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The Exascale Catalytic Chemistry (ECC) project
Goal
Develop an exascale-ready software ecosystem that enables the characterization of catalytic processes
faster and more accurately.
Target systems
Catalytic systems on ideal catalysts with coupled gas-phase and heterogeneous chemistry.
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Coupled computational tools will help accelerate
mechanism development for catalysis
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Let's use computers to build microkinetic mechanisms!
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• The mechanism grows exponentially with the size of the reactants/products
• The number of possible pathways to be considered is orders of magnitude higher

Code needs to
1. represent species

o use chemical graph theory
2. propose new reactions

o use reaction families
3. estimate thermodynamic + kinetic properties

o use precompiled databases and estimation methods
4. keep only the important reactions

o use flux-based algorithm



RMG-Cat rngril
Building, running, and analyzing microkinetic models for
gas/solid catalytic systems

Based upon Reaction Mechanism Generator (RMG)
• open source
• Python based
• developed for combustion
• mature (-50+ graduate-student years of development)
• https://rmg.mit.edu/ 
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Reaction families for
• Adsorption
• Dissociation on surfaces
• Abstraction on surfaces

e.g "single metal bond" -
1 Ni {2,5}4.
2 0 {1,S}{3,S}
3 C {2,5}{4,5}{5,5}{6,5}

4 H {3,5}
5 H {3,S}
6 H {3,S}

RMG-Cat can estimate thermochemistry of any adsorbate on any metal using Linear Scaling Relationships.



RMG generated a mechanism for methane oxidation on Pt(111)

• fuel lean conditions for T= 500, 1500, 1800 K & P = 1 bar

• core:

• 21 adsorbates + 51 surface reactions

• 38 gas-phase species + 340 reactions

• edge:

• 196 species + 298 reactions

4% CH4

+ 16% 02

+ 80% N2
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We demonstrated the coupled gas-surface capabilities of RMG.
Such coupling is necessary to predict correct behavior.
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K. Blondal, J. Jelic, E. Mazeau, F. Studt, R. H. West, and C. F. Goldsmith. Computer-generated kinetics for coupled heterogeneous/homogeneous
systems: A case study in catalytic combustion of methane on platinum, Indust. Eng. Chem. Res. 2019, 58, 38, 17682-17691



RMG allows systematic and automatic investigation of many metals
Example: Synthesis gas on different metal surfaces
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Automated investigation of the effect of the inlet composition
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Not only does each metal affect yield,
feed gas composition does as well

C.7



Volcano plots for the sensitivity of a reaction on
H2 yield as a function of atomic binding energies
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RMG-Cat works, but we have work to do
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From formal catalytic reactions to ab initio kinetics
We need tools to take us from a proposed chemical reaction to a rate
coefficient for gas/solid catalytic systems.

SURFACE

RMG reaction

representation

- index: 0
reaction: OHX + X <=> OX + HX
reaction_family: Surface_Abstraction
reactant: I
multiplicity -187
1 *1 0 u0 p0 c0 {2,S} {4,s1
2 *2 H u0 p0 c0 {1,S}
3 *3 X u0 p0 c0
4 X u0 p0 c0 {1,S}
product: I
multiplicity -187
1 *1 0 u0 p0 c0 {4,S}
2 *2 H u0 p0 c0 {3,S}
3 *3 X u0 p0 c0 {2,S}
4 X u0 p0 c0 {1,S}
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Workflow for dissociation/association reactions
Sella

top bridge hollowl hollow2
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Analyze

the results
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energy

The workflow is ASE based.
Symmetrically equivalent structures are filtered between steps.
Geometry optimization is done with Sella, our own optimizer.

Hermes, E. D.; Sargsyan, K.; Najm, H. N.; Zádor, J., J. Chem. Theory Comp. 2019, 15 6536-6549.
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https://github.com/grimme-lab/xtb 
https://gitlab.com/ase/ase 
https://github.com/SUNCAT-Center/CatKit
https://github.com/zadorlab/sella 



Further examples

reactants

CH* + * C* H*

TS prod ucts

kJ • mol-1

AEr Et

A

• C-H

00

01

132.836 183.297 1.82

117.379 197.932 2.00

reactants

CO* + H* -•=>- HCO* *

TS products

kJ • mo1-1

AEr Et

A
r t
' X —H

93.809 103.403 1.52
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reactants

co* + o* co; + *
TS products AEr El rtc-o

00

01

-111.682 50.449 1.77

-118.958 46.756 1.82

reactants

OH* * H* 0*

TS products

kJ • mo1-1 A
AEr Et

/TX- H

03

05

07

08

11

69.598 157.963 1.57

95.090 148.133 1.69

63.890 150.247 1.55

114.593 200.130 1.64

23.954 107.021 1.53
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Summary and further work

• Coverage dependence
• Bifunctional materials, oxides
• Kinetic Monte Carlo simulations
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