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> I Numerical methods

Currently: Numerical simulations allow for “failure” prediction of mechanical behavior of a tensile bar.
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Voids in Geometric Tensile bar with tetrahedral
microstructure elements
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3 I Numerical methods

Currently: Numerical simulations allow for “failure” prediction of mechanical behavior of a tensile bar.

“Failure”: The inability of a sample to
reach a required load. 25

Failure Metrics include: 20
- Critical Equivalent plastic strain (EQPS)
before meeting required load
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- Critical Equivalent plastic strain before
meeting required Displacement

Nominal
Behavior

- Reaching a required load 0
0.00 0.05 0.10 0.15 0.20 0.25 0.30
Displacement (mm)
- Reaching a required displacement EQPS vs Displacement

This is great, but can we do better?
Simulation Time: 88 minutes on 216 CPUs of a CTS-1 cluster
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4 ‘ So, why Deep Learning!? @)

* Mechanical performance measured from
these square bars is a function of defect
structure

» Neural networks are universal function
approximators!

* In this case, we hope to approximate void

Nominal

Behavior ' structure -> Mechanical performance

Macroscale Strain Fields

From Simple Analysis Fast Failure
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« Cost is the initial training time for DL (~1.5 days), but then inference in & Pk >80
milliseconds! TRAINED DEEP ) P(()=0.92
- If keeping the same microstructure domain, we may be able to N y
predict over similar macrostructures! Training Cycle 227 Chan28  Kyle Johnson (1558)

This is not a true replacement for numerical methods, but can be used to
rapidly sample the design space of materials components!




5 ‘ DL Architecture

We used a model that was pretty close to out of the box:

“Diagnosis of Alzheimer’s Disease via Multi- Our Model:
modality 3D Convolutional Neural Network”
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Figure 1 VGG16, which is a very deep network consisting of 13 convolution layers, 5 max
pooling layers and 3 fully connected layers. Several convolution layers are followed by max
pooling layer, reducing the dimensionality. In this figure, the original image with pixel size 224
# 224 formed a feature map of size 7 * 7 = 512 afier multiple convolutions and pooling layers,
obtaining classification result after fully connected and Sofimax layers.

arXiv:1902.09904 [cs.CV]
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Data to Architecture (@

The architecture was close to off-the-shelf, as the goal of the project was to rapidly explore microstructure to mechanical performance
mapping. The input data was converted to match the format of the architecture in the interest of time.
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Tensile bar with tetrahedral Voids in Geometric
elements microstructure




7 | Square data results

Results of the held back test set over reaching a required load using the square tension bars.
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Failure Metrics include: Square Tension Test-Set

- Critical Equivalent plastic strain (EQPS)
before meeting required load
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No Failure

- Critical Equivalent plastic strain before
meeting required Displacement

True Label

- Reaching a required load
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Tensile bar with tetrahedral
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s | Speedup

The cost of training the network is large, but after the network is trained, we see a huge decrease in per-sample estimation time.

FEA Simulation Time: 88 minutes on 216 Ghost CPUs
DL Network Inference Time: 20 milliseconds on 2 GPUs

Speedup: 264000x



9 I More applications ()

|

We currently believe the microstructure geometry and mechanics are explicitly driving the DL prediction. _
Because of this, we believe there is potential for classifying the mechanical performance of different macrostructures given
the microstructure is in the same domain

Tensile bar Cylindrical tensile rod



0 | More Applications

Results of reaching a required load over cylindrical tension bars.

Square Tension Test-Set
(trained over square tension data)

Cylindrical Tension Test-Set
(trained over square tension data)
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Test: Accuracy: 84.7% Test: Accuracy: 76.2%




11 | More Applications

We’ve run our failure prediction DI model over different macrostructures in tension. If we were to apply a different

force such as compression to the macrostructure, are we going to see the same results?

Samples in Tension

"

1t
$

Tensile bar

1t

$

Cylindrical tensile rod

Samples in Compression
4

1 )

Compressive bar



12

True label
True Label

More Applications
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Ultimately yes, due to the forces over the microstructure of the material. This provides some level of confidence that
the algorithm 1s truly learning the classification of a curve relative to that materials simulation in this domain.

Required load examples:

Square Tension Test-Set
(trained over square tension data)
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13 I More Applications

Ultimately yes, due to the forces over the microstructure of the material. This provides some level of confidence that
the algorithm 1s truly learning the classification of a curve relative to that materials simulation in this domain.
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Future work

» Test more forces (now working on triaxiality)

« Start looking into activation visualizations

* Publish work

* Not a 3 year LDRD; These results were generated with seed
funding in 8 months.

Activation map visualizations
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