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The Exascale Catalytic Chemistry (ECC) project

Goal

Develop an exascale-ready software ecosystem that enables the characterization of catalytic processes
faster and more accurately.

Target systems
Catalytic systems on ideal catalysts with coupled gas-phase and heterogeneous chemistry.

Argonne National Laboratory

Pacific Northwest

/ Brown University
National Laboratory

& Northeastern University

Sandia National
Laboratories

https://ecc-project.sandia.gov

Funding
2017-2021

US Department of Energy, Basic Energy Sciences, Computational and Theoretical Chemistry program
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Coupled computational tools will help accelerate
mechanism development for catalysis
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Let’s use computers to build microkinetic mechanisms!
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* The mechanism grows exponentially with the size of the reactants/products
* The number of possible pathways to be considered is orders of magnitude higher
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Code needs to

1. represent species
o use chemical graph theory

2. propose new reactions
o  use reaction families

3. estimate thermodynamic + kinetic properties
o use precompiled databases and estimation methods

4. keep only the important reactions
o  use flux-based algorithm
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RMG-Cat Mg

Building, running, and analyzing microkinetic models for
gas/solid catalytic systems

Based upon Reaction Mechanism Generator (RMG)

* open source Richard H. West

* Python based N _ .
» developed for combustion Northeastern University

* mature (¥50+ graduate-student years of development)
e https://rmg.mit.edu/

C. Franklin Gouldsmith
Brown University

Reaction families for

e Adsorption
 Dissociation on surfaces
* Abstraction on surfaces

e.g. "single metal bond™ -
LM P
03 2 0 {1,S}{3,S}
| " T~ 3C {2,5H4,5}{5,5}{6,5)
O, 4H {3,5)
5 H {3,S}
®HO phee

RMG-Cat can estimate thermochemistry of any adsorbate on any metal using Linear Scaling Relationships.
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RMG generated a mechanism for methane oxidation on Pt(111)

* fuel lean conditions for T =500, 1500, 1800 K & P =1 bar

* core.:
= 21 adsorbates + 51 surface reactions R I 180T
= 38 gas-phase species + 340 reactions 0.175 1 o, « catalyst = 1600 - catalyst ™ |
w_ —— : !
* edge: g 0150 | \
: : ("] 5, — < 1400
= 196 species + 298 reactions © 0.125- : \ &
v ] v
5 0.100 = 1200
= 7 L
4% CHa © 0.075 H,0 | &
+16% O - = © £ 1000
+80% N2 & 0:0507 CHa4 =
o
R U 0.025 890 : :
Ty =800 K 7 —— surface + gas reactions
uo=1.9 cm/s 2000 _ _ 6001 ---- surface reactions only
£=0.567 _ 0 5 10 15 20 25 30 0 5 10 15 20 25 30
P o] gas phase catalyst zone: gas phase Dlstance fmm] Cilskismees frmm]
only gas phase + only
surface

We demonstrated the coupled gas-surface capabilities of RMG.
Such coupling is necessary to predict correct behavior.

K. Blondal, J. Jelic, E. Mazeau, F. Studt, R. H. West, and C. F. Goldsmith. Computer-generated kinetics for coupled heterogeneous/homogeneous

@@ systems: A case study in catalytic combustion of methane on platinum, Indust. Eng. Chem. Res. 2019, 58, 38, 17682-17691
e —H—‘]
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RMG allows systematic and automatic investigation of many metals
Example: Synthesis gas on different metal surfaces

CO Yield H, Yield
0.7

AEQ (eV)

AEC (eV) AEC (eV)

Some metals have higher selectivity but lower yield.
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Automated investigation of the effect of the inlet composition

COYield ‘ H, Yield

0.7

0.6
0.5

-0.4
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- 0.3

- 0.2

I 0.1
Mg

Not only does each metal affect yield,

feed gas composition does as well



Volcano plots for the sensitivity of a reaction on
H, yield as a function of atomic binding energies
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RMG-Cat works, but we have work to do
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From formal catalytic reactions to ab initio kinetics

We need tools to take us from a proposed chemical reaction to a rate
coefficient for gas/solid catalytic systems.
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SURFACE SURFACE L A
Eric D. Hermes Maciej Gierada

Sandia postdoc ~ Sandia postdoc
RMG reaction
representation

FCC(111) FCC(211)

- index: O

reaction: OHX + X <=> 0X + HX
reaction_family: Surface_Abstraction
reactant: |

multiplicity -187

1 *1 0 u0 pO c0O {2,8} {4,S}

2 *2 H u0 p0 c0 {1,S}

3 *3 X u0 pO cO

4 X u0 p0 cO0 {1,S}
product: |

multiplicity -187

1 *1 0 u0 pO cO {4,S}

2 *¥2 H u0 pO cO {3,S}

3 *3 X u0 p0 cO {2,s}

4 X u0 p0 cO {1,8}




Workflow for dissociation/association reactions

. Sella
top bridge hollowl hollow?2

B A A AL S —— R

TSS OHEF_'_*ﬁOiE_l_Hi

after min(P) o g
# reactants TS products AE" E? Té LT
. ___ eactions (RMG-Cat)
wryYyy. _
ASE, CatKit, Sella e —
P = (rx-cu —Tx=Cu)’ + (ry-cu —7v=Cu) + Ezrs M / the results
Size Reaction
Ty energy \
Prepare a surface | «—— \acuum Reaction
— barrier
Symbol / \ ASE, Sella
Type Lattice constant
The workflow is ASE based https://github.com/grimme-lab/xtb
_ _ ' _ https://gitlab.com/ase/ase
Symmetrically equivalent structures are filtered between steps. https://github.com/SUNCAT-Center/CatKit

https://github.com/zadorlab/sella

Geometry optimization is done with Sella, our own optimizer.
Hermes, E. D.; Sargsyan, K.; Najm, H. N.; Zador, J., J. Chem. Theory Comp. 2019, 15 6536-6549.




Further examples

CH¥+SF<__>C§+H$

kJ - mol! A
# reactants TS products AE" Ei Té_ H
00 132.836  183.297 1.82
01 117.379 197.932 2.00
3 £3 E3 3
CO +H = HCO +
kJ - moll A
# reactants mS products AE" E i Tg(_ H
93.809  103.403

86.842

Q H
i H _...O‘c’ *l
SURFACE SURFACE
o) O’H

]

C H _. C *
[ 1

E @@ SURFACE SURFACE nm

o 0" =— OO+

- reactants TS products AKE" E’i ’i"g_o
00 -111.682  50.449 1.77
01 -118.958  46.756 1.82

kJ - moll A
# reactants AET" Ei T}:E(—H
03 69.598 157.963 1.57
05 95.090 148.133 1.69
07 63.890 150.247 1.55
08 114.593  200.130 1.64
11 23.954 107.021 153




Summary and further work

* Coverage dependence N
e Bifunctional materials , OX ides thermochemistry
* Kinetic Monte Carlo simulations i =

Automated
reaction path
exploration

 Extend methodology to other reaction types
 Scale the code




