
Multiscale System Modeling of Single Event
Induced Faults in Advanced Node Processors

Matthew Cannon*, Arun Rodrigues*, Dolores Black*, Jeff Black*, Luis Bustamantet,
Ben Feinberg*, Lawrence T. Clarkt, John Brunhavert, Hugh Barnabyt,

Michael McLain*, Sapan Agarwalt and Matthew J. Marinella*
*Sandia National Laboratories, Albuquerque, NM

tArizona State University, Tempe AZ
t Sandia National Laboratories, Livermore, CA

Abstract:
We propose a new simulation environment which allows the ability to track and incorporate experimental effects of
single event-induced faults from transients on individual transistors to complex systems with multiple processors,
memories and other devices.

Index Terms:
Single event effects (SEE), single event transient (SET), single event upset (SEU), fault modeling, structural
simulation toolkit (SST)

Presenting Author:
Matthew Cannon, Sandia National Laboratories, 1515 Eubank Blvd SE, MS-0986, Albuquerque, NM 87123, USA,
phone: 505-844-5866, email: mcannon@sandia.gov

Presentation Preference: Oral Presentation

Session Preference: Hardness Assurance

Acknowledgements:
This work is supported by Sandia National Laboratories, a multimission laboratory managed and operated by
National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell
International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract
DE-NA0003525.

SAND2020-7327C

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.



I. INTRODUCTION

Single event effects (SEEs) are a key radiation susceptibility
for processors fabricated with modern highly scaled process
technologies [1]. This can be exacerbated by systems with
multiple processors, each with varying sensitivity to radiation.
It has become increasingly important to develop a holistic
approach to model the effects of these faults in key pipeline
stages of a processor along with the capability to integrate
radiation-induced charge generation at the transistor-level.
To address this need, a multi-scale simulation framework to

model the effects of single event upsets (SEUs) and single
event transients (SETs) has been developed as illustrated
in Fig 1. The model utilizes Sandia's Structural Simulation
Toolkit (SST), a discrete event simulator (DES) originally de-
veloped for high performance computing [2]. The framework
considers several levels of abstraction to model the impact of
single event effects on a processor, which can be coupled to
experimental data at the transistor level:

1) A DES of software running on a faulty processor is
used to simulate and track the faults and their impact
on benchmark algorithms to probabilistically characterize
sensitivity (Section II).

2) A modeling process takes transistor level single event data
and translates it to probabilities of SEUs on the output
registers of each pipeline stage in the processor, using the
following steps (Section III):

a) The probabilities and physics of a single event on a tran-
sistor are modeled to create a probability distribution of
charge collected from the radiation event (Section III-A);

b) The charge collected is used to fit a dual, double expo-
nential current source and circuit simulations are used to
abstract radiation events as binary SETs on a gate with
varying pulse widths [3] (Section III-B);

c) The probabilities and durations of SETs on each gate
are abstracted to model the probability of a SEU being
latched at the register at the end of the pipeline stage
(Section III-C).

By using four levels of abstraction, we enable a more com-
prehensive coverage of possible faults than if Monte Carlo
injection were directly used on a full processor model. Using
SST also allows us to model large scale heterogeneous systems
with multiple discrete components and to track fault propaga-
tion through the system. This modeling framework can be used
to both characterize how an existing system will behave in a
radiation environment and enable the design of both hardware
and software level fault mitigation strategies.

II. PIPELINE STAGE TO SYSTEM SOFTWARE FAULT
SIMULATION

We developed a fault injection tool based on SST and the
clspim MIPS model [4]. Starting with an algorithm in C or
C++, it is compiled to individual assembly instructions that can
be run on a DES model of a faulty processor. SEUs are injected
into the registers of a simulated system. The probability of
an SEU on each register is calculated in the next sections

Discrete Event Simulation of
Processor Pipeline

Structural Simulation Toolkit — SST

CPU Instructions,
Assembly

C/C++ code

Algorithm I

Pipeline stage
error model

Gate level faults,
bit flipping

Transistor level
radiation models

Fig. 1: The impact of transistor level radiation effects on
a running algorithm are modeled through a discrete event
simulation of the processor pipeline.

and is based on both the register itself and the combinational
logic feeding into the register. Faults can be injected either as
temporary SEUs or as permanent stuck at faults.

Faults are injected before each cycle of execution either
randomly from a probability table, or at specified locations,
depending on the fault injection mode. For each fault, we can
track when it is injected, how it spreads throughout the system,
and if and when it gets masked or quashed (corrected).

Currently, we can inject faults into six locations at a random
instruction that results in a random bit flip:

. RF (Register File): random register in the RF;

. MDU (Multiply-divide Unit): Randomly select a high or
low output register of the MDU;
. MEM_PRE (Memory, Pre): Randomly select either the

address or store value;
. MEM_POST (Memory, Post): Output of the memory

stage;
. WB (Write Back): Value written back to the register file;
. ALU (Arithmetic Logic Unit): Output of the ALU. (This

does not impact the output of the MDU but rather it
impacts the value sent to the MEM stage and operand
forwarding).

Previous micro-architectural fault modeling works [5], [6]
do not have a method of integrating experimental device data
and have investigated the effect of a fault in different parts
of the processor. These works use the MARSS and Gem5
simulators, injecting faults on the x86 and ARM architectures.
These works can inject faults in any part of the simulator,
during any cycle and for any duration. Then the output of the
simulator can be compared with a golden model so failures
can be detected.
One main difference in this work is that we can track the

fault as it propagates through the system. This is accomplished
by changing the simulator's reg_word data structure. This
structure is used to represent architectural registers and internal
state and is normally a simple 32-bit number. For our simu-
lator, we replace it with a custom data structure that records
when the fault occurred, which bit it flipped, and the original
fault-free value. Whenever an operation is performed (e.g.
adding two registers) we update the faulted and fault-free value
and propagate faults to the results register. In this way, we can
determine when, where and how a fault is quashed or how it



simplex

0.5

0.4

'4. 0.3-

0.2-

0.1-

SDC

Terminated

Timeout

Failed

Wi I I 
RF MEM_POST WB

95.2% 76.4% 87.6A

•7".
MDU
49.7%

ALU MEM_PRE
44.8% 46.6%

(a) Matrix Multiply (Simplex)

simplex03

0.7

0.6

p 0.5

0.4

,§ 0.3

0.2

0.0 lq2

0.1

RF MEM_POST WB MDU
41.4% 27.1% 86.2% 49.5%

♦ SDC
- Terminated

- Timeout

I= Failed

0.35

0.30

0.25

0 20

0.15

0.10

0.05

0.00
RF MEM POST WB MDU ALU MEM PRE

77.2% 49.8A 97.4% 9379% 96.0% 100.0% 71.0% 67.6/6

dmr

I=1 SDC

Terminated

IMM Timeout

Failed

I

1: 1 

ALU MEM_PRE

(b) Matrix Multiply 03 Optimizations (c) With DWC

0.30

0.25

tmr

0.30

0.25

tmrO3

0.5

0.4

rd

SDC

Terminated

Timeout

Failed

-IL
SDC

Terminated

♦ Timeout
Failed

SDC

Terminated

Timeout

Failed

4 0.3
2 0.15 ais

8
0.2

0.10 0.10-

0.05 0.05-

1

0.1

0.00 0.00 0.0
RF MEM_POST WB MDU ALU MEM_PRE RF MEM_POST WB MDU ALU MEM_PRE MEM_PRERF MEM_POST WB MDU ALU

96.7% 93.9% 96.1% 100.0% 70.4% 87.6% 85.0% 99.3% 94.8% 100.0% 79.5% 68.8%

(d) With TMR (e) With TMR and 03

Fig. 2: Failure sensitivity of different processor registers

spreads throughout the system to eventually cause a failure.
For example, if a register with the value "1" is upset by an SEU
in its least significant bit (making it a "0") and is later OR'd
with the value "1" it will end up with the correct value as if the
SEU never occurred. This sort of "correction by math" can be
tracked and counted in the simulator. This capability is useful
when designing fault-resistant data encodings or algorithms.

We can also compare the impact of faults in different parts
of the processor pipeline. For example, for a given fault, we
can determine how many incorrect writes to the register file
or to memory will occur. With this fault tracking ability, it is
possible to identify what areas of the processor should respond
favorably to fault mitigation strategies and how effective fault
mitigation strategies are.

Another difference from prior work is that our fault injection
program is built using SST which is designed to model large
scale systems and will allow us to observe how faults in
different subsystems (such as a processor) affect the operation
of a larger system (potentially with many processors and
devices). These devices may utilize different technology nodes
and could have different upset rates in an environment. Once
fully built, this would be able to simulate complex systems
and be able to track faults throughout them.
Our SST system modeled a MIPS R2000 processor core.

We ran multiple versions of an integer matrix-matrix multiply
benchmark on the processor. To demonstrate the versatility
of the simulation infrastructure, we explored several different
types of software redundancy and fault mitigation:

• Matmat/Simplex: A basic, naïve multiplication of two

95.4% 77.1% 87.8A 73.1% 45.7% 48.8%

(f) With RD

to faults with correct execution percentages shown beneath.

12x12 32-bit unsigned integer matrices using a triple-
nested loop;

• DMR: Multiplication with duplication with comparison
(DWC) over the innermost loop. I.e. The inner loop is
performed twice, the results are compared, and if they do
not match the computation is performed again;

• TMR: Multiplication with triple modular redundancy
(TMR). Each multiplication operation (and its operand
load instmction) is performed three times. The results
are combined in a bitwise majority function;

• RD: Multiplication with reduced precision. A nalve mul-
tiplication, but with 16-bit integers.

Each of these four variants was compiled with and without
compiler optimizations. The optimized version passes more
intermediate values through registers (rather than memory),
unrolls loops (reducing the number of branch instructions),
and reuses intermediate results (e.g. address offsets) rather
than recomputing them. As a result the optimized code runs
in about one quarter of the time of the unoptimized code.

Each of the eight executables was run 105600 times, with
one SEU-type fault injected during execution at a random
register and during a random cycle of execution. Faults were
injected equally to each of the six fault sites. The execution
was characterized into one of four states:

• Silent Data Cormption (SDC): The program completed,
but the results matrix was incorrect;

• Terminated: The program failed to complete, usually
because it tried to perform an illegal memory operation;

• Timeout: The program was still running after 4 times the



Normalized Total Sensitivity

140.001

120.00°

100.00%

80.00%

60.00%

40.00%

20.00%

0.00%

• Per Fault

• Per Time

h if1
e 0 'Cb 01' 4'N OQ'

6 e ,c*" N.' 4:10. 0.
‘;"
40

Fig. 3: Summary results of total failure sensitivity, normalized
to basic/simplex matmat (with no optimizations).

number of cycles it normally (without faults) completes
in. This indicates it is probably stuck in an infinite loop;

• Correct: The program completed and the computed ma-
trix is correct.

The results of our fault injection study are shown in Fig. 2
and Fig. 3.
The different algorithmic variants of the basic benchmark

have a substantial effect on failure sensitivity. As expected,
the TMR and DMR versions eliminate any risk of MDU
faults and the RD version reduces MDU sensitivity by about
half. TMR/DMR also substantially reduces the risk of SDC
errors from other faults, while having less of an impact on
Terminated or Timeout errors.

Compiler optimization also impacts the failure sensitivity.
The greater use of registers makes the optimized version 3-
11 x more susceptible (on a per-fault basis) to Register File
(RF) faults and up to 2 x more susceptible to MEM_POST
faults. Overall, an individual fault is more likely to cause a
failure or SDC in the optimized versions. However, because
the optimized code runs so much faster, their susceptibility
over time is much less. These results show the versatility of
our tool and the type of data we can collect.

III. RADIATION EVENTS TO PIPELINE STAGE SEUS

The DES is able to incorporate error probabilities calculated
from experimental SEE data. The following describes the
process starting with experimental transistor level, which is
abstracted to a pipeline stage model.
A. Radiation Events to Collected Charge

The total charge collected by individual charge generation
due to a particle strikes in a transistor is determined. We follow
the methodology described in [7] consisting of two steps:

• TCAD simulations are used to determine the charge
collection efficiencies in each sensitive volume of a
transistor;

• Monte Carlo Radiative Energy Deposition (MRED) is
used to determine the probability distribution and events
with maximum collected charge.

Early soft-error, static-upset rate predictions were calcu-
lated with a single rectangular parallelepiped (RPP) sensitive

volume using tools that assume the same charge collection
rate in the entire volume, vastly over-estimating the soft error
rate (SER) [8]. To overcome this, we use multiple sensitive
volumes each with their own charge collection efficiency.

Next, we combine multiple sensitive volumes with Monte
Carlo radiation transport techniques to estimate the total
charge collected [9], [10]. This tool is known as Monte Carlo
Radiative Energy Deposition (MRED). The power of this ap-
proach is that it remains tractable in the absence of simplifying
assumptions, and therefore in principle, it is more precise
and accurate to predict errors and has been experimentally
validated [10]—[12]. In the full paper, this process will be
demonstrated using experimental parameters and values for
a 14nm FinFET technology.

B. Collected Charge to Single Event Transients

Once the collected charge from a radiation event is de-
termined, we need to convert it to a current source model.
Following [3], the collected charge is converted into dual
double-exponential current sources. A fast current source
provides the charge needed to flip the state and a slow current
source models the slow draining of excess charge once the
state has been flipped. TCAD models of individual transistors
are used to determine the time constants of the current sources.
The peak currents of each current source are determined from
circuit simulations based on the particular gate type and load
and are chosen to flip and hold the output voltage at the
opposite rail voltage. Next, the width of the slow current
source is determined by setting the integrated charge equal
to the collected charge. Finally, the length of rail to rail
single event transient is found using a spice simulation of
chained logic gates and only transients that are long enough
to propagate and be latched are kept. This process allows us
to convert the probability distribution of collected charge to
a probability distribution of pulse widths. We are currently
building a test chip with DFF's and gates to experimentally
connect the MRED data to SEU probabilities.

C. Logic Gate to Pipeline Stage Fault Simulation

The next level of abstraction is to create a model of SEU
probabilities on the output registers of each pipeline stage in
a processor based on probability and pulse width of SETs at
individual gates. It is well known that there are logical masking
effects that occur within the circuit which naturally quash
some SETs before they are latched [13]. This masking effect is
usually calculated for the entire circuit as the circuit reliability.
We are interested in the probability of a single SET for any
given gate within the circuit becoming logically masked before
reaching a register.
The probability of error at register r, for instruction i, Pri,

is given by:

Pri = PR— S EU + E E PTV,ti X LMtigr X PG— EU,tigr
t=test g=gates
vectors

TS ETS,,,
PG— S EU,tigr = E PS ETtigp X

p=pul se 
Tclock

widths



• PR-SEU is the probability of an SEU occurring on the
register itself in one clock cycle.

• P- Tv,h, is the probability of each test vector, t, used for
instruction i and (for now) is assumed to be 1/(# test
vectors). The possible test vectors for each instruction are
randomly sampled.

• LMtigr is 1 or 0 and represents whether a SET on gate g
is logically masked at register r based on test vector t and
instruction i. It is computed using a static fault simulation
with the commercial fault simulator ZO1 X.

• PG-SEU,tigr is the probability that a SET at gate g that
is not logically masked is latched as an SEU at register r,
given test vector t and instruction i.

• P-SETt,g, is the probability of a SET on gate g with pulse-
width p, as computed in Section III. As the SET probability
depends on the exact data on the gate (rising vs falling edge),
it also depends on the test vector t and instruction i.

• TSET9p,. is the modified width of a SET as seen at register
r. The radiation induced pulse-width r on gate g needs to be
modified by the propagation delay to the register if the rising
and falling edges have asymmetric delays and by the average
latching window of the register. An average value of the
propagation delay, independent of the particular test vector,
is used to avoid the need for dynamic fault simulations
for every test vector. A reasonable approximation is to
directly use the radiation induced pulse width, r, and assume
symmetric propagation delays and latching exactly at the
clock edge.

To demonstrate the creation of an abstracted model, we
consider a simple 32 bit RISC ALU. To highlight the impact
of logical masking we assume that a SET on each gate
has the same probability, PG_SEU, of being latched as an
upset and that a single upset occurs somewhere in the ALU:

PG-SEU,tigr = 1/# of gates. The probability of an error due
to the digital logic at each output register of the ALU for an
add and or operations is shown in Fig 4.

IV. CONCLUSION

Modern computational systems are increasingly susceptible
to SEE. It has become increasingly important, but also dif-
ficult to model SEE-induced faults in systems with multiple
processors. We can address this need by leveraging simulators
originally developed for high performance computing to model
the effects of SEUs and SETs within the system. By coupling
this with physics-based approaches based on experimental data
at the transistor level, we can model the effects from the
collected charge on a gate to actual errors within the pro-
cessing system, running real benchmark code. This offers us
the potential to study many different fault-tolerant approaches,
from radiation hard by design, to applying redundancies in the
software. This information can be collected to better inform
the design process and allow changes to be made much earlier
in the design cycle (and at a much lower cost) to engineer more
reliable and complex systems for harsh environments.
The full paper will contain more details about how each

of the levels of abstraction interact with each other and

L75

L50

l'e; L25

U., 1.00

2 0.75
o

Adder Operation 64% Correct

0.50

0.25

0.00
o

1.2

g 1.0

.2 0.8

0.6

16
2 0.4
2

0.2

0.0

N a 4.0 CO CO 0 N
M N N

4 
40 CO
N N

Logical Or Operation 76% Correct

o 00
rl

N Ts CO
N N N N N

Output Register

g3

Fig. 4: The probability of an error during an add and or
operation at each output register due to the digital logic is
shown, average for over one million faults.

demonstrate the integration of experimental data. The pipeline
simulator will also include results for other benchmark codes
and will show more detailed results such as: how/when faults
get quashed within the processor, susceptibility of different
registers at different cycles of programming execution (e.g.,
early, middle and late) and how wide faults can spread to
other registers within the processor. Additional future work
will include implementation and experimental examination of
1 4nm logic gate cross sections and the cross section of a
complete processor in silicon to validate the processor level
experiments and to calibrate the injection probabilities.

REFERENCES

P. E. Dodd et al., IEEE TNS, vol. 57, no. 4, pp. 1747-1763, Aug 2010.
A. F. Rodrigues et al., SIGMETRICS Perform. Eval. Rev., vol. 38, no. 4,
p. 37-42, Mar. 2011.
D. A. Black et al., IEEE TNS, vol. 62, no. 4, pp. 1540-1549, Aug 2015.
A. Rogers and S. Rosenberg, "Cycle level SPIM," Dept. Comput. Sci.,
Princeton Univ., Princeton, NJ, July 1993.
K. Parasyris et al., in 2014 44th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks, June 2014, pp. 622-
629.
M. Kaliorakis et al., in 2015 IEEE International Symposium on Work-
load Characterization, Oct 2015, pp. 172-182.
H. M. Quinn et al., IEEE TNS, vol. 60, no. 3, pp. 2119-2142, June
2013.
L. W. Massengill et al., IEEE TNS, vol. 47, no. 6, pp. 2609-2615, Dec
2000.
A. D. Tipton et al., IEEE TNS, vol. 53, no. 6, pp. 3259-3264, Dec 2006.
R. A. Weller et al., IEEE TNS, vol. 57, no. 4, pp. 1726-1746, Aug 2010.
K. M. Warren et al., IEEE TNS, vol. 56, no. 6, pp. 3130-3137, Dec
2009.
R. A. Weller et al., IEEE TNS, vol. 56, no. 6, pp. 3098-3108, Dec 2009.
D. T. Franco et al., Microelectronics Reliability, vol. 48, no. 8, pp. 1586
- 1591, 2008, 19th European Symposium on Reliability of Electron
Devices, Failure Physics and Analysis (ESREF 2008).


