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Abstract. Statechart notations with 'run to completion' semantics, are
popular with engineers for designing controllers that respond to events
in the environment with a sequence of state transitions. However, they
lack formal refinement and rigorous verification methods. Event-B, on
the other hand, is based on refinement from an initial abstraction and
is designed to make formal verification by automatic theorem provers
feasible. We introduce a notion of refinement into a 'run to completion'
statechart modelling notation, and leverage Event-B's tool support for
theorem proving. We describe the difficulties in translating 'run to com-
pletion' semantics into Event-B refinements and suggest a solution. We
outline how safety and liveness properties could be verified.
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1 Introduction

Reactive Statecharts are open systems capable of receiving potentially non-
deterministic input. This work, which builds on our previous work [7,8], exposes
a shallow embedding of open Statecharts semantics in Event-B. Statecharts pro-
vide a graphical language, generalized from state machines, that is popular with
engineers, variants of which appear in Matlab Simulink/Stateflow [6] and the
Ansys tools. Particularly attractive is providing accessibility to abstraction/re-
finement via Rodin/Event-B which has an intuitive metaphor in the Statechart
semantics [7,8]. The commercial tools have similar ideas expressed as encapsula-
tion and composition but not entailing any formal guarantees. The hope is that
engineers can better understand the origin of proof obligations in refinements
and achieve formal guarantees earlier in their designs where it is most tractable.

Related work has developed a number of different semantics all with different
purposes and outcomes [2,3,5]. Because our contribution is focused on a mapping
to Event-B, safety property preserving refinement is key. Event-B provides not
only a definition of refinement but a rubric for finding valid refinements and this
is carried over into the Statecharts work presented here. In our version of Stat-
echart semantics, refinement means a subsetting of traces from an abstraction.
This has the beneficial effect of preserving safety properties from abstraction to
refinement and permits proofs to be discharged at the highest tractable level of
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abstraction. It is at the highest level of abstraction that proofs are presumably
the easiest to discharge.

2 Background

SCXML is a modelling language based on Harel statecharts[12]. State-Chart
XML (SCXML) follows a 'run to completion' semantics, where trigger events
may be needed to enable transitions. Trigger events are queued when they are
raised, and then one is de-queued and consumed by firing all the transitions
that it enables, followed by any (un-triggered) transitions that then become
enabled due to the change of state caused by the initial transition firing. This
is repeated until no transitions are enabled, and then the next trigger is de-
queued and consumed. There are two kinds of triggers: internal triggers are
raised by transitions and external triggers are raised by the environment (non-
deterministically for the purpose of our analysis). An external trigger may only
be consumed when the internal trigger queue has been emptied.

Event-B is a formal method for system design [1,4]. It uses refinement to in-
troduce system details gradually into the formal model. An Event-B model con-
tains two parts: contexts and machines. Contexts contain carrier sets, constants,
and axioms constraining the carrier sets and constants. Machines contain vari-
ables v, invariants 1(v) constraining the variables, and events. An event con-
sists of a guard denoting its enabled-condition and an action defining the value
of variables after the event is executed. In general, an event e has the form:
any t where G(t, v) then S(t, v) end where t are the event parameters, G(t, v) is
the guard of the event, and S(t, v) is the action of the event.

Machines can be refined by adding more details. Refinement can be done by
extending the machine to include additional variables (superposition refinement)
representing new features of the system, or by replacing some (abstract) variables
by new (concrete) variables (data refinement).

UML-B State-machines provides a diagrammatic modelling notation for Event-
B in the form of state-machines and class diagrams [9,10,11]. The diagrammatic
models relate to an Event-B machine and generate or contribute to parts of it.

Each state is encoded as a boolean variable and the current state is indicated
by one of the boolean variables being set to TRUE. An invariant ensures that only
one state is set to TRUE at a time. Events change the values of state variables
to move the TRUE value according to the transitions in the state-machine.

While the UML-B translation deals with the basic data formalisation of state-
machines it differs significantly from the semantics discussed in this manuscript.
UML-B adopts Event-B's simple guarded action semantics and does not have a
concept of triggers and run-to-completion. Here we make use of UML-B's state-
machine translation but provide a completely different semantic by generating
a behaviour into the underlying Event-B events that are linked to the generated
UML-B transitions.
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3 Run To Completion

The run to completion semantics is specified via an abstract basis that is ex-
tended by the model. The specification of this basis consists of an Event-B context
and machine that are the same for all input models and are refined by the spe-
cific output of the translation. This allows us to introduce an abstract behaviour
of transitions queueing and using triggers which is gradually refined to introduce
the actual triggering and transitions of the specific example being modelled. It
would not otherwise be possible for newly introduced transitions to modify the
abstract queues. The basis context introduces a set of all possible triggers, which
is partitioned into internal and external triggers (e.g Future! nterna !Trigger and
FutureExterna ITrigger respectively), some of which will be introduced in future
refinements. Each refinement partitions these trigger sets further to introduce
concrete triggers, leaving a new abstract set to represent the remaining triggers
yet to be introduced.

The basis machine declares variables that correspond to the internal and
external queues, the dequeued trigger and a flag that signals when a run to
completion macro-step has been completed (no un-triggered transitions are en-
abled). The abstract event futureTriggeredTransitions represents a combination
of transitions that are triggered by the trigger presently ready to dequeue, dt.
The actions of these transitions may also raise triggers of their own.

In the process of refining a model, a designer takes advantage of the non-
determinism in the abstraction to introduce new triggers and state-chart be-
haviour that refines abstract events. By default a run may non-deterministically
complete at any stage until no un-triggered transitions are enabled (when com-
pletion is the only choice left). This allows for future refinements that may
strengthen the guards of transitions (e.g. by introducing new nested states as
the source of a transition) Such guard strengthening refinements correspond to
earlier (i.e. weaker) completion, hence the need to allow for this behaviour in
the abstraction. When a refinement level is reached for which the designer wants
to verify a property that relies on a particular control response within the cur-
rent run, early completion must be disallowed. This is done by specifying (as an
annotation in the SCXML model) that the transitions involved in the run are
finalized. The SCXML translation tool will then automatically strengthens the
guards of the completion events to ensure that the run to completion sequence
is not interrupted early by non-deterministic behaviour.

The translation of a specific SCXML model extends that described in [7,8]
with the following additions:

Trigger queues in basis: The encoding of trigger queues in the abstract basis
machine has been improved so that triggers are properly dequeued before
potential use, which allows triggers to be discarded if the controller cannot
respond to them. This more accurately reflects the SCXML semantics.

Finalisation: Transitions can be flagged as finalised which means their guards
can not be strengthened in subsequent refinements. This allows them to be
`enforced' when they are enabled (i.e. completion cannot occur until they
have fired) which is needed for verification.
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Restricted raising of internal triggers: Once a trigger is introduced it must
immediately be raised at that refinement level by any transitions that wish
to do so. It cannot be raised in later refinements except by newly introduced
transitions. This restriction was necessary to make simulation more useful by
removing non-deterministic raising of triggers in anticipation of refinements.

Context instantiation: The axioms of the basis context, that allow future
triggers to be added, have been improved so that ProB3can automatically
create an instantiation.

A tool to automatically translate SCXML models into UML-B has been
produced.

4 Statechart Refinement

Our system includes three refinement rules.

1. Guard conditions on a transition can be strengthened; this can done by
adding textual guards to the transition, or changing the source of the tran-
sition to a nested state.

2. Transitions can have additional actions, provided they do not modify vari-
ables appearing in the abstraction; this can be accomplished by adding tex-
tual action to the transition or by changing the target to nested state.

3. A statechart can be embedded within a state of another statechart — some-
times called hierarchical composition or hierarchical refinement.

Via the translation explained in Section 3, these rules rely on the usual
Event-B proof obligations to ensure that they do indeed yield refinements in the
Event-B semantics.

5 Verification of Safety Properties

In a state-chart model we naturally wish to verify properties P, about other
parallel statechart regions and auxiliary data, that are expected to hold true in
a particular state S. Hence, all of the safety properties that we consider are of
the form: S=TRU E P, where the antecedent is implicit from the containment
of P within S.

SCXML models represent components that respond to received triggers and
are not perfectly synchronised with changes in the monitored properties. Hence,
P may be temporarily violated until the system responds by leaving the state
S in which the property is expected to hold. To cater for this we express P in
a modified form P' that allows time for the response to take place. There are
two forms of reaction that can be used to exit S; a) an untriggered transition,
or b) a transition that is triggered by an internally raised trigger. For a), the

3 ProB is an animator, constraint solver and model checker for the B-Method.
https://www3.hhu.de/stups/prob
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modified property P' becomes P V untriggered transitions are not complete, and
for b) P' becomes P V trigger t is in the internal queue or dequeued (where t is
the internal trigger raised when the violation of P is detected).

6 Verification of Control Responses

It is sometimes possible to construct a model that satisfies some invariant (e.g.
safety) properties, but does not behave in a useful way. Therefore, as well as
verifying invariant properties, we would like to verify the system's responsiveness.
More specifically in this case, we want to ensure that the controller responds
to external triggers to make appropriate modifications to the system variables.
These kind of live responses can not be verified by proof of invariants since they
are temporal properties. Instead, we can express the property in Linear Temporal
Logic (LTL) and use the ProB model checker to verify it.

In general, our liveness properties will have the following form:

G([external_trigger_event] F{ predicate}) ,

where the predicate concerns variables v that the system maintains, and may
refer to old values old(v) that existed when the external trigger occurred. To
specify a liveness property to be verified, a special LTL element is added to
the SCXML model with attributes, property (a string of the above form) and
refinement (an integer indicating the refinement level at which the property
should be verified). The translator generates a separate 'branch' refinement for
each LTL property to be verified. In this special refinement, history variables
are added to record the value at the state when the external trigger occurs,
of any variables that are referenced as 'old' values. A text file is automatically
generated containing the LTL property to be checked.

In this generated version, an assumption of strong fairness is added for all
other events in the model. (This assumption is stronger than necessary since some
events will not affect the outcome, but is easier to generate and is sufficient for
our verification aim).

SF[el] A SF[e2]... GGexterna l_trigger _event] F[predicate])

This property is then verified using the LTL facility of the ProB model checker.

7 Conclusion

Statecharts are useful and widely used by engineers for modelling the design
of control systems that respond to sensed changes in the environment. Event-B
provides an effective language for formally verifying properties via incremental
refinements. However, it is not straightforward to apply the latter to the former.
We have developed a technique for introducing refinement of Statecharts that
can be translated to Event-B for verification. Invariant properties about the
expected coordination of states can be added and are interpreted with additional
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allowance for the reactions to take place in the control system. Such invariants

prove automatically with the existing Rodin theorem provers. We use an LTL

model checker as a complementary process for verifying expected reactions to

environmental triggers.

In future work we intend to formalise the semantics of our extended SCXML

notation in order to define its notion of refinement and correspondence to Event-

B.
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