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Abstract

Organic materials are an attractive choice for structural components due to
their light weight and versatility. However, because they decompose at low
temperatures relative to tradiational materials they pose a safety risk due to
fire and loss of structural integrity. To quantify this risk, analysts use chem-
ical kinetics models to describe the material pyrolysis and oxidation using
thermogravimetric analysis. This process requires the calibration of many
model parameters to closely match experimental data. Previous efforts in
this field have largely been limited to finding a single best-fit set of parame-
ters even though the experimental data may be very noisy. Furthermore the
chemical kinetics models are often simplified representations of the true de-
composition process. The simplification induces model-form errors that the
fitting process cannot capture. In this work we propose a methodology for
calibrating decomposition models to thermogravimetric analysis data that
accounts for uncertainty in the model-form and experimental data simul-
taneously. The methodology is applied to the decomposition of a carbon
fiber epoxy composite with a three-stage reaction network and Arrhenius
kinetics. The results show a good overlap between the model predictions
and thermogravimetric analysis data. Uncertainty bounds capture devia-
tions of the model from the data. The calibrated parameter distributions
are also presented. The distributions may be used in forward propagation
of uncertainty in models that leverage this material.

Nomenclature

B Temperature ramp rate
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1 Introduction

Organic composites are increasing in popularity due to their low density,
high strength, and versatility in applications [IH3]. For example, some com-
merical aircraft are now composed of up to 50% organic materials by mass
[4,5]. The use of these materials carries a safety risk due to the low temper-
ature at which organic materials decompose relative to metallic structures.
Besides the risk posed by the release of heat, smoke, fumes, and flammable
gases, the decomposition of organic materials compromises the structural
integrity of the full system utilizing them. It could also lead to spread of
the fire should one occur, as organic composites are additional fuel that can
accelerate the process.

An important part of understanding this risk is quantifying the temper-
ature at which decomposition of a material initiates and the rate at which
it does so. This task requires an understanding of the chemical kinetics and
reaction pathways of the pyrolysis and oxidation processes. One common
technique to explore the decomposition kinetics is thermogravimetric anal-
ysis (TGA) [6-9]. In TGA, a small sample of the material in question is
placed in a heated crucible, and the temperature of the crucible is raised at
a pre-determined schedule. As the temperature rises, the various decomposi-
tion mechanisms for the material are activated, and gaseous products escape
from the crucible. The mass of the sample is recorded as a function of time
and crucible temperature until all reactions have completed, demonstrating
the characteristic temperatures and rates of each major reaction pathway.

TGA data is often used to calibrate global chemical kinetics models
for use in other studies where the material may be part of a larger sys-
tem exposed to high temepratures. Based on knowledge of the underlying
chemical reactions or from observation of the TGA data, an analyst poses
a reaction network, each reaction associated with a rate law governing the
temperature dependence of the reaction. These rate laws are based on the
Arrhenius equation, which carries a number of free parameters that must be
determined for each reaction posed [6]. To date, the approaches considered
for this problem broadly focus on optimizing the parameters to construct a
single set of model parameters that most closely captures the observed ex-
perimental data [9, 10]. There are several avenues for attempting to perform
this calibration. Analysts have considered changing the objective function
of the optimization problem: one could minimize the mean-squared-error in
the mass as a function of time [I], the derivative of the mass with respect



to time or temperature [7], linear combinations of the two, or other misfit
functions besides least-squares. Other work has focused on exploring dif-
ferent optimization algorithms for this calibration process, comparing the
performance in speed and final accuracy. Researchers have typically favored
genetic algorithms for global optimization since they do not require gradi-
ent evaluations and can robustly find a local optimum [I2] 13], though some
quasi-Newton methods have been employed [14].

These methods are able to find a set of parameter values that can force
the reaction network and rate laws to closely match the observed experi-
ments. However a common issue in these approaches is that most do not
consider the uncertainty in their models. The true chemical decomposition
pathways for large molecules can consist of hundreds or thousands of indi-
vidual reactions. Models calibrated to TGA data are often limited to less
than 10 reactions that attempt to capture the major reactions only. The
resulting models are biased. A simple Arrhenius-like rate law is unable to
capture all of the trends in the data. No matter how much data is accumu-
lated, no set of parameters will be able to exactly capture the observations
because knowledge of the physical processes is limited and the models have
missing components. One is left to either use simple models that are well-
specified but inaccurate, or attempt to calibrate overly complex models and
overfit the data [15]. Furthermore, with limited experimental data contam-
inated by measurement error or material variability, there is uncertainty in
the parameter estimates that must be quantified, as many combinations or
distributions of parameter values may be equally plausible given the avail-
able data [I6]. This uncertainty must be rolled up into fire safety analyses
performed with the calibrated models [17].

A common technique for addressing the quantification of uncertainty in
model calibration is the use of Bayesian inference [I§]. Bayesian inference
makes use of Bayes’ rule to combine prior information of credible parameter
values with a likelihood of observing the given data with an associated sta-
tistical model. The result is a posterior distribution of the parameter values
given the data. The resulting posterior distribution may then be used in
other problems for forward propagation of uncertainty to understand the
range of potential results [I9]. This framework is a cogent approach to
addressing parametric uncertainty and has been used in a number of en-
gineering disciplines [17, 20, 2I]. Recent work has focused on extending
Bayesian inference to address model-form uncertainty as well as paramet-
ric uncertainty. In (extended) model-forum uncertainty, the model itself is



considered to be uncertain and has embedded error [22]. In this embedded-
error formulation, the model parameters are considered to be uncertain dis-
tributions rather than uncertain variables, thus making the whole model a
stochastic process. The parameters of the distributions are inferred in this
framework. The resulting posterior distribution yields a set of values that
provide coverage of the experimental data rather than converging to a single
plausible best-fit. This work was recently applied in [23] to model embedded
uncertainty in the Arrhenius parameter and activation energy of a simplified
combustion kinetics mechanism.

In this work we demonstrate the application of an embedded-error for-
mulation of uncertainty to the calibration of chemical kinetics parameters to
TGA data of a multiple-component carbon fiber epoxy composite. Carbon
fiber epoxy composites have been studied [5, 24-26] in TGA experiments
with varying atmospheres, sample sizes, and other configuration variables.
In section 2, we show the TGA data for our sample and configuations, and
describe the simplified chemical reaction network and rate laws we calibrate
to the data. Section 3 discusses Bayesian inference and the embedded-error
formulation, as well as the numerical methods employed to perform this in-
ference. Section 4 shows the results of the calibration process, including the
comparison between the model results and experimental data as well as the
parameter distributions.

2 Carbon Fiber Composite

The material we consider in this work is a carbon fiber epoxy composite
similar to the materials considered in the decomposition studies of [5, 25
32]. Specifically, we use a composite consisting of AS4C carbon fiber at
industrial grade HS-CP-3000 impregnated with UF3362-100 epxoy resin.
Carbon fiber composites are of interest for their high durability and strength,
but the binding resin (epoxy) pyrolyzes at temperatures around 300°C' and
thus reduces the structural integrity of the composite. Furthermore, the
carbon fiber oxidizes at temperatures around 800°C in oxygen to give carbon
monoxide and carbon dioxide.

2.1 TGA Results

To assess the thermal decomposition of the composite, TGA experiments
were conducted at various conditions. Heating rates of 5°C'/min and 50°C'/min



were applied in a nitrogen environment, and heating rates of 5°C'/min and
20°C'/min were applied in an ambient air environment. Two experimental
replicates were performed for each environment and heating rate.

Figures|l] and [2| show the TGA data for the normalized mass and deriva-
tive with respect to temperature for the decomposition in nitrogen. The
decomposition onset begins in both cases around 300°C, sharply increases
through 400°C, and levels off slowly at 500°C'. The two replicates performed
under each set of experiment conditions overlap closely, although some dif-
ferences are notable. The final residual mass values are somewhat different
which might be attributable to differences in the sample preparation, or may
even be a result of complex chemical processes in which varying residue frac-
tions are produced depending on heating rate [33]. The work of [5] 3T, [34]
also showed a heat-rate dependent residual mass. One major drop in mass
is observed in the mass curve, although the mass derivative curve shows two
closely overlapping peaks.

Figures [3] and [4] show the TGA data in air. The nitrogen-only reac-
tions appear to be unchanged, suggesting a purely pyrolytic process that
occurs with or without oxygen, as well as two new major reactions. The
other two main reactions that appear occur after the first, beginning a little
before 600°C' for the first and around 800°C for the second, depending on
the heating rate. The composite is comprised of approximately 70% carbon
fiber by mass as indicated by the manufacturer, which suggests that the sec-
ond larger peak is the oxidation of carbon fiber into carbon monoxide and
carbon dioxide (among other potential heavier byproducts). The smaller
peak is assumed to be oxidation of remaining epoxy or epoxy residue. The
data at the lower heating rate also shows a smaller reaction occuring just
prior to the carbon fiber decomposition, although this is enveloped in other
reactions at the higher heating rate and accounts for little mass loss. The
carbon fiber decomposition was not fully completed in the higher heating
rate experiments, so there is incomplete data for the onset of the carbon
fiber oxidation at higher temperatures.

2.2 Decomposition Model

Given the limited test data available and the complexity of the underlying
physics of the decomposition, proposing a fully encompassing decomposition
model for the carbon fiber epoxy that can be accurately calibrated is pro-
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Figure 1: Mass fraction of the sample as a function of temperature for two
replicates decomposing in nitrogen at two different heating rates.
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Figure 2: Rate of change of mass fraction with respect to temperature as a
function of temperature for two replicates decomposing in nitrogen at two
different heating rates.
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Figure 3: Mass fraction of the sample as a function of temperature for two
experimental replicates of the composite decomposing in air at two different
heating rates.
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Figure 4: Rate of change of mass fraction with respect to temperature as a
function of temperature for two replicates decomposing in air at two different
heating rates.



hibitively difficult. The oxygen-limited decomposition of the carbon fiber
is a mechanism we would be hard-pressed to calibrate appropriately given
the test data only available in nitrogen-only and air-only environments. Al-
though the epoxy component may be appropriately analyzed, the inability
to characterize the full range of dependence on surface area of the porous
surface also limits the model-form we can calibrate to the available data
[35]. As seen in the work of [36] and [24], temperature is the main driver of
the decomposition reaction between oxygen compositions of 10-21%, which
covers our use case for the carbon fiber decomposition in air. To that end,
we adopt a simple stylistic approach in which we calibrate individual reac-
tions to simply capture the major trends in the TGA curves at the bounding
atmospheres. We attempt to quantify the resulting model-form error as de-
scribed later in this work. Though the scope of the modeling capability is
limited to the laboratory settings considered, we believe the predictions with
uncertainty can be informative in extrapolation to other settings.

Based on the major apparent drops in mass versus temperature and the
lack of knowledge of the chemical composition of the epoxy, we propose a
simplified decomposition pathway to capture the major peaks in mass loss
rate. We assume that three independent moieties are reacting, two of which
(M*' and M?) are associated with epoxy decomposition, and the third of
which corresponds to the carbon fiber (M?). Only M! decomposes in the
nitrogen environment and may thus be associated with a pyrolysis reaction,
while the other two only progress in the presence of oxygen and are thus ox-
idation reactions. The TGA data suggests the existence of a residual mass,
which we attribute to the carbon fiber decomposition with a stoichiometric
coefficient v. No knowledge about the gas or residue composition is assumed.
The reactions R1, R2, and R3 proposed are the following:

R1:M' — gas (1)
R2:M? + Oy — gas (2)
R3:M3 + Oy — (1 — v)gas + vresidue (3)

This model-form is deliberately simplistic in order to accommodate the
lack of multiple experimental replicates and for ease of calibration. Under
the assumption of an Arrhenius reaction rate law for each reaction, the
associated kinetic equations for each moiety M* with normalized mass m;



are

W e (_R;> g (4)
% = —Asexp <_]§j2“> m420, (5)
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d;rttr _ _V% (7)
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where R is the ideal gas constant, A; is the Arrhenius factor, F; is the
activation energy, T' is temperature, n; is the reaction order, dp, is equal to
1 in the air environment and 0 in the nitrogen environment, and m, is the
mass of the residue. These differential equations are subject to the initial
conditions m1(t = 0) = mq 0, ma(t = 0) = mag, mg(t =0) = 1—myg—ma,
and m,(t = 0) = 0. The TGA experiments were initialized at temperature
Ty with heating rate 5.

For calibration purposes, it is easier to reformulate the Arrhenius rate
laws in a manner that rescales the Arrhenius pre-factor to a characteristic
temperature. This is due to an ill-posedness issue in the calibration whereby
the activation energy and Arrhenius pre-factor are highly correlated in the
inference procedure [37]. This issue occurs when the reactions occur quickly,
and the reaction rate can be captured by a linear combination of Arrhenius
factors and activation energies. By reformulating the Arrhenius rate law
in terms of a characteristic temperature, this correlation issue is partially
alleviated. The conversion from an Arrhenius factor A; to a characteristic
temperature 7; with activation energy Fj; is given by the relation

B
A; = A exp <R£> 9)
where we define 4, = 157!, and thus the reaction rate laws we calibrate are
of the form
dm1 E1 1 1 n1
— == —— |l =-= 10
dt exP( R <T T1>>m1 (10)
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dm3 E3 1 1 ns3
UL N E—— 12
dt eXp( R <T T3>>m3 (12)

and the residue mass rate law stays the same. In this form, an increase in the
characteristic temperature tends to increase the temperature range at which
the reaction progresses, while the activation energy sharpens the onset and
peak of the mass-loss profile. Upon integration of these ODEs, the mass to
compare against the TGA data is given by m = my (t)+ma(t)+ms(t)+m,(t),
and the mass derivative with respect to temperature is also given by % =

%‘Z—T which is also used for calibration data.

In total, there are 12 parameters in the reaction rate laws that must be
calibrated to the observed TGA data: three activation energies E;, three
characteristic temperatures 7;, three reaction orders n;, two initial mass
fractions m; o, and a stoichiometric coefficient v.

3 Bayesian Calibration

The standard approach to calibration is to identify an objective function
between the model output and the experimental data to optimize, and then
to apply an optimization algorithm to find the parameter values that best
fit the data. However, this approach misses the presence of epistemic uncer-
tainty; that is, there is a distribution of plausible parameter values that can
fit the data, and reporting a single best set of parameters will miss this un-
certainty. Furthermore, it is clear from the preceding section that our model
will not be able to perfectly capture the behavior of the material no mat-
ter how many experiments we run. This is the result of model-form error,
which we must also consider. In this section, we will discuss how Bayesian
inference can be used to estimate model-form uncertainty, and then show
we extend the inference procedure to incorporate model-form error by using
a stochastic formulation of the decomposition model.
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3.1 Bayesian Inference

The basis for Bayesian inference proceeds from the use of Bayes’ rule of
probabilities [38]. Let A and B be two events that may be related to each
other. Bayes’ rule states that the conditional probability of B given A,
denoted by p(B|A), can be related to other probabilities by

p(A|B)p(B)
p(A)

Bayes’ rule may be extended to parameter inference in the following way.
Let 6 be the vector of parameters to be inferred (the activation energies E;,
etc.), and D be the available data (the mass as a function of temperature
in each experiment). We denote p(D|#) as the likelihood function, which
is the joint probability density of observing all of the experimental data
given the parameter values. We also denote p(f) as the prior probability of
the parameters, which may reflect knowledge of the parameter values that
analysts have about the model before having observed any experimental
data. This prior probability may be the result of previous calibrations,
physics-based restrictions on the model (for example that a given parameter
must be positive), or subject matter expert elicitation of plausible ranges
of the parameters. Then the posterior distribution for the parameters given
the data p(0|D) is given by

p(BJA) = (13)

p(DI0)p(6) _  p(D|0)p(9)
p(D) J p(D|0)p(6)ds

A simple implementation may be to choose a Gaussian likelihood for the
experiments with an experimental noise level 2, for the mass data and 03
for the mass derivative data. This is an approximation since the noise levels
in the two datasets are expected to be related, but the noise variables are not
directly of interest for the inference. We further assume N,., experiments
have been conducted and there are NN; data points per experiment, and
approximate the observed mass and mass-derivative data as independent
observations. Under this formulation, the likelihood function for calibrating
against the mass and mass-derivative data jointly could be expressed as

p(0|D) = (14)

dm
p(D|6,07,,03) = p(ml, o7,)p ( 719, o3) (15)
Newp Nj 9
(mij — Myy model(e)) )
p(m|6, a = exp [ — ; 16
oot = TN mer rm p( o (16)
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dm dm 2
(ﬁzj - Wij,model(‘g))
exp | — 2072 . (17)

p Nj
P( ’9 Ud H H
j=1 i=1 1/27T0'd

This model formulation assumes that the TGA data follows some underlying
trend function with Gaussian distributed noise added to it. Evaluating this
function amounts to the following steps:

e Choose a set of parameter values § and noise levels 02, and o2

e Evaluate the chemical kinetics rate laws to compute the mass over
time

e Plug in the pointwise comparison of experimental data to model results
in the above function

The major task of Bayesian inference is the evaluation of the poste-
rior distribution for a given dataset and model. For all but the simplest
of cases, this formula can be computationally demanding to evaluate due
to the integral p(D) = [ p(D|#)p(0)do, termed the marginal likelihood or
model evidence. ThlS integral is usually not analytically tractable for com-
putational models, and it may also be high-dimensional, making quadrature
methods prohibitely expensive. The predominant method in these cases is
to use Markov Chain Monte Carlo (MCMC) methods to evaluate samples
from the posterior distribution directly. We will provide more details on this
method in a later section.

3.2 Connection to Existing Methods

The Bayesian framework may be connected to the state-of-the-art in TGA
calibration. In cases where Bayesian inference is too expensive or only a
point-estimate is desired, one may resort to maximum a-posteriori (MAP)
estimation. In these cases, one finds the parameter values that are at the
mode of the posterior distribution. This amounts to solving the optimization

problem
0" = arg max [p(D0)p(6)] (18)

where the p(D) term has disappeared since it does not depend on 6. Since

the logarithm is a concave function, once can equivalently minimize the
negative logarithm of the right-hand side of Equation and using the same
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Gaussian objective function as in the preceding section gives the equivalent
to solving

Newp Nj 1
0" = argmin DD =5 (mij = Mijmoder (0))° +

j=1i=1 M

1 ,dm dm
03 ( dTl' i dT ijmodel
(19)
which is a non-linear least-squares optimization problem for the model pa-
rameters 0 with an additional penalty term —logp(f). Since analysts often
apply uniform ranges over which to perform the optimization process, a con-
venient corresponding prior is a uniform distribution, and so —logp(0) is a
constant that does not depend on 6; thus the current approach to calibration
may be seen as MAP estimation with a uniform prior on the parameters.
Most research in the field has prioritized the efficient and optimal solution
of this problem, as well as making arbitrary choices of noise parameters to
balance between calibrating to mass versus mass derivatives, but we turn
our attention instead to the larger problem of evaluating the posterior dis-
tribution.

3.3 Embedded Error Formulation

Given a large quantity of experimental data, the epistemic uncertainty as-
sociated with the parameters will shrink to zero and converge to the true
“best-estimate” that minimizes the mean-square error between the model
predictions and the experimental data. However, this does not guarantee
that the model predictions will provide satisfactory coverage of the observa-
tions. The model is biased, and given enough data will only eventually find
a solution that attempts to resolve all of the observations by compromising
between all of the errors in the model predictions. Instead, we would like
to find a way to embed the uncertainty of the model in the parameters as a
result of these errors.

We adopt a formulation inspired by that of [22] to apply an embedded
error formulation. The formulation above assumes that any misfit between
the experiment and the model is the result of “noise” that can be expressed
by the parameters o2, and Jfl. Instead, we choose to assume that the model
itself is stochastic, and that rather than treating the parameters as random
variables we treat them as unknown distributions. For simplicity, we as-
sume that the resulting likelihood function is approximately Gaussian with
a variance equal to the sum of the stochastic model output variance and

14
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experimental noise variance. That is, we now allow the parameters 6 to be
defined such that

0 =0(S) (20)

where £ is a vector of hyperparameters that parameterize the distributions
of . The work of [22], 23, 37] treated the parameters as the coefficients of
polynomial chaos expansions, which is an effective strategy for small num-
bers of parameters and linear models. Due to the complexity of our model
and the number of parameters we must infer, we choose to model each pa-
rameter as an independent Gaussian random variable. Thus £ is a vector of
the means and variances of each random variable along with the variance
of the experimental noise. Under this formulation, the likelihood function
takes the form of

P(DIE.0%,03) = plmlé, o2 )p( o, 03) (21)
Neap 1 (mi]’ — H(mij,model(e(é-))>)2
m|€’ H w] H \/27'(' mij7model(9(£))) + 0%1) P <_2(V(m2‘j,model(0(§))) + 072”))
(22)
Neap 1 ( (?lg}” —,U,( dT ij, model(e(f))))2>
p( H j H \/27T dTZ] model(e(g))) + 0-521) ’ 2(V(%ijvm0d5l(0(€))) + O-?l)

(23)
where we have defined 1(7j.moder) and V (myj moder) as the mean and vari-
ance of the mass in the j-th experiment at the i-th time point due to the
embedded uncertainty, u(%ijmo 4ep) and V(‘Cilgf iimo Jep) @S the mean and vari-
ance of the mass derivative, and wj is a weighting factor for the j-th exper-
iment to guarantee each experiment has the same effective amount of data.
This was done because some of the experiments had an order of magnitude
more data than others due to the different heating rates, and we reweight
the data to make the weight of each individual experiment equal. We define
the weight of the j-th experiment to be

(24)

These weights have an average of 1 and inversely weight each experi-
mental dataset by the number of points in the set. Thus we see that there
is an additional contribution to the estimated variability in the model from
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uncertainty inherent in the model parameters besides the additive experi-
mental noise. This variability does not correspond to a physically observable
randomness in the parameters; rather, it is a reflection of what modifica-
tions would be necessary to include in the model parameters to adequately
capture the discrepancies between the model and experiments.

Evaluation of the above likelihood function is more complicated now due
to the requirement of evaluating statistics of the mass versus time:

e Choose values of the mean and variance for each of the model param-
eters

e Perform forward propagation of uncertainty in the parameters through
the model to derive the distribution of mass versus time in each ex-
perimental setting.

e Evaluate the mean and variance of the mass and mass derivative across
all of the samples.

e Plug the results into the logarithm of equation (for improved nu-
merical stability) to evaluate the log-likelihood

3.4 Numerical Methods

The second step of the likelihood evaluation requires propagation of un-
certainty of the parameter distributions through the computational model.
This must be done numerically as the mapping from input to output is non-
trivial. Although in this specific case some numerical recourse is available to
approximate the output distributions, we choose to pursue a more general
method that can be applied in more complex reaction scenarios. With 12
parameters to compute means and variances over, tensor-based quadrature
methods are not available to us, and the model behavior with respect to the
parameters is sufficiently non-linear that sparse quadrature methods may
also be inaccurate. Thus we approximate the likelihood function with sam-
pling. Specifically, we make use of the quasi-Monte Carlo method with the
Sobol low discrepancy sequence [39] to generate a space-filling set of samples
in the 12-dimensional uniform hypercube [0, 1]*2.

Let u be such a 12-dimensional sample with coordinates u;. The cor-
responding sample in the physical parameter space may be formed from
0; = pi +0;® 1 (u;) where @1 is the inverse normal cumulative distribution
function, and u; and o; are the corresponding mean and standard deviation

16



for that parameter. This sampling scheme effectively reduces the sampling
variance of the mean and variance estimators for the mass by spreading
the samples far apart from each other and providing adequate coverage of
the distribution tails. A large burn-in for the Sobol sequence was selected
to avoid samples located on the borders of the hypercube, which would
otherwise map to infinite values. 2000 such samples were drawn for each
likelihood evaluation. Each sample was applied to the model evaluated at
each of the 4 experimental configurations (2 heating rates and air vs. nitro-
gen), making for 8000 total system solutions per likelihood evaluation. Let
Mijmodel (O (§)) be the result of the mass as a function of temperature for
the physical parameters 0 in experiment i at temperature 7;. The mean
and variance of the mass are then approximated using the empirical averages
over the sampled parameters 6 given by

N
P50 (0(6)) % = D i maaca(O0(6)) (25)
k=1
1 N
V(mij,model(g(f)) ~ N Z(mij,model(gk(f))2 - M(mij7m0del(0(€)))2) (26)
k=1

with similar formulas for the mass derivative.

The inference procedure for the means and variances used was a Metropolis-
Hastings MCMC sampling scheme [38]. The base procedure for this is as
follows:

e Begin at a current set of parameters ., and evaluate log p(D|¢.) and
log p(&c)

e Sample a proposal set of parameters &, from a proposal distribution

p(€p|§t:)
e Evaluate logp(DI¢,) and log p(&p)

e Draw a uniform random number u from the range [0, 1]

o If u < exp(logp(D|&p) + log p(&p) — logp(D|&e) —logp(&e)), accept the
sample &, and set that to the current sample. Otherwise, reject the

proposal and maintain the current point.

For numerical stability reasons, the hyperparameters £ were the means
and log-variances of the parameters. Using the log-variance allows the pa-
rameters to get arbitrarily small without sampling a value less than zero,
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whereas sampling the variances could lead to negative values. The proposal
distribution p(y|¢.) was set to be a multivariate normal distribution with
an adaptive covariance matrix. The prior distribution p(§) was assumed to
be independent for each parameter. Except for the reaction orders, each
parameter was given a flat prior of p(6) = constant to minimize the in-
formativity /subjectivity of the inference. The reaction order was selected
to have an informative prior of log-normal distribution with location and
scale parameters of 0.01, making a sharply peaked distribution centered at
1. This was selected in order to improve the smoothness of the fits and help
guarantee physical responses, which a flat prior cannot guarantee. A flat
prior may allow the reaction order to become very close to zero and lead
to sharp inflection points in the mass loss curve and numerical integration
difficulties in the decomposition model.

The result of the MCMC scheme is a series of samples from the posterior
p(¢|D) for the means and variances of each individual parameter. What we
are interested in are the aggregated distributions for the parameters, such as
p(E1|D) for the activation energy of reaction 1, which must be computed by
marginalizing over the chain results. This is done by evaluating the integral

p(E1|D) = / p(Er [, )pEp, | D)dé, (27)

We can approximate this integral using the MCMC samples by combin-
ing each of the individual normal distributions. For each individual sample
number ¢ from the MCMC results, multiple samples were drawn from a
normal distribution of mean y; and variance o2. All of these samples were
aggregated together to determine the final distribution of the parameters.
To determine whether the MCMC results were converged, the variation in
the mean and variance of the final distributions was evaluated for differing
numbers of MCMC samples. The chain was considered converged when the
variation in the means and variances derived from the first half of the sam-
ples and the second half of the samples was less than 0.1%, which amounted
to over 200,000 samples.

4 Results

This section will show how the calibrated model with uncertainty captures
the experimental data, and where model-form uncertainty helps to explain
discrepancies in the data. The uncertain distribution parameters will also
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be used to form an overall set of distributions for the chemical kinetics pa-
rameters.

4.1 Comparison to TGA Data

The uncertain parameter distributions were propagated through the model,
drawing one random set of parameters for every other sample of means and
variances in the MCMC results and evaluating the decomposition model.
The statistics were aggregated and the mean, 1-percentile, and 99-percentile
results were computed for the mass and mass derivative at each point in
time. Figures[5] [6] [7} and [§ below show the comparison between the model
predictions with uncertainty bounds and the TGA data.

In Figure [5] for the mass fraction in nitrogen, a benefit of the embedded
error representation is immediately obvious. The mass fraction remaining
after heating is complete is significantly different between the two heating
rates, and the stochastic response of the embedded error formulation is able
to represent this discrepancy. The mean model prediction is approximately
halfway between the two, and the uncertainty bounds overlap with the fi-
nal mass values. The differences in the inflection points of the two curves
at 300 and 500°C' are also captured with the uncertainty. Figure [6] shows
a somewhat lower quality fit of the slope of the curve at the peaks of the
decomposition around 400°C', but for the most part overlaps with the main
drop in mass fraction. Although fitting additional reactions might result
in a better fit, the additional parameter calibration required would increase
the prediction uncertainty.

Figure [7] shows the model performance in air, where the other two reac-
tions are activated as well. Again the model mean matches the data closely
and the uncertainty bounds overlap with the mass data almost completely,
despite having little data for the carbon fiber decomposition at the higher
heating rate. However, Figure [§ shows that the fit for the derivative of the
mass fraction is less close at the peaks around 600°C' and 900°C, and the
uncertainty bounds are insufficient for overlap. This is likely due to the
mass fraction data comprising the majority of the likelihood function, hav-
ing overall lower variance and a higher magnitude in the value of the data
whereas the mass derivative is overall smaller and has a relatively higher
variance. This would cause the calibration to favor fitting the mass fraction
more accurately over the mass derivative. In addition, there is less data
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Figure 5: The average model prediction (black), the 1-percentile and 99-
percentile mass (blue envelope), and experimental data (red) for the mass
fraction of sample decomposing in nitrogen.

available for fitting reactions 2 and 3 as compared to reaction 1, so a poorer
relative fit is to be expected. The reaction order also favors nearly straight
lines in the mass curve with small reaction order (i.e. the mass derivative
is nearly constant), which is why we invoked the informative prior for the
reaction order to improve the smoothness of the curve.

4.2 Calibrated Distributions

To evaluate the parameter posterior distributions, 100 samples of each pa-
rameter were drawn from each set of means and variances and accumulated
together. Table [I] shows the means and standard deviations of each pa-
rameter. Figure [J] shows that the distributions look very nearly Gaussian,

20



heating rate 5.0°C/min heating rate 50.0°C/min

0.000

—0.001

—0.002 1

IS —0.003 1 ’
kod
€
o
—0.004 —0.004
—0.005 —0.005
—0.006 —0.006
-0.007 T T T r T T T r -0.007 T r r r T T T T
100 200 300 400 500 600 700 800 900 1000 100 200 300 400 500 600 700 800 900 1000
temperature (C) temperature (C)

Figure 6: The average model prediction (black), the 1-percentile and 99-
percentile mass (blue envelope), and experimental data (red) for the rate of
mass fraction change with respect to temperature of sample decomposing in
nitrogen.
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Figure 7: The average model prediction (black), the 1-percentile and 99-
percentile mass (blue envelope), and experimental data (red) for the mass
fraction of sample decomposing in air.
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Figure 8: The average model prediction (black), the 1-percentile and 99-
percentile mass (blue envelope), and experimental data (red) for the rate of
mass fraction change with respect to temperature of sample decomposing in
air.
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Parameter Mean (p;) | Standard Deviation (o;) | Coefficient of Variation (o;/ ;)

Ty (K) 651.9 0.3967 6.085 x 104
Ei/Rx1073 (K) | 24.80 6.290 0.2536
ny 4.153 0.1730 0.04166
mi, 0.2545 7.903 x 1073 0.03105
Too (K) 1171 16.14 0.01378
Ey/Rx 1073 (K) | 25.02 0.5716 0.02285
ng 0.5265 0.03908 0.07423

ma,o 0.2956 2.801 x 1074 9.476 x 1074
Tos (K) 3456 110.1 0.03186

FE3/R x 1073 (K) 12.80 0.04769 3.726 x 1073
n3 0.06224 3.019 x 1073 0.04851

v 0.03480 1.108 x 10~* 3.184 x 1073

Table 1: Reported statistics of the parameter posterior distributions: the
mean, standard deviation, and coefficient of variation (standard deviation
divided by mean).

such that the mean and standard deviation are sufficient to accurately rep-
resent the posterior of each parameter. The correlation coefficients of the
propagated samples were also computed. Reaction 2 had parameters with
substantial correlations reported below in Table |2, and reactions 1 and 3
had negligible correlations. Overall we find that the nominal values for the
activation energies and Arrhenius factors are comparable to others in the
literature. For example, in [40], the authors use a variety of techniques to
analyze the effective activation energy and Arrhenius coefficients, and the
derived values correspond closely with the mean parameter values for R1 in
our calibration. Where our epoxy decomposition has an activation energy
of approximately 206k.J/mol and Arrhenius factor of 3 x 106571, the paper
reports a wide range of values from 180 — 280k.J/mol and 10 — 10?4571
One important difference in our approach versus comparable approaches in
the literature is that while the kinetics are reported to take into account
dependence on non-parametric formulations, ours is designed to build the
uncertainty associated with using a parametric formulation into the predic-
tions for a simpler approach.

The values of the parameters bear some consideration. The reaction
orders for the first reaction and third reaction are markedly high and low
respectively, at 4.1 and 0.06. In the first reaction, this would be a reflec-
tion of a particularly peaked mass loss profile with a sharp corner when the
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Reaction 2 Too Es/R N9 ma.0
Too 1 - - -
E2/R | —08832] 1 - -
no —0.8117 | 0.4550 1 -
mao 0.1822 —0.2601 | —0.01341 1

Table 2: Pearson correlation coefficients of the parameters for reaction 2.
The matrix is symmetric, so dashed entries correspond to their transposed
values. Values close to 41 indicate strong correlation, while values close to
0 indicate no correlation, and the sign indicates direct or inverse correlation.

reaction slows, for which there is data in both the nitrogen and air envi-
ronments to support this. The very low reaction order for the carbon fiber
decomposition reflects how the mass loss appears to be sharp and nearly
linear throughout the reaction. Because the reaction did not proceed to
completion in the high heating rate case, there is insufficient data to explore
the curvature of the mass derivative profile and the calibration does not
support a more physical reaction order. The use of an informative prior for
the reaction order ameliorates this issue but does not altogether remedy it.

The characteristic temperatures correspond roughly to the relative tem-
peratures at which the reactions initiated. This correspondence is not one-
to-one due to the varying activation energies and reaction orders, but does
align with the prescribed reactions. Reaction 1 corresponded to the initial
epoxy pyrolysis in nitrogen which happens at a lower temperature (350°C,
close to the characteristic temperature), and also had the lowest character-
istic temperature. Reactions 2 and 3 each occurred at increasing tempera-
tures and correspondingly have higher characteristic temperatures (900°C
and 3200°C' respectively).

The embedded uncertainties also indicate where variation was needed
to capture the model-form error. The uncertainty in Ej is very high as in-
dicated by the coefficient-of-variation of 25%, which may be explained by
the complex reaction profile to which we attempt to calibrate only a single
reaction of a simple Arrhenius form. In all other cases, the reaction order
coefficient-of-variation is larger than the other parameters, indicating that
the mass-loss profiles are potentially the most sensitive to the reaction order
and that much of the model-form error may be accommodated by varying
the reaction order.

26



For evaluating the calibrated models, one can use the above distributions
in forward propagation of uncertainty. One important point is that the dis-
tributions have been assumed to be Gaussian. For most of the parameters
this is not an issue, but there is a finite probability of the parameter value
taking on a negative value in uncertainty propagation. In these cases it is
best to reject any sample value drawn with an unphysical value.

5 Conclusion

In this work we have outlined a technique for calibrating chemical kinetics
models under uncertainty to account for model-form error. We demon-
strated its application to a simplified carbon fiber epoxy composite decom-
position. The results suggest a good overlap of the statistics of the model
with the observed experimental data despite model-form errors. The cali-
bration yielded uncertainty distributions for the model parameters that may
be used in future simulations involving this material undercomparable re-
action conditions. Such studies would involve forward propagation of the
calibrated uncertainties and would give a probabilistic answer for reliability
of the material in fire safety engineering calculations.

Although this method is useful for calibration under uncertainty, there
are improvements that can be made to the procedure and formulation. The
likelihood formulation appeared to bias the mass over the mass derivative
in fitting due to the scale and relative variance in the values, an observa-
tion which is consistent with other research comparing different objective
functions in deterministic TGA fitting. It is possible that other likelihood
formulations would yield more balanced results. The use of an informative
prior for the reaction order was also an imperfect solution to regularize the
calibration. Although the resulting fits are good, there remains the issue of
performing this calibration without invoking ad-hoc restrictions on the pa-
rameters. And finally, the method gives uncertainty estimates at the cost of
being more computationally intensive than standard calibration approaches.
It requires the evaluation of many samples of the decomposition model for
one single likelihood evaluation, while traditional methods would only re-
quire one evaluation. It is possible that surrogate models of reduced-order
statistics of the model behavior (e.g. mass derivative peak height) would
enable faster evaluations, or that approximate inference techniques would
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accelerate the process. A detailed investigation of comparing the sampling
approach we leveraged against quadrature-based methods would also deter-
mine whether more efficient integration techniques are available in different
circumstances. All of these issues merit further investigation in future work,
along with validation of the calibrated mechanisms in new laboratory set-
tings.
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