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Key Points:

� A method is presented for defining a finite volume physics grid in a spectral element model that
allows for regional refinement.

� The new method is shown to qualitatively preserve the model solution and effective resolution.

� A relatively coarse physics grid increases the speed of physics by roughly 60% to 120% depending
on how the computational resources are configured.

Abstract: Previous studies have shown that atmospheric models with a spectral element grid can
benefit from putting physics calculations on a relatively coarse finite volume grid. Here we demonstrate
an alternative high-order, element-based mapping approach used to implement a quasi-equal-area, fi-
nite volume physics grid in E3SM. Unlike similar methods, the new method in E3SM requires topology
data purely local to each spectral element, which trivially allows for regional mesh refinement. Sim-
ulations with physics grids defined by 2 × 2, 3 × 3, and 4 × 4 divisions of each element are shown to
verify that the alternative physics grid does not qualitatively alter the model solution. The model
performance is substantially affected by the reduction of physics columns when using the 2 × 2 grid,
which can increase the throughput of physics calculations by roughly 60% to 120% depending on
whether the computational resources are configured to maximize throughput or efficiency. A pair of
regionally refined cases are also shown to highlight the refinement capability.

Plain Language Summary: Most atmospheric models use the same grid for dynamics (e.g. advec-
tion) and physics (e.g. clouds). For spectral element models the grid uses irregularly spaced points
and the treatment of element edges can lead to grid imprinting bias. Previous studies have shown that
using a regularly spaced physics grid in a spectral element model can alleviate the grid imprinting bi-
ases. This alternative physics grid can also reduce the computational cost of the model if the physics
grid is coarser than the dynamics grid. This study presents a new approach for using a regularly
spaced physics grid in a global spectral element model that additionally allows mesh refinement for
regionally focused simulations. The use of a relatively coarse physics grid is shown to make the model
faster without qualitatively degrading the simulated climate.

1 Introduction

Global atmospheric models traditionally evaluate physical process parameterizations on the same
grid as the dynamical core. However, with certain element-based Galerkin methods this co-located
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approach can lead to grid imprinting biases [10, 8] that arise when the derivatives of the global basis
set are not continuous (i.e. they are C0). In contrast to finite volume methods, element-based Galerkin
methods use irregularly spaced quadrature points within each element to define the grid. When physics
tendencies are computed on these quadrature points, discontinuous derivatives can occur on element
edges and produce unrealistic localized extrema that drive the grid imprinting biases [10].

Recently, [9] demonstrated that a relatively coarse quasi-equal-area finite volume grid for physics
parameterizations with the NCAR CAM spectral element (CAM-SE) dynamical core [5] can produce
a qualitatively identical solution to the default configuration with a 5/9 reduction in the number of
physics columns. This approach eliminates the grid imprinting problem as well as some spurious noise
in the vertical velocity field over steep topography. Additionally, the effective resolution of spectral
element dynamics is coarser than the average spacing of the nodal points [12], so considering physics
processes at this coarser scale makes physical sense and reduces the computational burden of the
model.

The quasi-equal-area finite volume physics grid (hereafter referred to as “physgrid”) method pre-
sented by [10] was partly motivated by the need to support a finite volume semi-Lagrangian tracer
transport scheme, known as CSLAM [16]. CSLAM uses tensor-cubic interpolation to map data from
the FV physics grid to the dynamics grid and requires a stencil that extends beyond the element
boundaries. [10] use a similar cubic interpolation that is smooth across element boundaries for their
physgrid implementation. This is advantageous since the boundary exchange with the surface com-
ponent models is on the same grid, but also carries the disadvantage that regional mesh refinement is
much more complicated.

An alternative implementation of a finite volume physgrid was recently developed for use in the
Energy Exascale Earth System Model (E3SM) [7], hereafter G19, that is designed to support regional
mesh refinement of quasi-uniform grids. The part of the high-order finite-volume reconstruction that
depends on a structured grid is local to a spectral element, and thus is independent of the topology
of the spectral element grid.

The goal of this paper is to describe the physgrid implementation in the atmospheric component
of E3SM and verify that it does not qualitatively affect the model behavior. The mapping technique is
detailed in Section 2. Model experiments are described in Section 3 followed by analysis of the results
in Section 4. Conclusions are discussed in Section 5.

2 High-order, Property-preserving Remap Operators

The E3SM atmospheric dynamical core is known as the High-Order Methods Modeling Environment
(HOMME). The dynamics grid is built upon unstructured quadrilaterals of a cubed-sphere mesh
with np × np Gauss-Lobatto-Legendre (GLL) quadrature points located at the roots of the basis
set [24, 25, 5]. A quasi-uniform cubed-sphere mesh is specified by the parameter ne; this mesh has
ne × ne spectral elements per cube face. A regionally refined mesh (RRM) retains the overall cubed-
sphere structure but refines a region of the global domain to produce a locally fully unstructured
mesh. While E3SM can be configured to run with any value of np, all configurations use np = 4,
for which the basis functions are third-order polynomials (e.g. ne30np4 for the standard resolution
configuration of E3SMv1). The evolution of the solution is communicated among elements via direct
stiffness summation (DSS) [4] to form the global basis set, which leads to discontinuous derivatives at
element boundaries (i.e. the solution is C0).

The new physics grid divides each quadrilateral element into nf × nf finite-volume (FV) cells
that are uniform on the element’s reference coordinate and approximately uniform after mapping to
the sphere. Since E3SM always uses np = 4, in the case of a quasi-uniform cubed sphere mesh, an
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atmosphere grid set is specified with just ne and nf (e.g. ne30pg2). The default physics configuration,
in which physics columns exist on the GLL nodes, continues to be referred to as “np4” (e.g. ne30np4).

This section describes our physgrid remap algorithms.

2.1 Definitions

The dynamics and physics mesh parameters are (np, nf ). In this work, we assume nf ≤ np. An
element is a spectral element, and a subcell is a physics finite volume (FV) cell inside the element.
Figure 1 illustrates an example of a spectral element. The blue square outlines one element, and the
green filled circles mark GLL points. Each of the four red-dashed squares in Figure 1 is a subcell. We
use “finite volume” in only a loose sense; the discretization shares with a fully FV discretization the
characteristics of a constant basis function over a subcell and a high-order reconstruction combining
data from multiple subcells, but there is no flux function as in a fully FV method. An element has
reference domain R; this domain is the full element outlined in blue in Figure 1. Subcell c in an
element has reference domain Rf

c ⊂ R; in Figure 1, each red square has its own reference domain
Rf

c . A reference element R is subdivided uniformly into n2f squares Rf
c . We use r ∈ R to refer to a

reference point, and similarly for Rf
c .

Unless otherwise indicated, sums are over quantities within a single element. A bold-face quantity
is a vector of coefficients in an element. A superscript letter denotes the basis; for example, ρf are
the FV-basis coefficients for an approximation of ρ, and ρp are the GLL-basis coefficients.

bpi (r) is a GLL tensor-product basis function local to an element, of which there are n2p in an element.
The function corresponding to a vector p is

∑
i pib

p
i (r), where p provides nodal values at nodes rpi .

Ip′→p projects p′, a quantity in the GLL np′-basis, to p, a quantity in the GLL np-basis, using the

np′-basis functions to interpolate p′ to the np-basis nodes. Row j of Ip′→p provides pj =
∑

i p
′
ib

p′

i (rpj ).
In this work we have np′ ≤ np, and thus this projection has no error.

The weight associated with a GLL basis function is wp
i ≡

∫
R bi(r) dr. Similarly, the weight

associated with the FV basis function, the constant function over a subcell, is wf
c ≡

∫
Rf

c
dr.

J is the Jacobian determinant of the map from reference element to sphere. Jp includes a constant
factor α that is determined so that the sum of Jp

i w
p
i over the sphere is 4π. Jf will be discussed after

developing the first remap operator.

2.2 Linear, element-local, remap operators

In this subsection, we describe linear, element-local, remap operators. This subsection and subsection
2.3 focus on the operations performed within a single element; subsequent subsections then describe
the operations on the full grids.

2.2.1 GLL to FV

It is natural to map GLL data to FV data by averaging the GLL density over the FV subcell:

ρfc =

(∫
Rf

c

Jp(r) dr

)−1 ∫
Rf

c

ρp(r)Jp(r) dr ≈ (Jf
c w

f
c )−1

∑
i

ρpi J
p
i M

p
ci, (1)

where Mp
ci ≡

∫
Rf

c
bi(r) dr, the approximation is the spectral element quadrature approximation, and

Jf
c will be defined shortly. In HOMME, it is best to think of spectral element operators as being

applied to the combined quantity diag(J)ρ, where diag(·) is the diagonal matrix having its argument

3



on the diagonal. Then the linear operator to map GLL reference-element data to FV reference-subcell
data is

Ap→f ≡ diag(wf )−1Mp. (2)

With this operator we can write (1) as ρf = diag(Jf )−1Ap→fdiag(Jp)ρp, where Jf ≡ Ap→fJp. For
convenience, let Bp→f ≡ diag(Jf )−1Ap→fdiag(Jp), so that we can write ρf = Bp→fρp.

2.2.2 FV to GLL

Our maps operate on the reference element; thus, in what follows, J does not appear and f and p
are quantities on the reference element. To determine the map from FV to GLL data in an element,
Af→p, we make the following design requirements.

R1. If p = Af→pf , then Ap→fp = f .

R2. If (a) f = Ap→fp, (b) np′ = nf , and (c) p = Ip′→pp′, then (d) Af→pf = p.

Each requirement specifies a limited idempotence. Requirement R1 specifies that repeated maps from
FV data to GLL and back, within an element, leave the FV data unchanged. Requirement R2 is the
equivalent of R1 for mapping GLL data to FV and back. Because np ≥ nf , in general idempotence
can hold only when the np′-basis exactly represents the np-basis field and np′ = nf . Requirement
R2 assures the remap operator has order of accuracy (OOA) np′ = nf for Cnf−1 functions because a
np′-basis-representable field is recovered exactly.

Ap→f , element locality, and the conditions in R2 uniquely specify Af→p. Assume the consequent,
R2(d), of R2 holds:

Af→pf = p.

Then

Af→pAp→fp = p, by R2(a),

Af→pAp→fIp′→pp′ = Ip′→pp′, by R2(c),

Af→pAp→fIp′→p = Ip′→p, because p′ is general,

Af→p = Ip′→p(Ap→fIp′→p)−1. (3)

The matrix inverted in the final line (3) is square because of R2(b). The formula (3) for Af→p satisfies
R1:

Ap→fAf→pf = Ap→fIp′→p(Ap→fIp′→p)−1f = f .

In terms of the quantities in (2), we can write

Af→p = Ip′→p(diag(wf )−1MpIp′→p)−1.

For convenience, let Bf→p ≡ diag(Jp)−1Af→pdiag(Jf ).

2.2.3 FV to GLL: An alternative method for discontinuous fields

Mapping a discontinuous field from FV to GLL grids with large nf produces oscillations. In future
applications, we are interested in large nf and np. Thus, we describe an additional linear remap
operator Āf→p that addresses this case. In text we refer to the algorithm using the operator Af→p

described in subsection 2.2.2 as the high-order reconstruction (HR) method and the algorithm using
Āf→p as the panel reconstruction (PR) method. Outside of Section 2, only the HR method is used.
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The PR method uses the HR method as a component. For each FV subcell in an element, the PR
method reconstructs the field within the subcell by applying the HR method to a nf ′ × nf ′ panel of
nearby subcells, where nf ′ ≤ nf . The panel’s GLL basis has number of nodes np = np′ = nf ′ , which
we summarize with the single parameter nf ′ . A subcell’s panel is determined by centering it on the
subcell, then shifting it by the minimal amount necessary in each direction to place the panel within
the bounds of the element. This first step produces a reconstruction that is generally discontinuous
at subcell edges. The reconstruction has order of accuracy nf ′ for Cnf ′−1 functions because it is the
result of applying the HR operator.

Then the PR method applies the L2 projection to project the subcell reconstructions onto the
element’s GLL np-basis. The L2 projection of a function y(r) over R is given by the solution of∑

j

Mpp
ij pj =

∫
R
bi(r)y(r) dr, i = 1, . . . , n2p,

for p, where Mpp
ij ≡

∫
R bi(r)bj(r) dr is the GLL np-basis mass matrix. In the case of the PR method,

y(r) is the function over the element resulting from the panel reconstructions of f . The L2 projection
preserves the order of accuracy of the panel reconstructions, giving an overall nf ′-order method.

Figure 2 shows an example of panels for the case of np = nf = 5, nf ′ = 3. As in Figure 1, the blue
solid line outlines the spectral element, the green filled circles mark GLL points, and the red dashed
lines outline FV subcells. The black nf ′×nf ′ panel provides reconstructions for a 2×2 grid of subcells
in the southeast corner, marked with block dots. The yellow panel provides reconstructions for the
two left-most subcells along the center row, marked with yellow plus signs. Finally, the cyan panel
provides the reconstruction for the middle cell, marked with cyan × signs.

If nf ′ = nf , then Āf→p = Af→p. First, every FV subcell has the same panel, and the panel covers
the element. Second, the L2 projection from the panel’s GLL nf ′-basis to the element’s GLL np-basis
is equivalent to interpolation by Ip′→p to the np-basis nodes since nf ′ = np′ and nf ′ ≤ np. Thus, in
this case of nf ′ = nf , the HR and PR methods produce the same GLL solution.

The PR method satisfies neither R1 nor R2 if nf ′ < nf . First, R2 cannot hold because nf ′ < nf .
Second, the L2 projection generally violates R1. However, conditions R1 and R2 still are used in
deriving the panel reconstructions.

2.2.4 Implementation

The Ap→f , Af→p, and Āf→p operators are linear and thus are computed once at model initialization;
during time stepping, applications of these operators require small matrix-vector products with ma-
trices of size n2f × n2p and n2p × n2f . Integrals are computed by Gaussian quadrature within each FV
subcell. Since our application already has GLL nodes and weights of various degrees, we use GLL
quadrature. For an integrand having polynomial degree d, the GLL basis with d(d + 3)/2e nodes is
sufficient for exact integration.

2.3 Element-local property preservation

In the problem of property preservation, a property is a constraint that must hold nearly to machine
precision, despite the approximations made in a discretization. We write “nearly” because in general
the computation of the property has a condition number that, while small, is still larger than 1.
For density and mixing ratio fields in the physgrid remap problem, the properties are respectively
conservation of mass and nonviolation of the mixing ratio extrema in a discrete domain of dependence,
or shape preservation. The second property also reestablishes tracer consistency if it does not already

5



hold; if mixing ratio q is constant in one basis, then the lower and upper extrema are the same and so
q is mapped to a constant in the other.

For a density field ρ, the mass conservation constraint in an element is∑
i

wp
i J

p
i ρ

p
i =

∑
c

wf
c J

f
c ρ

f
c . (4)

Both Bp→f and Bf→p conserve mass. The fact that Bp→f conserves mass combined with requirement
R1—and, in the case of the PR method, the additional fact that an L2 projection conserves mass—
imply Bf→p conserves mass. Bp→f conserves mass as follows:∑

c

wf
c J

f
c ρ

f
c =

∑
c

wf
c J

f
c

(
Bp→fρp

)
c

=
∑
c

wf
c J

f
c (Jf

c )−1(wf
c )−1 (Mpdiag(Jp)ρp)c

=
∑
c

(Mpdiag(Jp)ρp)c =
∑
c

∑
i

Mp
ciJ

p
i ρ

p
i =

∑
c

∑
i

∫
Rf

c

bi(r) drJp
i ρ

p
i

=
∑
i

Jp
i ρ

p
i

∑
c

∫
Rf

c

bi(r) dr =
∑
i

wp
i J

p
i ρ

p
i .

Because the B operators are linear and implement high-order remap, they cannot preserve shape
in general. To preserve shape, we apply an element-local limiter after B. In each element, this lim-
iter perturbs input mixing ratio q to produce output q′ such that mass is conserved,

∑
iwiJiρiqi =∑

iwiJiρiq
′
i; q
′ is in bounds; and the difference diag(ρ)q′ − diag(ρ)q is 1-norm-minimal over all mod-

ifications that obey these constraints. It can be applied to a field in an element in either basis. There
are a number of limiters that provide such outputs q′; we use ClipAndAssuredSum, Algorithm 3.1
in [2].

In the physgrid remap problems, the mass conservation and shape preservation constraints always
form a non-empty set. The shape preservation constraint set can be written

min
i
qsi ≤ qtj ≤ max

i
qsi ,

where s denotes a quantity on the source grid and t on the target grid. j ranges over the target
degrees of freedom (DOF) within the element, and i ranges over the source DOF in the element as
well as possibly neighbors. A constant mixing ratio over the element satisfies these constraints; thus,
the constraint set is not empty.

2.4 Global grids

Now we discuss the steps to remap quantities from one global grid to the other.

In HOMME, the total mass in a model layer is given by the pseudodensity times the vertical
coordinate differential, where pseudodensity is the derivative of hydrostatic pressure with respect to
the vertical coordinate; see [24] for details, in which the pseudodensity is written ∂p/∂η. For purposes
of this discussion, which is independent of the details of HOMME, it is sufficient to refer to a general
density ρ whose integral over a volume yields a mass. We refer to scalars s and corresponding scalar
densities sρ, as well as scalar tendency ∆s and scalar density tendency ∆(sρ).

Remapping a scalar from GLL to FV bases is purely an element-local operation. If the limiter
will be applied, the bounds are the extremal scalar values of the GLL nodal values. First, the scalar
density field is remapped. This same remap operator is applied to the total mass density; thus, if the
scalar is a tracer mixing ratio, then it is mass-tracer consistent already. Second, the limiter is applied
to the scalar to limit new extrema. Each of these two steps is local to the element.
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In the FV-to-GLL direction, the temperature T f and velocity uf , vf data are tendencies. Tracer
qf is typically a full state, but to avoid dissipating tracers by repeatedly remapping state, just the
tracer tendency is remapped. The limiter is applied to tracers but not T f , uf , vf ; in what follows, the
limiter steps are simply omitted for these. For concreteness, the following algorithm description refers
to tracers in particular.

The algorithm proceeds as follows. To solve the correct property-preservation problem, limiter
bounds must be for the full GLL tracer state. If the tracer density tendency is zero, the limiter should
not alter the state. Thus, the bounds must include the extremal nodal values of qp prior to state
update. First, within each element, the minimum and maximum (subsequently, extremal) FV mixing
ratio state values are computed and stored. Second, in each element, the tracer density tendency is
remapped with the linear, element-local, remap operator. Third, to permit OOA 2, a halo exchange
shares the FV mixing ratio state extremal values among directly neighboring elements. After the
exchange, the bounds for an element’s mixing ratio state are the extremal values from the element and
its neighbors. These are then augmented by the state’s previous GLL extremal values in the element.
Fourth, the limiter is applied to the mixing ratio values. Fifth, the DSS is applied. After the DSS,
mixing ratio extrema within an element are bounded by the source data within a 2-halo of the element
rather than the original 1-halo. The DSS is globally tracer mass conserving, but an element’s tracer
mass after the DSS is altered in general.

Returning to conditions R1 and R2 in subsection 2.2.2, neither condition holds in general through-
out the full algorithm. Both property preservation and the DSS can violate each condition. These
conditions were used just to derive linear, element-local, remap operators.

Figure 3 illustrates the steps of the FV-to-GLL remap procedure for a tracer. The left column
uses the HR operator and the right uses the PR operator. The black stair-step lines show the FV
state. Vertical gray lines demark FV subcell boundaries, and black vertical dashed lines demark
spectral element boundaries. In total there are four spectral elements over the domain, with periodic
boundary conditions on the domain edges. The parameters are np = 8, nf = 5. In all figure parameter
labels, we omit ‘=’ and ‘,’, trading this space for a larger font size; e.g., “np = 8, nf = 5” is written “np
8 nf 5”. The FV data are C1 continuous on the right side of the domain and discontinuous on the left.
For simplicity, the previous step’s state is the constant blue dotted line, labeled as “(0) previous step”,
and the total mass density is uniformly one (not shown). The difference between the FV stair-step
curve and this blue dotted line is then the tendency to remap.

In the top row, the linear, element-local, remap operator is applied to produce the dotted green
curve labeled “(3) DGLL np 8”. Here, “D” in “DGLL” denotes discontinuous; at this stage, the GLL
field is discontinuous across elements. Large green filled circles mark GLL nodes. Note that element
boundary nodes are two-valued. The red curves labeled with a “(2)” show the intermediate quantity
in each of the HR (left) and PR (right) methods. In the HR case, the intermediate quantity is the
DGLL np′ = nf = 5 reconstruction. In the PR case, the intermediate quantity is the function formed
by panel reconstructions with nf ′ = 3.

Moving now to the second row, ClipAndAssuredSum (CAAS) is applied to the green dotted
curve to produce the green dashed curve labeled “(4) DGLL”. The right column uses two sets of
arrows to show how the bounds are obtained. The green upward arrows show the elements whose FV
state data are used to provide an initial set of bounds for the element pointed to by the downward
green arrow. The blue downward arrow shows that this initial set of bounds is augmented by the
extremal values in the previous GLL state of that element.

Finally, the DSS is applied to the green dashed curve to produce the solid blue curve in the bottom
row labeld “(5) CGLL”. Here, the “C” denotes continuous; the GLL field is now continuous across
elements. For reference, the GLL nodes are marked with red dots. Visually, the HR and PR methods
reconstruct the smooth part of the tendency similarly, but the PR method produces lower-magnitude
oscillations than the HR method across the discontinuity.

7



2.5 Remapped quantities

Until now, this section has described remap algorithms general to any discretization involving spectral
elements with embedded finite volume subcells. This subsection describes the quantities remapped in
the E3SM atmosphere model.

Tracer mixing ratios are remapped using the methods described in subsections 2.2, 2.3, and 2.4.

Potential temperature density θρ is linearly remapped, in the GLL-to-FV direction as a full state
and in the FV-to-GLL direction as a tendency, but no limiter is applied, consistent with its treatment in
the dynamical core. Experiments show low sensitivity to the particular temperature variable type that
is remapped. We choose potential temperature because it is conserved under dry adiabatic motion; that
is, the integral of θρ in a Lagrangian parcel undergoing dry adiabatic motion is conserved. However,
virtual potential temperature or just temperature could be used.

Velocities u, v are respectively the local-east and local-north velocity components. At and near
the poles, these vary quickly in space and so will remap with more error than away from the poles.
Instead of remapping these, we map the velocity vector to a reference-element coordinate system,
remap each component in this coordinate system between grids—thus conserving the component’s
average value in this coordinate system—then map the result back to the local east-north system.
Examples of element-local coordinate systems are contravariant, covariant, and 3D Cartesian. In our
implementation, we use the contravariant coordinate system. A limiter is not applied to velocity,
consistent with its treatment in the dynamical core.

There is no vertical velocity tendency, but the physics parameterizations need access to the vertical
velocity ω. This quantity’s state is remapped as a scalar from GLL to FV grids, conserving ω’s average
value over a subcell, and no limiter is applied.

Topography data, geopotential φps and φfs , are preprocessed and stored in a topography file. φps are
the traditional GLL φs values; these are used in the dynamical core. φfs are obtained by remapping
from GLL to FV and then applying the limiter; these are used in the physics parameterizations.
Remap prior to application of the limiter preserves average elevation within a subcell; after, within an
element. Elevation variance and other derived data used in physics parameterizations are computed
offline using φfs and stored in the same topography file. See [15] for details on these derived topography
data.

One detail specific to HOMME is the treatment of hydrostatic surface pressure ps, which is needed
in the physics parameterizations, and the remap of pseudodensity, which is needed for remap of other
quantities. A full description of these quantities can be found in [24]. The three key points for our
purposes are as follows. First, the integral of pseudodensity over a column gives the hydrostatic
surface pressure ps. Second, given surface pressure, HOMME provides the vertical coordinate data
necessary to compute pseudodensity over the column. Third, from the pseudodensity one can compute
hydrostatic pressure at vertical column interfaces and midpoints. None of these three points involves
remap. In both remap directions, we must simply remap pps to obtain pfs , then use HOMME’s existing
vertical coordinate treatment to derive pseudodensity on the FV grid.

2.6 Numerical verification

We verify our remap operators using a convergence study on a sequence of quasiuniform cubed-sphere
grids. A tracer field is created on the GLL grid, remapped to the FV grid, and then remapped
back to the GLL grid. Then the relative error between original and remapped fields is measured.
We repeat this procedure on a sequence of increasingly fine grids. The tracer fields are described in
[14]: Gaussian hills, cosine bells, and slotted cylinders. These differ in smoothness: C∞, C1, and
discontinuous, respectively. The grid sequence is expressed in terms of ne: 5 to 320, increasing at
each step by a factor of 2. We test a number of configurations. When we use the PR method, we set
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nf ′ = min(nf , 3). Because the HR and PR methods are identical when nf ′ = nf , we label those cases
as “HR/PR” to indicate that either method would produce the result.

Figure 4 shows results. The legend describes the line pattern, color, and marker for each algorithm.
Triangles provide reference order of accuracy (OOA) slopes, with OOA in text in the triangle.

The green dotted line with × markers shows that on a sufficiently smooth field and with no limiter,
the OOA of the HR method is nf as a result of condition R2. The blue solid line corresponds to our
intended practical configuration: nf = 2 with limiter on for tracer fields. It achieves OOA 2 on a C1

field. The red solid line shows that for a field having a finite number of extrema, the limiter permits
OOA 3. This is because the limiter is triggered in only O(1) elements in this case. The green solid line
is for np = nf = 4, HR method, with limiter. It is jagged, but still monotonically decreasing, in the
case of Gaussian hills because the limiter is triggered at just the two isolated maxima and is sensitive
to the details of these maxima with respect to the grid. But the accuracy is always between the curves
for np = 5, nf = 4, HR method, with no limiter (dotted green) and np = 4, nf = 3, HR/PR, with
limiter (solid red), as we expect. For continuous but less smooth functions for which the limiters are
triggered in many elements, the solid green line is straight. For the discontinuous slotted cylinders
test field, OOA is sublinear in the l2 norm, as we expect. In the l∞ norm, error is roughly constant
with refinement because of roughly constant-magnitude under- and overshoots at the discontinuity.
We do not show curves for the HR method with np = nf and no limiter; they are roughly at machine
precision because of requirements R1 and R2.

For the cases in which the PR method produces different results than the HR method—lines with
unfilled markers—results are again as expected. For the Gaussian hills field, np = nf = 4, PR, with
limiter (dashed green line with unfilled circles), the OOA is 3 because nf ′ = 3. For the case with
np = 8 (dashed black line with unfilled triangles), the explanation above regarding jaggedness applies.
We omit curves using the PR method without limiter because the OOA is limited to 3, and the dashed
green line with unfilled circles already demonstrates OOA 3.

Figure 5 shows contour plots for a subset of the cases in Figure 4, all for ne = 20, which is the
typical coarser resolution of the two resolutions used in studies involving these test fields. All results
shown are with CAAS applied. Each row of the figure corresponds to a field, labeled in the left column
of the figure. To maximize detail in the figure, each plot zooms in on one of the two prescribed shapes
within a field. The left column shows the original field. Each subsequent column shows the results
of applying the algorithm described at the top of the column. For the Gaussian hills and cosine bells
fields, the logarithm, base 10, of the magnitude of the difference between final GLL field and original
is shown, since showing the final field itself would provide little information. There are two different
color scales used for these two rows: one for the first column, and the other for the remaining columns.
For the slotted cylinders field, the final field is sufficiently different that it is informative to show it
directly, and the colorbar applies to all columns. Some observations of interest are as follows. For the
Gaussian hills and cosine bells fields, the errors for the case np = nf = 4, HR method, center on the
manifolds where the CAAS limiter is active: the Gaussian hills maximum, a point, and the cosine bells
border, a circle. The PR method has larger errors for this np = nf = 4 configuration, as expected.
But the PR method is motivated by the slotted cylinders result for nf ≥ 4. With the HR method,
we see oscillations in the elements that overlap the border of the slotted cylinder in the case nf = 4.
With the PR method, these are substantially reduced. The case np = 8, nf = 6, PR method, shows
that the PR method with nf ′ = 3 suppresses oscillations resulting from discontinuous fields for large
nf .
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3 Experiment Setup

3.1 Model Simulations

E3SMv1 was originally forked from the NCAR CESM version 1 [11] and has continued to evolve
with a focus on targeting next-generation exascale computers. Some notable differences between the
atmosphere component in E3SM and CESM are the use of spectral element dynamics on a cubed-
sphere grid [20, 24], more vertical levels (72 vs. 32), and a higher model top (approx. 60 km vs.
40 km). The various physics schemes are broadly similar, but many details differ in important ways
[27, 18]. The land, ocean, and sea ice components also differ significantly from CESM. The simulations
presented here use active atmosphere and land components with prescribed sea surface temperature
(SST) and sea ice.

To analyze the impact of the physgrid on E3SM, four simulations were conducted with 30 × 30
elements per cube face (ne30). The physics grids for these experiments are ne30np4, ne30pg2, ne30pg3,
and ne30pg4. We also conducted np4 and pg2 simulations that include a 4× mesh refinement over the
continental US similar to [22]. The high-order reconstruction (HR) method for FV-to-GLL remap was
used in all simulations. All simulations were run on Cori-KNL at NERSC using 2 OpenMP threads
per MPI rank. The ne30 simulations used 85 nodes (5400 MPI ranks) and the regionally refined cases
used 150 nodes (9600 MPI ranks). An additional experiment was run with ne45pg2, which has almost
the same number of physics columns as the ne30np4 case, to explore whether the effective resolution
of the model is affected by the physgrid. All simulations were run for a total of 5 years. The use of 5-
year simulations is a common practice in model development and is a trade-off between computational
cost and signal-to-noise ratio, but there can still be low-frequency variability that can influence the
results. Additional 5-day aqua-planet experiments with file output disabled were run to help assess
the performance implications of the physgrid in section 4.4.

Since our primary goal is to compare the impact of changing the physics grid we want to use the
same grid for the surface component across all simulations. The land model grid is often specified to
match the atmosphere grid, but for our purposes the land model is run on an equiangular 0.5◦ grid
for all simulations. The ocean and ice components of E3SM [17] use an unstructured mesh based
on Voronoi tessellations [19], and all configurations share the same grid for the ocean and sea ice
components even though these components only provide prescribed conditions in the simulations here.

The model input data for quantities like solar forcing and land surface types is derived to be
representative of climatological conditions around 2010, similar to [3]. The prescribed annual cycle
of SST, sea ice concentrations, and aerosol emissions are derived from a 10-year climatology over
2005-2014. Greenhouse gas concentrations are taken from the 2010 annual mean. The atmospheric
initial condition is stored on the dynamics grid and is therefore the same for all simulations with the
same underlying dynamics grid. The atmospheric initial condition was taken from year 2010 of an
AMIP-style run.

Figure 6 illustrates the differences between the primary grids considered in this study using topog-
raphy data focused on the continental United Sates for the ne30np4, ne30pg2, ne30pg3, and ne30pg4
grids. Each point of the np4 grid represents a nodal point of the spectral element grid that does not
correspond to a specific area on the sphere, thus data cannot be visualized directly like cell averaged
data from an FV grid. To create a finite volume approximation of the np4 data we use an iterative pro-
cess to define a quadrilateral centered around each np4 point. The area of this quadrilateral matches
the GLL quadrature weight of the node so that area-weighted global averages can be calculated. All
grids capture the same general topographical features, but the pg4 grid naturally captures the most
detail. The regionally refined grid is highlighted in Figure 7 for the pg2 cases. The mesh refinement is
only considered at the element level, so both np4 and pg2 regionally refined cases start with the same
refinement pattern to define the sub-element physics grid.
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3.2 Model Validation

Our primary goal is to test that the physgrid in E3SM does not degrade the simulation relative
to the configuration with physics columns on the GLL nodes, and for that purpose we can focus
on comparing the simulations with each other. However, it is also useful to put our results in the
context of previously published model intercomparisons, so we additionally compare our simulations
to E3SMv1 AMIP experiments from G19 and data from the Coupled Model Intercomparison Project
Phase 5 (CMIP5) [23]. To make this comparison concise we compute spatial RMS errors relative to
observations for annual and seasonal averages with the PCMDI Metrics Package [6]. The observation
data for these calculations is provided by the developers of the metrics package.

4 Results

4.1 Climatology

To examine the simulation results we start with a simple comparison of the 5 year mean precipitation,
liquid water path, total column water vapor, and 500 mb zonal wind in Figure 8 shown as differences
relative to the ne30np4 case. Similar analysis of the regionally refined cases is also shown in Figure
9. The data in all cases was regridded to a common 1 degree grid to facilitate a direct comparison.
Statistical significance was determined by testing whether the differences of means were significantly
different than zero with a two-tailed Student’s t-test at a 95% confidence level, which is indicated with
stippling in Figure 8. The degrees of freedom for significance testing at each location were determined
to be 5 by reasoning that each year of data makes up an independent and identically distributed
sample of the true annual mean climatology.

The climatological patterns of the physgrid cases are largely similar to their np4 counterparts. Some
statistically significant regional differences are evident, but the spatial patterns of these differences
are not consistent across physgrid cases, so we conclude that they do not indicate a fundamental
change in model behavior driven by the change in the physics grid. Furthermore, small systematic
differences are not completely unexpected from the change in the physics grid. Some of the small scale
differences, such as the dry bias near the maritime continent in pg2 and pg3 cases, may be related
to how coastlines and topography may be slightly different on the physgrid. The differences are also
likely due in part to low frequency variability that still occurs in simulations with a prescribed annual
cycle of SSTs. Analysis of other quantities produced similar results (not shown).

For a more comprehensive comparison of the physgrid results we recreate the root-mean-square
error analysis from G19 (see their Fig. 9) in Figure 10, which compares the simulations presented
here with 45 CMIP5 models (boxes and whiskers) and the AMIP simulation from G19 (red markers).
The RMSE values for all simulations are within or below the envelope of CMIP5 results, and the
physgrid simulations produce similar results to the baseline np4 case. Smaller RMSE values in these
simulations relative to the CMIP5 data are not surprising due to the lack of systematic biases in the
SST. Similarly, the slight deviations between our simulations and the G19 data are also not surprising
because the G19 simulation used transient SST forcing that includes inter-annual variability, whereas
the simulations here used a prescribed annual cycle of SST. Overall the RMSE analysis gives further
confidence that the physgrid implementation does not qualitatively alter the solution of E3SM.

4.2 GLL Grid Noise

An interesting result of [9] is that noise in the vertical pressure velocity field (i.e. omega) around
mountainous terrain that is present in both np4 and pg3 configurations was eliminated on the physics
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grid of the the pg2 case. To investigate this in E3SM Figure 11 shows the time mean omega at 500
mb on both the physics and dynamics grids, referred to as OMEGA and DYN OMEGA, respectively.

Figure 11a-d shows that the noise over mountainous regions is eliminated in the physics grid data of
the pg2 case, similar to the results of [9]. Interestingly, the noise signal is still present on the underlying
dynamics grid, although slightly reduced in magnitude for the pg2 case (Fig. 11e-h). Thus, the lack
of noise on the ne30pg2 physics grid is mainly a result of smoothing by the coarseness of the physics
grid relative to the dynamics grid. While it is good to be aware of this underlying noise when using
the pg2 grid, we do not see this as a major issue since most model analysis will only consider data
on the physics grid, although we recognize that it could still be having an undesirable, albeit small,
influence on the model behavior.

4.3 Effective Resolution

Estimating the effective resolution of a spectral model is not a straightforward task [13, 21], but here
we are only interested in any relative change of the effective resolution by the physgrid that might
affect our interpretation of the model results. The mapping from dynamics to the pg2 grid acts as
a low-pass filter on the state, but it is not immediately obvious how a coarser physics resolution will
feed back onto the dynamics.

To investigate this question we first calculate spherical harmonic power spectra of physics tem-
perature tendencies on the dynamics grid of the ne30 simulations using a model level near 500 mb
(Fig. 12). Using the physics tendencies on the dynamics grid provides a direct comparison to the
baseline ne30np4 simulation data because the same map from model grid to the grid used to com-
pute spherical harmonics is used for all cases. The spectra were calculated from daily snapshots after
remapping to a 721 by 1440 Gaussian grid to facilitate a spherical harmonic transform using a high or-
der, conservative method [26]. The spectra of physics tendencies in Figure 12 indicate a lower effective
resolution with pg2 as expected (dashed red line), which shows a slightly faster roll off of power with
increasing wave number. The pg3 and pg4 cases (blue and green dashed line) more closely resemble
the np4 baseline (black line).

While the spectra of physics tendencies directly show the effect of the mapping, we can also use the
power spectra of kinetic energy to examine how the change in physics tendencies affects the behavior
of the dynamics and how this is ultimately represented on the physics grid that is typically used for
analysis. Figure 13 shows spherical harmonic power spectra of kinetic energy using physics grid data
for the ne30np4, ne30pg2, and ne45pg2 cases and the dynamics grid data for the ne30pg2 case. The
data were similarly remapped to a 721 by 1440 Gaussian grid using a high order, conservative method
for GLL data and a bilinear method for FV physgrid data.

The effective resolution can be estimated from the roll off of the kinetic energy spectra at higher
wave numbers. The ne30pg2 case begins to diverge from the ne30np4 case around wave number 30–
40, suggesting a slightly lower effective resolution that should be expected from the lower degrees of
freedom on the physgrid. However, the dashed red curve shows the spectra of dynamics grid data
from the ne30pg2 case and lies directly on top of the ne30np4 spectra. So we conclude that the use of
the physgrid does not degrade the effective resolution of the dynamics even though the representation
of the model state on the physgrid is smoother.

The ne45pg2 case provides an insightful comparison because it has almost the same number of
physics columns as the ne30np4 case (48600 vs. 48602). We might naively expect a similar effective
resolution between the two, but the spectra in Figure 13 show that this is not the case. The ne45pg2
data show that the effective resolution is still higher than ne30np4 due to the higher resolution of the
underlying ne45np4 dynamics grid.
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4.4 Model Performance

To summarize the performance impact of the physgrid Figure 14a shows individual estimates of overall
model throughput (small gray dots) and the average throughput over the whole simulation (large black
dots) in simulated years per wall-clock day (sypd). The overall throughput estimates include the effects
of interprocess communication and file output. If we only consider timing estimates of the dynamics
calculations and convert these data into throughput values the results are roughly the same across
cases that share the same underlying dynamics grid (Fig 14b). For the same throughput conversion
of physics timing estimates we see much more variation between cases due to the changing number
of physics columns (Fig 14c). The pg2 case has significantly higher throughput due to having 4/9 as
many physics columns, whereas the pg4 case has lower throughput due to having 16/9 as many physics
columns. The pg3 case has almost the same number of physics columns as np4, which explains why
the throughput is similar.

The spread of the individual dynamics throughput estimates is primarily caused by the interprocess
communication required for the direct stiffness summation (DSS) that communicates information
between elements. The individual physics throughput estimates are much more consistent due to the
lack of interprocess communication. In spite of this fact, the physics calculations still do not line up
with the idealized scaling we might expect from simply changing the number of columns (not shown).

Figure 15 shows the throughput of 5-day aquaplanet simulations with file output disabled using
85, 43, and 22 Cori-KNL nodes. Colored lines show the ideal throughput based on scaling the results
of the ne30np4 grid by the change in the physics columns for each physgrid case. Figure 15 illustrates
that the departure from the ideal scaling is a result of using more nodes for higher throughput. A
smaller number of nodes shows much better agreement with the ideal scaling, which highlights a loss
of efficiency when running in a higher throughput regime. This is consistent with the results of [1]
who showed that Cori-KNL efficiency can vary with the amount of workload per node.

5 Conclusions

This study details the implementation and impact of a quasi-equal-area finite volume physics grid for
use in E3SM alongside the spectral element dynamics grid. The mapping between the dynamics and
physics grids is constrained to be local to each spectral element to minimize inter-process communi-
cation and permit regional mesh refinement. The motivation to provide an alternative to the more
common co-located grids approach was both to avoid the effects of grid imprinting and to improve
performance by reducing the number of physics columns for a given dynamics grid.

While the new physics grid can be specified to have a finer average spacing than the dynamics
grid with 4× 4 finite volume cells per element (pg4), the model solution is shown to be qualitatively
insensitive to this change. This corroborates the results of [9] who found that the resolved scale of
the model is primarily determined by the effective resolution of the dynamics. Thus, a physics grid
with 2× 2 finite volume cells per element (pg2), which is coarser than the underlying dynamics grid,
is preferable to optimize performance. Simulations show that the physics throughput can be increased
by approximately 60% to 120%, depending on configuration of computational resources, using the pg2
grid over the co-located np4 grid.

Analysis of the simulated climate does not indicate any large systematic change in the simulated
climate due to the new physics grid, although noise over steep topography is notably reduced with pg2.
In general, grid noise and imprinting is not easily detectable away from steep topography when using
traditional physics parameterizations, but the noise becomes significantly amplified when using the
Multi-scale Modelling Framework (MMF) configuration of E3SM (E3SM-MMF) [8], in which a cloud
resolving model is embedded in each physics column to explicitly represent convective scale processes.
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The use of the pg2 grid with E3SM-MMF helps remedy the grid imprinting problem in addition to
taming the substantial increase in physics cost associated with the MMF.
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Figure 1: Schematic of the np = 4, nf = 2 element. The blue solid line outlines the spectral element,
the green filled circles mark GLL points, and the red dashed lines outline FV subcells.

Figure 2: Schematic of the panels used in the panel reconstruction method, for an element with
np = nf = 5 and panels with nf ′ = 3. As in Figure 1, the blue solid line outlines the spectral element,
the green filled circles mark GLL points, and the red dashed lines outline FV subcells. Filled subcells
of a particular color are associated with the 3× 3 panel outlined by the same color.
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Figure 3: Schematic of the FV-to-GLL remap algorithms on the global grids, using the high-order
reconstruction (HR) method (left column) and panel reconstruction (PR) method (right column). See
text for details.
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Figure 4: Convergence study of the remap algorithms. Each column corresponds to a tracer field,
whose name is in the column title. The top row shows l2 error; the bottom, l∞. The x axis is ne,
the cubed-sphere grid element parameter. The y-axis is log2 of the relative error. Triangles provide
reference order-of-accuracy slopes. The legend provides line decoration details for np, nf , HR or PR
method, and use of a limiter.

20



Gaussian Hills

0 1

np 4 nf 2 HR/PR np 4 nf 3 HR/PR

log10 |difference|

np 4 nf 4 HR

−8 −2

np 4 nf 4 PR np 8 nf 6 PR

Cosine Bells

0 1

log10 |difference|

−7 −1

Slotted Cylinders

0.0 1.1

Figure 5: Contour plots for a subset of cases in Figure 4. The first column shows the original field on
the ne = 20 GLL grid. Subsequent columns show the field after being remapped from GLL to FV and
then back to GLL grids. Further details are in the text.
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Figure 6: Comparison of physics grids used for simulations colored according to the topography of
each physics column. Cells with less than 50% land fraction are colored blue. The ne30np4 or “GLL”
grid (a) is represented by defining control volumes around the GLL quadrature nodes according to
their quadrature weight. The finite volume physgrid can be run with 2×2 (b), 3×3 (c), or 4×4 (d)
cells per element.
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Figure 7: Similar to Figure 6, surface topography of the ne30pg2 grid (a) and the regionally refined
pg2 grid (b) over the continental United States. The regionally refined grid is identical to ne30pg2
outside the refined region with a grid spacing of roughly 1.5°, and the refined region consists of grid
cells spaced by roughly 3/8°
.
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Figure 8: All season 5 year mean precipitation (top), cloud liquid water path (LWP, upper middle), and
column water vapor (CWV, lower middle), and 500mb zonal wind (U500, bottom) for the ne30np4
case and physgrid cases shown as differences from the ne30np4 case. All data was regridded to a
common 1° grid before averaging. Stippling indicates where the differences are statistically significant
at the 95% confidence level using a Student’s t-test.
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Figure 9: Similar to Figure 8 but for the simulations with regional refinement over the continental US.
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Figure 10: Comparison of root-mean-squared error (RMSE) relative to observations (1981–2005) of an
ensemble of 45 Coupled Model Intercomparison Project Phase 5 models (box and whiskers showing
25th and 75th percentiles, minimum and maximum) with an E3SM AMIP simulation from G19 and
prescribed SST simulations with E3SM with and without the physgrid (colored dots). Fields shown
include TOA net radiation (a), TOA SW and LW cloud radiative effects (b, c), precipitation (d),
surface air temperature over land (e), zonal wind stress over ocean (f), 200 and 850 hPa zonal wind
(g, h), and 500 hPa geopotential height (i). TOA = top of atmosphere; SW = shortwave; CRE =
cloud radiative effects; LW = longwave.
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Figure 11: Maps of 5 year mean 500 mb vertical pressure velocity on the physics (a-d) and dynamics
(e-g) grids.
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Figure 12: Power spectra of physics heating tendency calculated on a model level near 500 mb using
dynamics grid data from ne30np4 (solid black) and ne30pg2, ne30pg3, and ne30pg4 (dashed) cases.
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Figure 13: Kinetic energy power spectra calculated on a model level around 200 mb using physgrid
data from ne30np4, ne30pg2, and ne45pg2 cases and dynamics grid data from the ne30pg2 case. A
k−3 power law is depicted by the thin black line for reference.
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Figure 14: Model throughput in simulated years per wall-clock day (sypd) of the entire atmosphere
component model (a), the dynamics calculations (b), and the physics calculations (c). The data for
each individual batch submission is shown in gray markers. The average throughput over the entire
simulation is shown with black markers for the ne30 case and blue markers for the RRM cases.
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Figure 15: Similar to Figure 14(a) and (c) except for aquaplanet simulations with file output disabled.
Each marker on the plot is an average of three 5-day simulations. Marker color indicates the number
of Cori-KNL nodes as 22 (red), 43 (green), or 85 (blue). Lines indicate the ideal throughput based on
scaling the corresponding ne30np4 result by the change in the number of physics columns.
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