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Multinomial pattern matching (MPM) is an object recognition algorithm

designed for use with synthetic aperture radar (SAR) imagery

• Context: autonomous sensing systems

• Provide the "think" in the Sense-Think-Act loop

• Automate tasks and workflows for collaboration between users
and machines
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Commercial vs. defense applications

Commercial applications

• Structured environments

• Larger tolerance for error

• Large, well-labeled data sets

• Closed-set recognition often viable

• Common imaging modalities

• Usually involves class-level ID

• Will accept high Pfa to get high Pd

• Black-box systems are acceptable

• Good network connectivity

• Can compute in the cloud

Defense applications

• Adversarial environments

• Very low tolerance for error

• Limited, poorly-labeled data sets

• Open-set recognition usually essential

• Esoteric imaging modalities

• Usually requires type-level ID

• Will accept low Pd to get low Pfa

• Results must be fully explainable

• Little or no network connectivity

• All computation must be on-board

Defense applications generally must operate in different contexts
and under different constraints than commercial applications



Radar sensing

• Long standoff

• All-weather

• Day/night

• Wide-area

• Fine resolution

• Operational use
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Synthetic aperture radar (SAR)
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Synthetic aperture radar (SAR)



Optical imagery vs. SAR imagery

Optical imagery

• Signatures dominated by
diffuse returns

• Signatures stable across
wide changes in geometry

• Resolution varies with range

• Angle/angle axes

• Magnitude-valued imaging

• Often abundant

• Simulation often fast and
high-fidelity

SAR imagery

• Signatures dominated by
specular returns

• Signatures vary strongly with
small changes in geometry

• Resolution fixed with range

• Range/angle axes

• Complex-valued imaging

• Usually limited

• Simulation usually slow and
low-fidelity

Object recognition approaches designed for optical imagery

usually do not work well with SAR imagery



SAR target signatures
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SAR target signatures
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Automatic target recognition (ATR)

• Operational goals

• Detect and identify targets of interest

• Direct human or machine attention to relevant
portions of imagery or signal data streams

• Provide target-identity results for analyst or
machine interpretation

• Link to synthetic aperture radar

• In wide operational use

• Operational SAR spurred the need for ATR in
national security applications

• Implementation requirements

• Must operate in real time

• Must reject unknown target types

• Must be trainable with almost no real data



A typical SAR ATR

SAR Confidence Target declarations

imagery
Cuer Indexer Identifier

assessment and confidences

Rejected Rejected Rejected

clutter imagery regions of interest nontarget objects

• Cuer
• Strips potential target regions from background clutter
• Processes large amounts of imagery very quickly

• Indexer
• Rejects obvious nontarget regions falsely passed by cuer
• Passes likely targets to identifier with type and pose hypotheses

• Identifier
• Tests signatures against type and pose hypotheses
• Calculates match scores indicating similarity of signature to each hypothesis

• Confidence assessment
• Assigns probabilities to each target type possibility
• Quantifies uncertainty for machine processing and human interpretation
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Multinomial pattern matching (MPM)

• identifier algorithm
• Produces match scores representing similarity between observed

signatures and target models
• Tests ROls and hypotheses provided by cuer and indexer

• Employs multinomial transform
• Maps amplitudes to quantiles
• Discards absolute pixel amplitudes in favor of relative pixel

amplitudes

• Represents targets with statistical models of multinomial
distributions at each pixel
• Accommodates real-world signature variation
• Models attributes of each target type, not differences between

types

• Match scores separate targets, nontargets
• Can be thresholded to yield declarations
• Can be fused with other identifiers
• Can be used to calculate confidences
• Open-set classification

Raw SAR chip

Multinomial-transformed chip
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MPM examples

Four-quantile MPM transform applied to T72 SAR chips (45°-315°)

45° 135° 225° 315°



Four-quantile MPM transform applied to T72 SAR chips (25°-28°)
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MPM training

• Offline process for statistical characterization
• Each statistical representation is called a template

• A template is a pixelwise lookup table of quantile penalties

• Distinct templates for each target at each geometry

• Templates are usually trained from simulated data

• Rule of thumb: 10 signatures per template

N images
(same target,
pose 0 ± A)

Align Mask

fik,m —

Multinomial
transform

count(qk = m) + v

N + vM 

Calculate
empirical PDF

Calculate
penalty table

k,
=

MPM template
(one target,
pose 0 ± A)

— 13 2k,m) — [tk,m

ak,m



M PM testing

• Online process for match-score calculation

• Compare collected signature (cuer ROl) to template (indexer hypo)

• Process signature match scores to yield identification

Template

Test signature Mask Quantize
Look up pixel

penalties
Sum   Match score

= tkqk
K 
k=1

• For signatures drawn from training distribution, Z N(0 1)

• For signatures drawn from another distribution, Z >> 0

• Simple thresholding operation provides open-set recognition
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MPM validation

• Offline process performed after training

• Bias and scale empirical template match-score distributions

• Accommodate unmodeled variability and simulation effects

• Equalize response between templates

• Allows approximate dialing-in of Pd (given in-class validation
data) or Pfa (given out-of-class validation data)

Template 1
► ROC 1

In-class
Pd = 0.95

Confusers Pfa = 0.40

► ►

ROC 2
Template 2

In-class
Pd = 0.10

Confusers
Pfa = 0.01

Declaration
threshold



SAMPLE dataset

• Public SAR dataset from AFRL

• Multiple targets

• Multiple geometries

• Simulated and collected data



SAMPLE dataset
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M PM SAMPLE experiment

• Train templates from simulated data
• Four targets: 2S1, BMP2, BTR70, T72
• Five-degree azimuth pose bins from 10 ° -80°

• Validate/bias templates with 10 random collected signatures per target

• Test all collected data for five vehicles
• Four trained targets: 2S1, BMP2, BTR70, T72 (correct ATR response: ID as trained type)
• One untrained confuser: ZSU23 (correct ATR response: reject)

• Assume naïve indexer
• Each signature is tested against all four templates
• Each signature is tested at all poses within 20° of truth

2S1

Ni&.r.A111

BMP2 BTR70 T72 ZSU23
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M PM SAMPLE experiment results

Confusion matrix

BTR70 T72 Reject

251 I 0.397 0.006 0.086 0.512

BMP2 0.065

BTR70 I 0.022

T72

0.411

0.500

0.019

0.523

I 0.478 I

0.574 I 0.407

ZSU23 0.006 0.086 0.908

• Pdec = 0.516

• Pid dec = 0.891

• Pcc = 0.837

• Pfa = 0.092

• CRR = 0.908

"When given a target, how often does the ATR speak?"

"When the ATR speaks about a target, how often is it correct?"

"When the ATR speaks, how often is it correct?"

"When given a nontarget, how often does the ATR speak?"

"When given a nontarget, how often is the ATR remain silent?"
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Summary

Multinomial pattern matching (MPM) is an object recognition algorithm

designed for use with synthetic aperture radar (SAR) imagery

• Statistically grounded

• Template-based

• Fully explainable

• Computationally efficient

• Trainable from simulated data

• Robust to SAR variation

• Type-level recognition

• Open-set recognition


