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3D Experiments with Electrons are Complex and Time Consuming
3 (Expensive)
Electrons do not penetrate very deep in most materials at typical operating voltages (20
— 300 kV)

O Limited to viewing approximately 1 µm deep in the SEM
• Thin, electron transparent samples needed in TEM (<100 nm)

Electron-based characterization techniques may have the best spatial resolution but
field-of-view may be limited
• In the TEM, cubed microns
• In the FIB/SEM tens — hundreds of cubed microns

Alternative techniques are available to address gaps in scale
• Mechanical serial sectioning/microtomy
• X-Ray Computed Tomography
• Atom-Probe Tomography

Whenthe analysis capabilities or spatial resolution of electrons makes sense, 3D
analysis can be significant for understanding the nature of materials and answering
scientific questions

The projection problem exists for

both single cross section SEM and

TEM imaging
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Helium Bubbles in Metals

5 nm

3H Decays into 3He and forms bubbles in tritium storage materials

Bubbles are a few nm diameter, tens of nm apart.

Questions

• When did bubbles form?

• Early nucleation or continual

• Where did the He come from?

• Surrounding volume, coalescence, or
ripening

• How much He is in each bubble?

• Pressure

Approach
• Map bubbles in 3D using electron tomography

• Eliminates 2D projection issues
• Use EELS to measure the pressure of He and to

understand growth mechanisms

Goal: To develop improved models of helium bubble nucleation and growth, and better
predict swelling, fracture, and 3He release.



5  Capture Volume Theory

• If all bubbles nucleate at a same early time and their growth
is diffusion limited, then they should contain the He
generated in a capture region geometrically nearest each
bubble.

• Capture volume is described by Voronoi tessellation.

2D Voronoi tessellation

small capture area small bubble?



6 I Dark field (HAADF) STEM Electron Tomogram

•Tritiated for 3.8 years
(from a SRNL Pd-5 at.%
Ni ribbon).

• No Grain Boundaries
• Estimated He/Pd = 0.12
• Bubbles are dark, -2 nm
diameters.

• Images taken from -70°
to 70° (increment 1°).



I Reconstruction of the 3D Bubbles

.

25 nm

• 3D bubbles are reconstructed
from images using the
"Weighted Back Projection"

• -1500 bubbles with average
diameter 2 nm

• Bubbles can be elongated due
to reconstruction artifacts

• Red bubbles are large, blue
bubbles are small.



I Reconstruction of Capture Volumes
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25 nm

2D voronoi tessellation
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• Determined by 3D Voronoi tessellation of bubbles
• Outer layer of surface-crossing volumes is omitted from further analysis



9 I Bubble and Capture Volume Correlation
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Still no correlation!

10

Exclude bubbles
smaller than 3 nm3 I

No bubble and capture volume correlation is found!

EELS measurements of pressure will help determine which bubbles grow



10  2 Step Fitting with Pure Pd Reference and Gaussians

Step 1: Get Residual Signal After MLLS fit with Pd ref

Annealed Pd Wire

Step 2: Fit Residual with 2 Gaussians
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11  Correlation With Size and HeK Peak Energy
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• We can combine the other techniques in
the TEM to understand how much He is in
each bubble

• We measure pressures -5 Gpa, which is
expected for these size bubbles with
P=27/r

• 3D analysis helped us identify gaps in
nucleation theory for tritium decay



12  Degradation in High-Temperature Electrolyzers

YSZ-based reference cells

Cell with 4-probe
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The Critical questions are:
• How reproducible and reliable

are the manufacturing
processes?

• What are the critical
degradation mechanisms that
lead to decreased
performance over time?
• How can we slow them

down or prevent them

O 300 h degradation testing
O 100 h degradation testing
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The complex
microstructural details
are better represented
by 3D microstructural
measurements



I 3D FIB-SEM Serial Sectioning of the Entire Cell Stack

We can learn where we need to look in more detail.

As-received

750°C
50 hours

Electrolysis mode

• Large crack in the
YSZ layer

• Change in Gd

distribution



Singe Slice Data Confirms the 3D EDS Observation for Gd Segregati
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• Distribution of elements is relatively unchanged after cycling

• Gd is still at LCSF/YSZ interface and perhaps is sharper in the after cycling condition

• Ce is still more concentrated at LCSF/YSZ Interface and is relatively sharp

• Any differences in the thickness of the Ce-rich layer could be attributed to differences in the
manufacturing process

• Is this capturing the elemental redistribution at the correct scale?



Subtle Compositional Rearrangement Could Explain the
15 Cracking

VD©

EDS and EELS maps confirm that Ce,
Fe, and Gd has segregated to the

grain boundary of YSZ, which could
explain the cracking
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16  Dynamic Strain Aging of Stainless Steels

A phenomenon where dislocations interact with solute
atoms
• Is sensitive to temperature
• Causes reversal of expected trends with

temperature and strain rate
Accurate prediction of properties at elevated
temperature requires that we can predict this
behavior
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Antoun, B. R., Chambers, R. S., Emery, J. M. & Brown, A. A. in
Challenges in Mechanics of Time Dependent Materials, Vol 2 Conference
Proceedings of the Society for Experimental Mechanics Series (eds B.
Antoun et al.) 141-148 (Springer, 2017).
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3D measurements of dislocation structures in deformed
metals can help us validate models (e.g. crystal
plasticity) that will predict deformation behaviors in
metals



17 Stainless Steels of Interest Had Unexpected Phase Transformations

EBSD analysis surface

'awn Top View

EBSD from top surface showed
ferrite fraction=0 so something was
not correct

1 100µni 1



18 What Can we Do to Prevent the Transformation?

Ga ions; Different Doses

83 pA

770 pA

9400 pA

lOs 30 s 120 s 300 s

250 pm
FCC
BCC

More Dose, more transformation

A lower current takes longer to cut the
same volume as a higher current

Xe
301
301

Xe ions; Different Doses

rff 10s 20s 30s 40s

50s 60s 70s 80s

90s 100s 110s 120s

100 pm
Xe ions, transformation occurs, not just Ga alloying!

Xe operates at higher currents generally,
and still transforms the metal



19 These Transformations Have Been Observed Before
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Ga implantation can change the
orientation of grains in Cu

Ion implantation creates an environment for stainless steels that could have a
high propensity for an artificial transformation



20 What Approaches Are Available to Reduce this Artifact?
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• Cryotemperatures don't help much
• Lower kV looks promising, but it will take longer
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Transformations in Metastable Phases by
Lucille Giannuzzi et al.



21 Successful Data From Composition with More Stable Austenite

igi
Good 19.3 10 1.5 .005 .007 .008 .082 .011 .018 Bal.

Bad 18 9.8 1.4 .6 .004 .013 .05 .01 .04 Bal.



Can Calculate the GND Density in theVolume for Modeling
22  Validation Experiments 001
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23  Summary

•3D Electron Tomography and EELS provides critical information for
understanding and refining models of gaseous bubble formation in
metals
• The three dimensional size and location distribution of He bubbles in aged
Pd-Ni after tritium decay shows no correlation between bubble size and
capture volume size

• Bubble nucleation occurs throughout aging process

•Finally we can detect He atoms in nanoscale bubbles and
quantitatively check classic theories of radiation damage in materials

•Combined 3D analysis and conventional cross-sectional analysis
provide insight into degradation mechanisms in high-temperature
electrolyzers

•3D EBSD allows us to have 3D representations of dislocation
structures that can be used for validation in crystal plasticity models



24  Conclusions

3D electron microscopy experiments have the potential to provide materials information with
fidelity that may not be available by other techniques

. Morphological information

. Crystallographic Information

. Compositional Information

The experiments are challenging and time consuming, and it is important to be mindful of potential
artifacts that result from the experimental technique
. Automation, detection limits, and speed are constantly improving and providing more access to these

experiments


