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What is a Voronoi mesh?
Given a set of points (seeds), a Voronoi cell is formed around each seed

by the set of points that are closest to that seed compared to any other

seed.

Direct implications:

• Each cell is convex

• Each cell is bounded by planar convex facets

• A facet between two cells is orthogonal to the line connecting the

cell seeds

Main Challenge:

• Representing (external and internal) boundaries is a hard problem.
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Polyhedral, Tetrahedral, and Hexahedral Mesh Comparison
Source: https: / / meshing.lanl.gov /proj / SFWD models / main.html

• Polyhedral meshing is important for flow and transport codes which
include TOUGH2, FEHM, PFLOTRAN, and MODFLOW which are based
on the two-point flux discretization

• While the solution to flow/transport is stable without an orthogonal
mesh, it is not accurate!

• A well-principled framework is enabled through the combined use of
primal meshes and their orthogonal duals [Mullen et al. 2011].

• The power of orthogonal duals, exemplified byVoronoi-Delaunay
meshes, has recently been demonstrated on a range of applications in
computer graphics [Goes et al. 2014] and computational physics
[Engwirda 2018].

• It is therefore imperative to develop new algorithms for
• primal-dual polyhedral meshing
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4.0111•101!.- Polyhedral, Tetrahedral, and Hexahedral Mesh Comparison
Source: https:/ /www.symscape.com/
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Current approaches for representing boundaries

Clipping:

• Confine the Voronoi diagram to a compact domain.

Direct implications:

• Clipped cell may loose convexity and orphan cells

may be generated

• Boundary facets could be non-planar and may have

poor quality.

• The orthogonality property is no longer maintained

• It is not clear how to robustly represent internal

interfaces.
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Efficient Computation of 3D Clipped Voronoi Diagram
Yan D. M. et. al. [201o]

Uniform Random Voronoi Meshes
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Current approaches for representing boundaries

Naive Mirroring:

• Mirror the seeds across the boundary

Pros:

• No clipping, resulting cells are convex, bounded by

planar facets

Cons:

• Curved Boundaries result in bad normal

4 Noisy surface approximation
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Our approach (The basic idea)

Smart Mirroring:

• We eliminated all the facets that have bad normal by

forcing the pairs of neighbor mirror seeds to lie on the

same Delaunay sphere 4 undesired facets become

degenerate.

H ow?

• We cover the surface with spheres and place the seeds at

the intersection pair of these spheres.
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Our approach (a simple illustration)

1. Cover input model 2. Place Voronoi

with spheres seeds at the

intersection pairs

VoroCrust
Voronoi Meshing Without Clipping

DIA

3. Reconstruct the

boundaries

4. Add interior seeds

to improve mesh

quality
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Our approach: Questions that we had to answer

1. How to automatically choose the radii of surface spheres?

2. How to achieve (and maintain) maximal coverage efficiently?

3. In 3D, there could be an intersection pair of three surface spheres, where one

point is covered and the other is not. How do we handle this situation?

4. How to detect and represent sharp features (sharp corners and sharp curves).

5. How to handle internal interfaces and domains with multiple materials?

Our next speaker will now present our answers.
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Our approach (a simple illustration in 3D)

4 4 .. 4 I 1 I I 1 0 *•
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Sampling Conditions for Reconstruction [SoCG'18]

Topological Thickening
[Chazal and Lieutier, 2008]

Union of Balls

VoroCrust
Voronoi Meshing Without Clipping

Original Surface

Medial Axis
[Amenta and Kolluri, 2001]

 ■

Isotopic

'es\
[Chazal and Cohen-Steiner, 2004]
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VoroCrust Refinement

Input:

• T: an accurate surface approximation

• 94: threshold to identify sharp features

Requirements:

• Generate union of balls

• Additional conditions for quality
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VoroCrust Refinement

Ball Conditions:

• Smooth coverage (194)

• Smooth overlaps

• Locally Lipschitz (L)

• Deep coverage with sparsity (a)
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VoroCrust Refinement

Ball Conditions:

• Smooth coverage (194)

• Smooth overlaps

• Locally Lipschitz (L)

• Deep coverage with sparsity (a)
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VoroCrust Refinement

Ball Conditions:

• Smooth coverage (194)

• Smooth overlaps

• Locally Lipschitz (L)

• Deep coverage with sparsity (a)
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VoroCrust Refinement

Ball Conditions:

• Smooth coverage (194)

• Smooth overlaps

• Locally Lipschitz (L)

• Deep coverage with sparsity (a)
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VoroCrust Refinement

Ball Conditions:

• Smooth coverage (94)

• Smooth overlaps

• Locally Lipschitz (L)

• Deep coverage with sparsity (a)
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VoroCrust Refinement

Ball Conditions:

• Smooth coverage (94)

• Smooth overlaps

• Locally Lipschitz (L)

• Deep coverage with sparsity (a)
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VoroCrust Refinement

Ball Conditions:

• Smooth coverage (94)

• Smooth overlaps

• Locally Lipschitz (L)

• Deep coverage with sparsity (a)
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VoroCrust Refinement

Ball Conditions:

• Smooth coverage (94)

• Smooth overlaps

• Locally Lipschitz (L)

• Deep coverage with sparsity (a)
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VoroCrust Refinement

Ball Conditions:

• Smooth coverage (94)

• Smooth overlaps

• Locally Lipschitz (L)

• Deep coverage with sparsity (a)

Violations resolved by shrinking

VoroCrust
Voronoi Meshing Without Clipping

Sandia
National
Laboratories



VoroCrust Refinement Loop (simplified)

Algorithm 1: High-level VoroCrust algorithm

Input: Triangle mesh T, and parameters 60 and L
1 B 0

2 while 14 = UB does not cover T do
3 Add balls to cover T

4 Shrink balls violating any ball conditions

5 end

6 ST pairs of seeds from triplets of balls in 8

7 return ST
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Surface Coverage with Sharp Feature Protection

Corner balls <=> Edge balls <=> Surface balls
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Surface Defects

••

Extra Steiner vertex (sliver) No sliver after perturbation of radii
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Surface Defects

Extra Steiner vertex (sliver) No sliver after perturbation of radii
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-...... VoroCrust Refinement Loop (revised)...01
-;/...{-

Algorithm 2: High-level VoroCrust algorithm (revised)

Input: Triangle mesh T, and parameters 0 and L
1 13 0

2 while U = US does not cover T do
3 Add balls to cover T

4 Shrink balls violating any ball conditions

or forming half-covered seeds

6 end

7 c_SP pairs of seeds from triplets of balls in 13

8 return (51
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Termination without Slivers

Shrinking violates coverage, requiring new samples

• How much to shrink to uncover gl?

A rq — a — g1- 1
rq

la - ell 1
a - ell .

<
q   g-T 1 q gl-

a - g'

• Higher sampling density locally flattens the mesh

11q-ell 
Ila-g-'11

1  > A -> 0

• Coverage less likely to be violated with low A
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Termination without Slivers

Shrinking violates coverage, requiring new samples

• How much to shrink to uncover gl?

A = rq-11q - ell ,Ila - ell- Ila - el 
rq — Ila - ell

Ilq - ell 1
Ilq - ell

• Higher sampling density locally flattens the mesh

Ilci—e 11 ~ 1  > A 0
11q-ell

• Coverage less likely to be violated with low A
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Results: smooth/ sharp-features/narrow-regions

v,
\

u
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Results: non-manifold
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Results: interior

1&_ N)P.,

SP7( "IA

r4

Random Grid
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Results: surface quality

Surface Triangle Metrics:

• Minimum triangle quality

• % of angles < 3o or >90

• Hausdorff distance

VoroCrust
Voronoi Meshing Without Clipping

o
v bootie.

AWIIKVINt.•

%011,40AV402

A ntreuttio

1414"-'7" .4041

ifillervii 404 .1.V...,trYA
4 v t

r401 
1*4- ♦ AwA

Sandia
National
Laboratories



Results: volume cells quality

Volume Cells Metrics:

• Maximum aspect ration
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Results: parameter study

Parameter L:

• Maximum aspect ration
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Results: parameter study

Parameter L

0

—°-60 = 25°

—°-60 = 40°

—6-10 = 550

—*-60 = 70°

—*-10 = 85°
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Results: parameter study

Parameter (04)

rni Pi, dH

30', 0,47, 0.374

rni Pi, Qmiri, dli
2°, 0,2, 0,385

= 25c'
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Qtri in. dH
124, 0,25, 0,666

Orni n Qrni ro, dH
249', 0,47, 0,371

Orni Qrni Pi dH
0,19, 0,643

141
OrrH Qmin. dH
29', 0 A5, 0,38.3

~Ali!!, dH
ce, 0,1, 0.860

Ornin, Own, dH
30', 0,47, 0,403

= 40a = 611 = 700

Ornin,Qrnin, dH
39, 0,08, 0.791

= 85°
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Results: vs. RVD

Comparison against Restricted Voronoi Diagram (RVD):

RVD
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Results: vs. RVD

Comparison against Restricted Voronoi Diagram (RVD):

RVD
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Results: vs. RVD

Comparison against Restricted Voronoi Diagram (RVD):
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Limitations

• Short edges

• Input faithfulness (e.g., non-watertight)

• Isotropic sampling
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Conclusion

• First provably-correct algorithm for conforming Voronoi mesh on

arbitrary domains

• Guarantees on convexity, output quality

• Robust, well-tested implementation

• VoroCrust.Sandia.gov
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Future Work

• Speedup by parallelization

• Anisotropic meshing

• Short edges elimination
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mow
Visit

VoroCrust. Sandia.gov

Thank you!
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