist for general query release.
They include
• Laplace mechanism
• Exponential mechanism,
• Gaussian mechanism, and
• median mechanism.

• Also, many noise adding mechanisms exist for specific
statistical analyses. They include
• contingency tables,
• principal component analysis,

July 29, 2020 15



Noise in Differential Privacy

• Differential privacy requires some noise to be added to queries
of interest in order to protect privacy.

• Many noise adding mechanisms exist for general query release.
They include
• Laplace mechanism
• Exponential mechanism,
• Gaussian mechanism, and
• median mechanism.

• Also, many noise adding mechanisms exist for specific
statistical analyses. They include
• contingency tables,
• principal component analysis,
• location privacy, and

July 29, 2020 15



Noise in Differential Privacy

• Differential privacy requires some noise to be added to queries
of interest in order to protect privacy.

• Many noise adding mechanisms exist for general query release.
They include
• Laplace mechanism
• Exponential mechanism,
• Gaussian mechanism, and
• median mechanism.

• Also, many noise adding mechanisms exist for specific
statistical analyses. They include
• contingency tables,
• principal component analysis,
• location privacy, and
• graphs and social networks.
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Laplace Mechanism

Sensitivity (Dwork 2006)

For f : D , the sensitivity of f is

Af = max 11 f (Di) — f (D2)1
, D2

for all D1, D2 differing in at most one element.

i
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Laplace Mechanism

Sensitivity (Dwork 2006)

For f : D , the sensitivity of f is

Af = max 11 f (Di) — f (D2)1
, D2

i

for all D1, D2 differing in at most one element.

Captures how large a difference between the value of f on two
databases (differing in a single element) must be hidden by the
additive noise generated by the curator.

0 E.
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Laplace Mechanism (Dwork 2006)

When the query is numeric, adding Laplace random noise
independently to each of the components of f (X) guarantees
&differential privacy.

f (X) + Lap(Af /€)

o =,

July 29, 2020 17



Laplace Mechanism (Dwork 2006)

When the query is numeric, adding Laplace random noise
independently to each of the components of f (X) guarantees
&differential privacy.
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f (X) + Lap(Af / 6)
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image credit: https : //en. yikipedia . org/w/index . php?title=Lap1ace_distribut ion&o1did=697827002

Laboratorms

July 29, 2020 17



Privacy Budget

July 29, 2020 18



Privacy Budget

The total privacy budget for a set of queries is c, based on the
definition of c-differential privacy.

July 29, 2020 18



Privacy Budget

The total privacy budget for a set of queries is c, based on the
definition of c-differential privacy.

Types of Composition (McSherry 2009)

July 29, 2020 18



Privacy Budget

The total privacy budget for a set of queries is e, based on the
definition of &differential privacy.

Types of Composition (McSherry 2009)

• Sequential Composition: Each query uses (Si privacy, so for
each query the portion of the total privacy budget used is (€
This places a restriction on the number of queries that can be
asked or the amount of privacy that the query actually has.

July 29, 2020 18



Privacy Budget

The total privacy budget for a set of queries is e, based on the
definition of &differential privacy.

Types of Composition (McSherry 2009)

• Sequential Composition: Each query uses (Si privacy, so for
each query the portion of the total privacy budget used is (€
This places a restriction on the number of queries that can be
asked or the amount of privacy that the query actually has.

• Parallel Composition: If Di are disjoint subsets of the original
database and /141 provides differential privacy for each Di, then
the sequence of Mi provides differential privacy. The ultimate
privacy guarantee only depends on the worst of the guarantees
of each analysis, not the sum.

July 29, 2020 18



Beyond Queries

July 29, 2020

Senii9
NaEoN

19



Beyond Queries

• Queries allow one to answer very specific questions about the
data set.

July 29, 2020 19



Beyond Queries

■ Queries allow one to answer very specific questions about the
data set.

■ What happens when we want to do more with the data?

July 29, 2020 19



Beyond Queries

■ Queries allow one to answer very specific questions about the
data set.

■ What happens when we want to do more with the data?

■ Can perform differentially private data synthesis, which yields
differentially private synthetic data sets.
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Why should l care about differential
privacy?
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A HISTORY OF CENSUS PRIVACY PROTECTIONS
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What about outside the tech world?

A HISTORY OF CENSUS PRIVACY PROTECTIONS

2020 Census data products wlll be
protected using differential prlvacy.
Worlds first large-scale application of
new privacy system. (2020)

Image credit:
https://www.census.gov/library/visualizations/2019/comm/history-privacy-protection.html
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movement patterns.
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What else can differential privacy be used for?

■ Contact tracing which can include mobility reports or
movement patterns.

■ Mobile data sharing.

■ Models and model parameters being shared across boundaries
(federated learning).
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Ongoing Research in Differential Privacy
0=,

• Ensuring that differential privacy is understood by the general
public.

• Open-sourcing tools to allow researchers to apply differential

privacy themselves (e.g. Google DP Library, IBM Research

DP Library or Microsoft/Havard's OpenDP).

• Differentially private mechanism design for other statistical

analyses or model types.

• Applying differential privacy to new applications areas.
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