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Many run Baremetal Firmware
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Linux

text ~— main ()

read ()
send ()

Kernel abstractions used for
hardware interactions

Baremetal

Firmware ?7?

Raw hardware access
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Dynamic Analysis

Hardware
o Expensive ($10,000)
o Brittle, easily bricked
o No parallelism
Opaque |
o Debug ports should be disabled
o If present, very limited |
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Re-hosting to the Rescue?

Goal: Enable firmware testing without requiring its specialized hardware



Re-hosting Challenges
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On chip
CPU
AES Accelerator
Hash
Coprocessor
Timers
Counters
Flash Controller
Clock Config
IAP
DMA

Off chip
Ethernet
SD-MMC
GPIO
Camera
LCD
Touch Screen
Wireless
EEPROM
Serial
CAN
Analog 10
USB



Re-hosting Challenges o ° |0y

On chip Off chip
CPU Ethernet
AES Accelerator SD-MMC

Mouser Lists
44 520 Microcontrollers
3,502 Datasheets
26 Manufactures
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Re-hosting Challenges o ° |0y

st | O On chip Off chip
,:E\"f?.ﬂ_-;j"."- W CPU Ethernet
Bk B < baa AES Accelerator SD-MMC

Without support for peripherals baremetal firmware will not run!
There are 10,000’s of peripherals and combinations there of!
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Hardware Abstraction Libraries

ARDUINO
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Hardware Abstraction Libraries
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HALucinator

Enables replacing HALs and other libraries with high level
implementations. Transforming the re-hosting scaling problem from
supporting 10,000’s of devices to dozens of HALS
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ARDUINO
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The Modern Firmware Stack
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Firmware

Off-chip Hardware
(e.g., sensors, radio, ...)
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High Level Emulation

Application Code
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High Level Emulation
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Application Code

Application Code

Re-Host!




High Level Emulation
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HALucinator enables

o
SECLAB

Introspection — What is the firmware doing?

e Debugging/system testing
e Determine effects of malware on firmware
® Experiment with firmware in controlled environment

Vulnerability Research — Is the system vulnerable?

e Identify insecure interfaces
e Find memory corruption errors
® Fuzzing

Virtual Testbeds — How do vulnerabilities impact

connected systems? Virtual Test

e System of systems modeling Beds

e Firmware in the loop testing
e Software only testbeds of embedded systems
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HALucinator implementation
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D Our Contributions
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HALucinator

CPU Emulator
(QEMU)
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Uart
Handler

Ethernet
Handler |

Peripheral Models
IO Server |
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Handler Example
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Device-specific code

Python

QEMU
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def i2c read buf (uc):

G

# i2c_read buf(char* buf, int len);

buf = uc.regs.rl # arg 0: The buffer

1 = uc.regs.r2 # arg 1: Buffer length

assert(buf != 0) # Crash on bad arguments

assert (len > 0)

data = I2CModel.rx('i2c', 0, len) # Get the data
# from the virtual bus

uc.mem[buf] = data # Store it in the emulator
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LibMatch
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LibMatch

libfoo. o

Step 1: Match library content
20
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LibMatch e

’

| HAL UART Write
| HAL_SPI_Write

HAL GetChar |
HAL_PutChar |
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LibMatch =

| HAL UART Write
| HAL_SPI_Write

I:IAL'_GetCh_ar |
HAL_PUtChar |

fe libfoo.o J

Step 2: Caller Context
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HAL GetChar |
- HAL_PutChar |
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LibMatch =

HAL_GetChar ] ‘e .

_—_\HAL_PutChar |

Y

libbar.o J

A
*
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libfoo.o J

Step 3: Callee Context
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hal-fuzz e B

Built on AFL-Unicorn

Program exits when the input is exhausted
Deterministic timers based on block counts
nterrupt events also based on block counts
Crashes detected via Unicorn’s own error
detector as well as handler assertions
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e ATMELASF
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USART

FAT32 on SD-Card

HTTP Server

6LoWPAN Sender and Receiver

e STM32Cube

O O O O O

UART

FAT32 on SD-Card
UDP-Echo Server and Client
TCP-Echo Server and Client
PLC

e NXP -MCUXpresso
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UART

UDP Echo Server
TCP Echo Server
HTTP Server

| MCUXpresso |




LibMatch Results = 4o Dy

“Naive” LibMatch LibMatch

(Bindiff) w/ context
Correct 74.5% 87.4%
Missing 5.0% 3.2%
Collisions 18.8% 8.5%
Incorrect 2.5% 0.9%
External -- 9.96%

” % avg matches across 16 test binaries



Ease of Implementation = 4o Dy

Three Handler categories:

e Trivial: Does nothing / returns a constant

e Translating: Collects arguments, interacts with
a Model, returns a result

e Internal Logic: Needs to re-implement
undocumented internal details
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Ease of Implementation
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e Over 85% of handlers require little effort

o 44.5 are “trivial”
o 42.2 are “translating”

e Remainder: “Internal logic”
o HAL behavior doesn’t abstract hardware well enough

o HAL behavior makes assumptions not in the docs (e.g.,

uses its own heap allocator)
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Fuzzing! e B

e Hundreds of millions of parallel executions

e Found crashes in ST-PLC, Atmel HTTP server,
Atmel 6LowPAN(w/ Contiki)

e Fuzzed HTTP server at two different levels,
found crashes in both

e Discovered CVE-2019-8359 and
CVE-2019-9183 in Contiki’s network stack
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CSAW ESC 2019 results e B

Re-hosted ARM portion of all challenge sets
Solved 18/19 challenges

Verified 17/18 solutions w/ just the emulator
Solved 3 challenges automatically using fuzzing
Won first place! ~
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Conclusion
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HALucinator eliminates implementing 10,000s of

peripherals by using HALs
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github.com/ucsb-seclab/hal-fuzz

ithub.com/embedded-sec/halucinator
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