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2 I Numerical methods

Currently: Numerical simulations allow for "failure" prediction of mechanical behavior of a tensile bar.
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Tensile bar with tetrahedral
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3 I Numerical methods

Currently: Numerical simulations allow for "failure" prediction of mechanical behavior of a tensile bar.

"Failure": The inability of a sample to
reach a required load.

Failure Metrics include: 
- Critical Equivalent plastic strain (EQPS)
before meeting required load

- Critical Equivalent plastic strain before
meeting required Displacement

- Reaching a required load

- Reaching a required displacement
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This is great, but can we do better? 
Simulation Time: 88 minutes on 216 CPUs of a CTS-1 cluster
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4 So, why Deep Learning?

25

20

2 10

5

0
0.00 0 05 0.10 0.15 0.20

Displacement (mm)

EQPS vs Displacement

Outliers

f(x)

Nominal
Behavior

0.25 o 00

Kyle Johnson (1558)

• Mechanical performance measured from
these square bars is a function of defect
structure

• Neural networks are universal function
approximators!

• In this case, we hope to approximate void
structure -> Mechanical performance

• Cost is the initial training time for DL (-1.5 days), but then inference in
milliseconds!

• If keeping the same microstructure domain, we may be able to
predict over similar macrostructures!

Macroscale Strain Fields
From Simple Analysis
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Training Cycle

I This is not a true replacement for numerical methods, but can be used to
, rapidly sample the design space of materials components!

TRAINED DEEP
LEARNING NETWORK

Accelerated
Design Change

Fast Failure
Probability Prediction
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5 DL Architecture

We used a model that was pretty close to out of the box:

"Diagnosis of Alzheimer's Disease via Multi-
modality 3D Convolutional Neural Network"
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Figure 11 VGG16, which is a very deep network consisting of 13 convolution layers, 5 max
pooling layers and 3 fully connected layers. Several convolution layers are followed by max
pooling layer, rtducing the dimensionality, k this figure, thc original irnage with pixel size 224
224 formed a feature map of size 7 x 7 x 512 after multipk convolutions and pooling layers,

obtaining classification result after fully connected and Softmax layers,
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6 I Data to Architecture

The architecture was close to off-the-shelf, as the goal of the project was to rapidly explore microstructure to mechanical performance
mapping. The input data was converted to match the format of the architecture in the interest of time.
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7 I Square data results

Results of the held back test set over reaching a required load using the square tension bars.

Failure Metrics include: 
- Critical Equivalent plastic strain
before meeting required load

- Critical Equivalent plastic strain
meeting required Displacement

- Reaching a required load

(EQPS)

before

- Reaching a required displacement
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8 Speedup o

The cost of training the network is large, but after the network is trained, we see a huge decrease in per-sample estimation time.

FEA Simulation Time: 88 minutes on 216 Ghost CPUs

DL Network Inference Time: 20 milliseconds on 2 GPUs

Speedup: 264000x 



9 More applications

We currently believe the microstructure geometry and mechanics are explicitly driving the DL prediction.
Because of this, we believe there is potential for classifying the mechanical performance of different macrostructures given
the microstructure is in the same domain

Tensile bar Cylindrical tensile rod



10  More Applications

Results of reaching a required load over cylindrical tension bars.
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11 • More Applications

We've run our failure prediction DL model over different macrostructures in tension. If we were to apply a different
force such as compression to the macrostructure, are we going to see the same results?

Samples in Tension t
Samples in Compression
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12 I More Applications
Ultimately yes, due to the forces over the microstructure of the material. This provides some level of confidence that
the algorithm is truly learning the classification of a curve relative to that materials simulation in this domain.

Required load examples: 

Square Tension Test-Set 
(trained over square tension data) 
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13 I More Applications

Ultimately yes, due to the forces over the microstructure of the material. This provides some level of confidence that
the algorithm is truly learning the classification of a curve relative to that materials simulation in this domain.
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14 Future work

• Test more forces (now working on triaxiality)
• Start looking into activation visualizations
• Publish work
• Not a 3 year LDRD; These results were generated with seed

funding in 8 months.
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Activation map visualizations
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Top: EQPS Results
Bottom: Activation Map of internal layer
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