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Abstract—Inherent variability in photovoltaic (PV) and asso-
ciated impacts on power systems is a challenging problem for
both the PV owners and the grid operators. Existing statistical
and machine learning algorithms typically work well for weather
conditions similar to historical data. However, uncertain weather
conditions pose a great challenge to the estimation accuracy
of the estimation models. With the enhanced integration of
intelligent electronic devices and the realization of associated
automation in the power grid, renewable energy data is becoming
more accessible, which can be utilized by deep learning models
and improve the PV power generation estimation accuracy. In
this paper, a hybrid deep learning model driven by external
weather data is proposed to do day-ahead PV output forecasting
at 15-minute-interval. The proposed model is motivated by
the recent advancement of Long-Short-Term-Memory (LSTM)
networks and AutoEncoder (AE), which estimates uncertainties
in sequence while making the prediction for complex weather
conditions. Meanwhile, the persistence model (PM) is used to
predict continuous sunny weather conditions. The forecasting
result is validated with data from multiple locations.

Index Terms—PV power estimation, Deep learning, Data pro-
cessing automation, Renewable energy integration, AE-LSTM,
Hybrid model, Day-ahead forecasting.

I. INTRODUCTION

HE integration of photovoltaic (PV) generation into the

power grid has been growing rapidly over the past few
years with increasing public awareness of using sustainable
and reliable power. The global PV installations have exceeded
100GW in 2018 [1]]. Some countries have also developed
portfolios and policies to support the growth of solar energy.
For example, the solar Investment Tax Credit (ITC) made by
the U.S. federal government has helped the U.S. solar industry
to grow by more than 10,000% since 2006, and the cumulative
PV capacity has exceeded 76GW in 2019 [2].

From the perspective of smart grid development, short-
term PV output prediction is one of the essential prerequisites
to ensure the secure integration of PV generators. With the
increasing PV penetration level in the grid, the uncertain-
ties of PV generations bring many new challenges [3]]. The
uncontrollable uncertainty could increase the grid operating
costs. NREL reported in [4] that each additional 100MW
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solar integration will result in an additional operating cost
of 1$/MW per hour. To mitigate the impact raised by PV
integration, accurate PV estimation methods are required by
the system operator. The study in [|5] shows that state-of-art PV
power estimation methods can effectively reduce five billion
dollars in operation cost each year. For PV owners, a better
PV estimation method can also assist them to minimize the
miss-bidding cost and increase energy trading revenue in the
power market.

Our previous work in [6]] introduced a hybrid forecast-
ing model with a combination of Long-Short-Term-Memory
(LSTM) and Persistence Model (PM) to provide day-ahead
PV forecasting at a 15-minute time interval. We extende our
past work in this paper by enhancing the LSTM model with
the AutoEncoder (AE). Besides, locations with even complex
weather conditions are used to validate the proposed model.
The contributions of this paper are summarized as follows:

1) Proposed a new two-step approach for forecasting PV
output driven by statistical (PM) and machine learning
(LSTM) techniques. The robustness of the proposed
deep learning model is boosted by AE-LSTM, which
enhances the uncertainty estimation during the model
training process.

2) In addition to the original datasets from Cupertino, CA,
USA, datasets gained from Catania, Sicily, Italy are also
used to validate this model. The estimation accuracy is
constantly improved.

3) The new proposed model is eligible to cope with extreme
adverse weather conditions compared with the previous
model, i.e, reducing the uncertainties between the per-
ceptron mapping, in response to the unstable forecasted
consequences in some complex weather conditions.

II. BACKGROUND AND RELATED WORK

The conventional PV energy estimation methods have been
well reviewed in the literature. In [7], an Seasonal Auto
Regressive Integrated Moving Average (SARIMA) is used
to do 24 hours ahead estimation. Validated in a PV site in
Greece, the normalized Root Mean Square Error (nRMSE)
is 11.12%. A historical similar mining model is developed
in [8] for 24 hours ahead power estimation, and the error is
around 10.14%. A Support-Vector Machine (SVM) model is
proposed in [9]] with a Mean Relative Error (MRE) of 8.64%.
Multiple adaptive regression models for day-ahead estimation,
such as partial functional linear regression model, multivariate
adaptive regression splines are respectively introduced in [10]-



[12]. Each model is fed with the corresponding external
weather datasets.

In recent years, enhanced automation provides more oppor-
tunities for researchers to develop a PV estimation model using
deep learning architectures. A one-step-ahead Deep Believe
Neural Network (DBNN) model is proposed in [[13]], which uti-
lizes panel surface, ambient temperature, accumulated energy,
and solar irradiation as input. The model is validated using
two weeks measurements during summertime, and the Mean
Square Error (MSE) of the testing and training results are
4.80% and 7.52% respectively. An additional DBNN model is
introduced in [14]]. This model uses solar radiation, tempera-
ture, and humidity as selected feature inputs to perform day-
ahead estimation at 30-minute intervals. The Mean Absolute
Percentage Error (MAPE) in the February testing dataset is
5.02%, and the MAPE in May is 8.92%. Furthermore, an
LSTM day-ahead PV forecasting model with an nRMSE of
7.13% is proposed in [15]]. In [16], a uni-variate input machine
learning model is introduced. The historical PV power is fed
into the model to predict one-step-ahead PV power genera-
tion. nRMSE is used to validate the accuracy of the model,
which is around 2.7%. Another LSTM-based method has been
designed for one-hour-ahead forecasting in [[17]. This model
uses irradiance, ambient temperature, and cloudiness index as
input and validated the results using a 40kWp PV plant in
Gumi. Authors in [18] study the hybrid model that combines
conventional neural networks (CNNs) and LSTMs to do one
day ahead prediction. Authors in [19] combine a variation
mode decomposition (VMD) method with a CNN model to
do short-term forecasting for a 100kWp plant in Nanjing.
Authors in [20] combine wavelet packet decomposition (WPD)
and LSTM to do one hour ahead forecasting with an average
MAPE of 2.40%. Authors in [21] estimate temperature with
stationary wavelet networks (SWN), extract historical powers
with LSTM, and predict power with DNN.

In order to achieve high precision prediction of PV gener-
ation and inherit the advantages of different models, different
models areO tested in this work. In the final, the two models
with the minimum error under different weather conditions
are retained respectively to form a high-performance hybrid
model. The architecture and validation of the proposed hybrid
model will be described in this paper.

III. METHODOLOGY

The flowchart of the proposed PV power estimation method
is demonstrated in Fig. [l The forecasted weather data is
passed through a classification module to determine whether
the target date is a continuous sunny day. If the detection
is true, the inputs data goes to a persistence sub-model for
making the 24 hours ahead prediction. Otherwise, the data is
fed into a trained AE-LSTM sub-model to create a new day-
ahead estimation. Newly acquired weather data and recorded
power data are used to update the dataset and retrain the model.

A. Persistence Model

PM is a simple and computationally effective method to
execute time series forecasting, and the persistence can be in-
terpreted as that the observed object exhibits periodic changes.
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Fig. 1: The flowchart of the proposed method

In the future, the observed target will exhibit the same behavior
as the current point in time. Once the PV panels are installed
in the field, the generation efficiency factors regarding its
physical properties, such as the tilt angle and affected surface
area of the panel, will not likely to be changed in the near
future. In addition, the distance between the earth and the
sun does not change much over a few days, so the direct
irradiation, diffuse radiation, and albedo radiation received
by panels are approximately the same. Therefore, the PV
generation will theoretically show the same characteristics in
continuous sunny days.

Based on the properties of the stationary parts of PV, PM is
proposed as a candidate prediction model in continuous sunny
weather. The PM in this work can be simply defined as

P(t+ N) = P(t) (1)
Where, P and P are forecast and measured PV power output
at each timestamp ¢, respectively. N indicates the number of
timestamps for each day.

B. AE-LSTM Model

The AE-LSTM model as shown in Fig. [2| combines AE
and LSTM to generate PV prediction. In our work, the idea
of adding AE to the LSTM network is to handle the training
uncertainty given by the internal layer. The AE model has
a bottleneck at the midpoint of the model to reconstruct the



input data. The PV feature after AE processing is integrated
with other weighted features as inputs and fed to the LSTM
model for further training.
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Fig. 2: The architecture of the proposed AE-LSTM network

LSTM has a recurrent architecture, which allows the system
to recognize and predict sequences data. In addition to that, the
LSTM can carry out tasks over long time series and discover
long term features. Such long-term features may not be well
captured due to the vanishing gradient problem [22]. With
the help of input, forget and output gates, LSTM can hold
only relevant data while ‘forgetting’ irrelevant information. For
PV forecasting, LSTM can exploit the temporal and spatial
dependence of data, which represents a major asset in utilizing
contextual information.
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Fig. 3: The architecture of LSTM cell

The LSTM layer is composed of LSTM cells, whose struc-
ture is shown in Fig. 3] The main components of the LSTM

unit are forget, input and, output gates. Each of those gates
determines the portion of information to forget, to update, and
to output through a o function, where the output varies from 0
to 1. The inputs include current sample X; and the output from
the three gates (Y;—1,Cy—1,0;—1) in the previous iteration.
The detailed output updating process is based on Equations
(2) - (6), where Wy—; . 11 and B;—1 2 3 4 are the weights and
bias.

Fy = oW1 Xy + WoYi 1 + W3Cy—1 + By) (2
Iy = o(Wa Xy + W5Y; 1 + WsCi_1 + Bo) (3)
Oy = o(We Xy + WeYi 1 + WoCy 1 + Bs) 4)
Cy = F,Cy—1 + Litanh(W1o X, + WY1 + By)  (5)
Y; = Oytanh(Cy) (6)

Extreme variability in the area of observed features is
critical to the time-series PV power estimation. The estimation
model based on deep learning network usually depends on
the initialization of internal weights. The uncertainty from
the neural network model, such as model specification errors
and the inherent noises, will make the estimated results drift.
The object with using AE-LSTM is to further quantify those
uncertainties. In the preliminary test, no deterministic methods
are used to select the optimal parameters for the model, and the
estimation model is tuned by trial-and-error using the Keras
python package [23|]. The model compilation and training are
optimized by Adam optimizer, and the MSE metric is used to
reconcile the loss function. The sigmoid function is used as
the activation function.

The training process of the AE-LSTM model includes two
parts, feature selection, and model tuning. Even though one
of the advantages of AE is extracting important features
automatically, the application of feature selection in the PV
estimation field is still critical. It can prevent models from
overfitting and enable users to solve the prediction problem
with limited data and computing resources [24]. For this
paper, the Root Mean Squared Euclidean Distance Difference
(RMSEDD) is utilized to help extract features for the training.
RMSEDD for each feature v; is defined as:

VG 24, (ED(P,d,d) — ED(vi,d,d))’

RMSEDD, =

1G(G—1)
@)
’ N / 2
ED(z,d.d ) = |3 (x§d> e >) (8)
t=1

Where, ED(z, d, d ) measures the ED between day d and d’
based on normalized variables x, which include normalized 7,
feature v; and normalized PV output P. N is the total number
of time points in a day. G indicates the number of training
days. Compared with the correlation coefficient, RMSEDD has
the advantage of discovering the latent non-linear correlation
between input features and outputs.



C. Hybrid Model

The proposed hybrid model aims to combine the strength
of each selected sub-model and develop the suitable criteria
for sub-model selection. To select suitable sub-models from
a variety of choices, the features of the forecasting model
and PV data are both analyzed. For example, LSTM and
RNN use similar forecasting techniques, there is no need to
develop two sub-models for each of them. PM is the simplest
estimation approach that duplicates the observed quantity of
day d as the estimation for the day d + 1, but provides good
estimation results for a consecutive sunny day. Therefore,
it is also selected as a sub-model. To take merit of PM
under this circumstance, a mechanism driven by external
forecasted weather is designed to determine the estimation
model selection. For an instance, if the ED(I, d, d 4 1) is less
than a certain threshold, day d + 1 and d are most likely two
clear days. Those continuous sunny days are retrieved and fed
to train the value of the threshold using the method of grid
search [25]].

IV. SIMULATION ENVIRONMENT

In this work, three different datasets are used to evaluate the
proposed hybrid model. The platform has an Intel(R) 2.2GHz
17-8750H CPU, 16GB RAM, and NVIDIA GeForce GTX
1070 with 8GB GDDRS5 RAM.

A. Data Description

The first dataset is collected from the PV power station
in Cupertino, (37.32N,122.01W). The capacity of the PV
installation on this site is 6.41kW including twenty-one 305W
SPR-305-WHT PV panels. The incline angle of the PV panels
on the site is set to zero. The time interval for the sensor
to measure the power is 15 minutes, and the data is saved
from July 1, 2015, to December 31, 2016. The measure-
ments are collected along with forecast weather data from the
NAM numerical weather prediction model contributed by the
National Oceanic and Atmospheric Administration (NOAA)
[26]. NOAA publishes updated weather prediction values four
times each day at the following times: 00 UTC, 06 UTC,
12 UTC, and 18 UTC. Referring to the literature [27]], [28]],
five related weather features are chosen among the dozens
published by NOAA: temperature T, relative humidity H,
wind speed W total cloud cover C’ and solar radiation 1.
In addition to NOAA features, one weather feature and two
time-series characteristics are computed and added to the
dataset for analyzing purposes. The weather feature is the solar
zenith angle (/i) that is introduced in [28]. The time-series
characteristic features are polarized minute and day index (M
and ﬁ), which are mentioned in [29].

Sunny days are the most common type of weather at this test
site. According to the normalization of the average PV output
of sunny days, the average power outputs under different
weather types are summarized in Table |} The lowest average
power outputs under rainy days as the table mentioned are
52.74%, which poses a critical challenge for making PV power
estimation.

TABLE I: Average PV power output rate under different
weather conditions

Mist
78.58%

Clouds
79.53%

Haze

78.98%

Rain

52.74%

Weather Type Fog

54.46%

Reduction Rate

The second testing dataset is a 5.21kW PV site at Catania,
Sicily, Ttaly (37°32" 0”N, 15°5’ 25”W). Forecast data, includ-
ing solar zenith angle, solar radiation, total cloud cover, and
ambient temperature are provided by the regional atmospheric
modeling system. For this site, the data covers the period from
January 1, 2011 to December 31, 2011.
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Fig. 4: Daily weather type distribution over three months
testing period at Cupertino and Catania

Fig. ] show the daily weather distribution at each site for
testing periods from October to December. The parameters for
weather-type classifications (e.g., sunny, cloudy, and foggy)
are employed based on the definitions provided by Weather
Underground [30]. The weather begins to get cloudier from
the middle of September in Catania and get cloudier from late
October in Cupternio [31]].

B. Evaluation Metrics

In this work, the daily nRMSE and nMAE for tested days
are used to assess the estimation model accuracy. The nRMSE
and nMAE are defined as:

N
1 1 -

t=1

1

MAE = o t_zlu?t P,| (10)

Where, P, is the maximum capacity of the PV power
generation. P; is PV power measurement at timestamp ¢, and
P is its corresponding estimated value. For 24 hours ahead
estimation with a resolution of 15 minutes, the sampling rate
N = 96. According to [15], the forecast bias tends to be
greater if nRMSE is much higher than nMAE.

V. SIMULATION RESULTS AND ANALYSIS
A. Forecast Model Training

The AE-LSTM model is tuned to have an appropriate model
size and structure to gain a balance between optimization and



generation. Feature engineering is also utilized to enhance the
performance of the model.

1) Feature Selection: Even though a modern deep learning
approach can automatically extract useful features from raw
data, a good feature selection is still needed in the field of
PV forecasting. Practically, it is not economical to wait for
several years to collect data and train a model. Selecting proper
features can help to solve a problem with far fewer data [32].
In this paper, RMSEDD is utilized to help extract features for
the training.
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Fig. 5: The RMSEDD for all input features at Catania

The RMSEDD for all the available features is first calculated
as shown in Fig. 5] The lower RMSEDD value indicates that
the feature has a more similar trend as the PV output. As seen
from the figure, highly related features like solar radiation and
solar zenith angle have RMSEDD values that are less than
10%; while less relevant features such as polarized day index
can have an RMSEDD value greater than 60%.

TABLE II: The impact of feature selection on estimation
accuracy
Selected Input Features nRMSE nMAE
P, I 9.93%  5.71%
P I A 8.99%  5.04%
P, I, AT 847%  4.60%
P, I,A T, C 9.09%  5.15%
P, I,AT,C,N,D 874% 491%

Based on the RMSEDD for each feature, different input
feature combinations have been tested, ranging from one input
feature with the lowest RMSEDD to a combination of all
available features. As shown in Table[[T} utilizing only the most
relevant feature or utilizing all the available features as inputs
do not train the best estimation model. Since the values of
previous days’ PV power outputs (P) are utilized as a training
input feature in many works in the literature, this paper also
tests the effect of including them. As seen from the results, a
model with feature P, I , /1 T perform better than others.

2) Model Tuning: The AE-LSTM is tuned to achieve good
forecasting accuracy as well as good regularization. The key
parameters of the model are determined by trial-and-error.

Reducing the size of the model is the simplest way to prevent
over-fitting. The forecasting error is evaluated over different
model size and the average and standard deviation (Std) of
forecasting error for Catania in term of nRMSE is presented
in Table [ITT] and Table [[V} As seen from the table, the network
with 5 layers and 400 hidden units in each layer performs
better than other network setups. For 100 epochs, the training
time for the selected network is 16 minutes. In comparison, the
training time for the network with 10 layers and 1000 hidden
units is about 55 minutes.

TABLE III: Average forecast error for models with different
size in term of nRMSE

Neurons\Layers | 2 3 5 6 10
200 11.44% 11.23% 10.52% 10.81% 19.31%
400 10.74%  10.98% 9.82% 10.58%  18.80%
500 12.26% 10.50% 10.37% 10.20%  19.10%
700 11.10% 1044% 11.31% 11.03% 18.76%
1000 11.64% 9.93% 1091% 10.93%  18.93%

TABLE IV: Std of forecast error for models with different size
in term of nRMSE

Neurons\Layers | 2 3 5 6 10
200 6.73% 6.62% 559% 630% 6.76%
400 647% 642% 5.68% 6.65%  6.50%
500 6.76% 6.07% 58%% 595% 6.63%
700 6.25% 6.13% 6.77% 626% 6.53%
1000 648% 585% 637% 636% 6.62%

Once the key parameters of the model are determined,
dropout regulation is implemented to overcome the “over-
fitting” issue. During dropout regulation, some randomly
selected neurons are zeros out during training. Since some
neurons are dropped out, other neurons have to adapt to handle
the representation required to do predictions due to the missing
neurons [33]]. As shown in Fig. 8] the original network without
applying dropout regulation starts over-fitting after 5 epochs.
In contrast, the networks that applying the dropout technique
has become more resistant to over-fitting than the original
network. Through simulation, a 50% dropout rate yields better
anti-over-fitting performance.

B. Evaluation of the AE-LSTM Model

To validate the forecasting accuracy of the AE-LSTM
model, several benchmark models include PM, feed-forward
neural network (FNN), deep neural network (DNN) have been
built for comparison. FNN and DNN use the same input
features as the AE-LSTM model. FNN has one hidden layer
and DNN has five hidden layers. The forecast power output
from different models over eight days are plotted in Fig. [6]
and the daily weather type and average daily forecasting error
for each testing day are presented in Fig. [/} The forecasting
error from PM is very low on October 2 and 3 since October
1, 2, 3 are continuous sunny days. On the other hand, PM
produces a very large forecasting error on October 9, since
the weather condition on October 8 is very different from the



—=—=- Recorded
— PM
4 4 — FNN
< DNN
i — LSTM
= 34 —— AE-LSTM
3
g I |
3 "\
s}
327
2
o 0
o ]
14 !
0 T T T T T T T T
10-02 10-03 10-04 10-05 10-06 10-07 10-08 10-09
Date

Fig. 6: Forecast output comparison at Catania from October 2 to October 9
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Fig. 8: Impact of dropout rate on the validation loss

weather on October 9. In comparison, other machine learning-
based models have a relatively stable performance and the
AE-LSTM model has an overall best performance. Noticing
that the weather type is a general weather description for a

simulation result shows the proposed AE-LSTM model is
more accurate than other benchmark models.

C. Evaluation of the Hybrid Model

Due to the nature of PV generation, the PM can perform
very well for consecutive clear days: as an example shown in
Fig.[9] the nRMSE is only 0.72%. While for the same day, the
LSTM model generates an error of 3.16%. Fig. [I0] provides
estimation results for days with the highest and lowest PM



TABLE V: Forecast error from different models at Catania

Model nRMSE nMAE
Mean Std Mean Std
PM 12.83% 6.59% 6.83% 3.74%
FNN 11.55% 570% 627% 3.29%
DNN 10.37% 552% 5.56%  3.10%
LSTM 8.87% 534% 4.78%  3.05%
AE-LSTM 8.39% 526% 4.56% 2.93%

error. November 19, 2016, is a rainy day, but the PM model
considers it as a sunny day because the weather was sunny
in the day before. So PM at the time produces the worst
performance. However, LSTM, in this case, can capture the
features from forecasted weather data to predict a much better
estimation result from this transition. On the other hand, on the
two continuous clear days before December 2, 2016, LSTM
did not perform as well as persistence. The reason is that
LSTM model optimization aims to reduce the overall error
from supervised learning, so the performance on that day is
slightly worse than PM.
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Fig. 9: Forecast power output from PM on two consecutive
sunny days
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The results clearly show that PM is not able to guarantee

the estimation performance as the trans-day weather volatility
increasing. The daily estimation errors are given by PM and
LSTM model over a quarter testing period are presented in
Fig. 1] The maximum daily estimated nRMSE from PM can
reach nearly 20%. At the same time, the LSTM model is more
effective in dealing with the high trans-day volatility condition.
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Fig. 11: Daily estimation error from PM and LSTM model
over the testing period

The forecast solar radiation is utilized to determine whether
this condition will happen or not. Since this irradiance forecast
data is not perfect and has forecasting error as well, a suitable
threshold needs to be determined. In this paper, the value of the
threshold is tunned as 0.05%, and the value of ED(/, d, d+ 1)
is used to determine the switch between PM and optimized
AE-LSTM model in the hybrid estimation model at the be-
ginning of each day. Validated by the Cuptertnio data set, the
hybrid model can improve the forecasting accuracy further by
14% (nRMSE) and 20% (nMAE).

VI. CONCLUSIONS

This paper presents an architecture for a hybrid day-ahead
PV power estimated model, which utilizes an automated
datafication approach to enhance the accuracy of PV power
estimation. The hybrid model can effectively generate an
estimate of PV output for the next 24 hours at 15-minute-
interval. Through exploring the historical PV power generation
data at different locations, PV power generation has different
volatility in different weather conditions. In this paper, a hybrid
model containing merits from both the models has been devel-
oped. According to the weather condition detecting algorithm
with an overall accuracy of 80%, different sub-model will be
used. PM is more adaptive to be used on consecutive sunny
days, and AE-LSTM is more suitable to predict days with
complex weather condition. LSTM integrated with AE forms
a self-supervised learning structure that observes a compressed
representation of time-series sequence data. This structure is
the basis of complex sequential prediction problems, especially
PV prediction in weather environments with unstable sunlight
intensity. Using the encoder-decoder LSTM framework, we
can manage and reduce uncertainty, misspecification, and
noise. Compared with the existing methods in the literature,



the proposed method shows a better forecasting accuracy using
data from different PV sites.
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