This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

SAND2020- 7322C

HALucinator: Firmware Re-hosting Through Abstraction
Layer Emulation

Abraham Clements*, Eric Gustafson*, Tobias Scharnowski, Paul Grosen, David Fritz,
Christopher Kruegel, Giovanni Vigna, Saurabh Bagchi, and Mathias Payer

ﬁa?_dial o =P
ationa
Laboratories S E C |_ A B

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary|
of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525, SAND2020-XXXX

el A
SECLAB

weseegul

o

s A

SECLAB

Device Internals

N
Ambarella

Many run Baremetal Firmware

=
SECLAB

Linux

text ~— main ()

read ()
send ()

Kernel abstractions used for
hardware interactions

Baremetal

Firmware ?7?

Raw hardware access

Ve i

SECLAB

Dynamic Analysis

Hardware
o Expensive ($10,000)
o Brittle, easily bricked
o No parallelism
Opaque |
o Debug ports should be disabled
o If present, very limited |

s

SECLAB

Re-hosting to the Rescue?

Goal: Enable firmware testing without requiring its specialized hardware

Re-hosting Challenges

-

S

i

ECLAB

On chip
CPU
AES Accelerator
Hash
Coprocessor
Timers
Counters
Flash Controller
Clock Config
IAP
DMA

Off chip
Ethernet
SD-MMC
GPIO
Camera
LCD
Touch Screen
Wireless
EEPROM
Serial
CAN
Analog 10
USB

Re-hosting Challenges o ° |0y

On chip Off chip
CPU Ethernet
AES Accelerator SD-MMC

Mouser Lists
44 520 Microcontrollers
3,502 Datasheets
26 Manufactures

AL LA A BLE g

USB

Re-hosting Challenges o ° |0y

st | O On chip Off chip
,:E\"f?.ﬂ_-;j"."- W CPU Ethernet
Bk B < baa AES Accelerator SD-MMC

Without support for peripherals baremetal firmware will not run!
There are 10,000’s of peripherals and combinations there of!

AL LA A BLE g

USB

Hardware Abstraction Libraries

ARDUINO

10

Vi

SHECLAB

Hardware Abstraction Libraries

\ 'V 4 ¢/}

h =8
4\ '
U

HALucinator

Enables replacing HALs and other libraries with high level
implementations. Transforming the re-hosting scaling problem from
supporting 10,000’s of devices to dozens of HALS

&y S S

ARDUINO

11

The Modern Firmware Stack

o P
SECLAB

12

Firmware

Off-chip Hardware
(e.g., sensors, radio, ...)

=
SECLAB

High Level Emulation

Application Code

13

High Level Emulation

14

=
SECLAB

Application Code

Application Code

Re-Host!

High Level Emulation

15

o
SECLAB

Application Code

Re-Host!

Application Code

HALucinator enables

o
SECLAB

Introspection — What is the firmware doing?

e Debugging/system testing
e Determine effects of malware on firmware
® Experiment with firmware in controlled environment

Vulnerability Research — Is the system vulnerable?

e Identify insecure interfaces
e Find memory corruption errors
® Fuzzing

Virtual Testbeds — How do vulnerabilities impact

connected systems? Virtual Test

e System of systems modeling Beds

e Firmware in the loop testing
e Software only testbeds of embedded systems

16

Introspection

Vulnerabllity
Research

HALucinator implementation

e

SECLAB

Firmware

EE

LibMatch

% Func. Addrs

. B

= o
A

|

HAL Source

D Our Contributions
17

HALucinator

CPU Emulator
(QEMU)

-

J

Uart
Handler

Ethernet
Handler |

Peripheral Models
IO Server |

B -

Handler Example

o m oLl A
SECLAB

®

Device-specific code

Python

QEMU

18

def i2c read buf (uc):

G

i2c_read buf(char* buf, int len);

buf = uc.regs.rl # arg 0: The buffer

1 = uc.regs.r2 # arg 1: Buffer length

assert(buf != 0) # Crash on bad arguments

assert (len > 0)

data = I2CModel.rx('i2c', 0, len) # Get the data
from the virtual bus

uc.mem[buf] = data # Store it in the emulator

o
SECLAB

LibMatch

19

o P
SECLAB

LibMatch

libfoo. o

Step 1: Match library content
20

o
SECLAB

LibMatch

E——

21

o
SECLAB

LibMatch e

’

| HAL UART Write
| HAL_SPI_Write

HAL GetChar |
HAL_PutChar |

22

o P
SECLAB

LibMatch =

| HAL UART Write
| HAL_SPI_Write

I:IAL'_GetCh_ar |
HAL_PUtChar |

fe libfoo.o J

Step 2: Caller Context

23

o
SECLAB

LibMatch e

HAL GetChar |
- HAL_PutChar |

24

o P
SECLAB

LibMatch =

HAL_GetChar] ‘e .

—\HAL_PutChar |

Y

libbar.o J

A
*
A d
A
*
*

libfoo.o J

Step 3: Callee Context

25

o
SECLAB

LibMatch

E——

26

o
SECLAB

LibMatch

"4 1ibfoo.o J

27

o
SECLAB

LibMatch

E——

28

hal-fuzz e B

Built on AFL-Unicorn

Program exits when the input is exhausted
Deterministic timers based on block counts
nterrupt events also based on block counts
Crashes detected via Unicorn’s own error
detector as well as handler assertions

29

16 Firmware Samples

SECLAB

e ATMELASF

©)
O
O
@]

USART

FAT32 on SD-Card

HTTP Server

6LoWPAN Sender and Receiver

e STM32Cube

O O O O O

UART

FAT32 on SD-Card
UDP-Echo Server and Client
TCP-Echo Server and Client
PLC

e NXP -MCUXpresso

30

O
O
@)
®]

UART

UDP Echo Server
TCP Echo Server
HTTP Server

| MCUXpresso |

LibMatch Results = 4o Dy

“Naive” LibMatch LibMatch

(Bindiff) w/ context
Correct 74.5% 87.4%
Missing 5.0% 3.2%
Collisions 18.8% 8.5%
Incorrect 2.5% 0.9%
External -- 9.96%

” % avg matches across 16 test binaries

Ease of Implementation = 4o Dy

Three Handler categories:

e Trivial: Does nothing / returns a constant

e Translating: Collects arguments, interacts with
a Model, returns a result

e Internal Logic: Needs to re-implement
undocumented internal details

32

Ease of Implementation

T o

SECLAB

e Over 85% of handlers require little effort

o 44.5 are “trivial”
o 42.2 are “translating”

e Remainder: “Internal logic”
o HAL behavior doesn’t abstract hardware well enough

o HAL behavior makes assumptions not in the docs (e.g.,

uses its own heap allocator)

33

Fuzzing! e B

e Hundreds of millions of parallel executions

e Found crashes in ST-PLC, Atmel HTTP server,
Atmel 6LowPAN(w/ Contiki)

e Fuzzed HTTP server at two different levels,
found crashes in both

e Discovered CVE-2019-8359 and
CVE-2019-9183 in Contiki’s network stack

34

CSAW ESC 2019 results e B

Re-hosted ARM portion of all challenge sets
Solved 18/19 challenges

Verified 17/18 solutions w/ just the emulator
Solved 3 challenges automatically using fuzzing
Won first place! ~

Pl

Conclusion

< i

mh

SECLAB

HALucinator eliminates implementing 10,000s of

peripherals by using HALs

N

ARTIFACT
EVALUATED

‘uumx

github.com/ucsb-seclab/hal-fuzz

ithub.com/embedded-sec/halucinator

CPU Emulator
(QEMU)

-

A

[Uart Ethernet |
Handler Handler

Peripheral Models

IO Server

