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Disclaimer

This is a technical presentation that does not take into account contractual
limitations or obligations under the Standard Contract for Disposal of Spent
Nuclear Fuel and/or High-Level Radioactive Waste (Standard Contract) (10
CFR Part 961). For example, under the provisions of the Standard Contract,
spent nuclear fuel in multi-assembly canisters is not an acceptable waste form,
absent a mutually agreed to contract amendment.

To the extent discussions or recommendations in this presentation conflict with
the provisions of the Standard Contract, the Standard Contract governs the
obligations of the parties, and this presentation in no manner supersedes,
overrides, or amends the Standard Contract.

This presentation reflects technical work which could support future decision
making by DOE. No inferences should be drawn from this presentation
regarding future actions by DOE, which are limited both by the terms of the
Standard Contract and Congressional appropriations for the Department to
fulfill its obligations under the Nuclear Waste Policy Act including licensing and
construction of a spent nuclear fuel repository.
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Key Attributes for DPC Fillers

= Material Compatibility
= Ease of Injectability

= Moderator Displacement

= Minimal Intrinsic Neutron Moderation ~ Phosphate-Based Cements
= Minimal Gas Generation

= Long-Term Chemical Stability

= Radionuclide Sequestration

Low Melting Point Metals
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Phosphate Cements as DPC Fillers

Advantages of Phosphate Cements:

Inorganic
Nontoxic
Near Neutral pH

Very Low Solubility (at near neutral

pH)
Self-Bonding
Radionuclide Sequestration
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Phosphate Cements Under Evaluation

= Aluminum Oxide / Aluminum Phosphate (Al,O5 / AIPO,)
Cements (APCs)

= Calcium Phosphate (Caz(PO,);(OH)) Cements (CPCs)

= Wollastonite / Aluminum Phosphate (CaSiO, / AIPO,)
Cements (WAPCs)

= Fly Ash / Aluminum Phosphate Cements

= Other Commercially Available Cements (as Applicable)
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Aluminum Phosphate Cements (APCs)

ALO; +2HPO, > 2AIPO, + 310 arly Allemps. .
o R ) e
= Based on Wagh et al., 2003 using G g
Inexpensive Starting Materials (Al,O; and ey
H,PO,).

= Reactants form Smooth Pourable Slurries
in Water that are Stable for Days.

0.1 MPa Pressure 150 °C

= Acid-Base Reaction Results in Near
Neutral pH Post Set.

= Set Temperatures Typically at 150-200 °C
at both Ambient (0.1 megapascal MPa)
and Elevated Pressure (up to 1 (MPa)).

* ALO,is present in excess with respect to H,PO, at ~5:1 ~0.2 MPa Pressure 150 °C
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APC Experimental Approach

Vary Pressure, Temperature and Time

Effects of Additives I:
Boric acid (H;BO,) and gadolinium oxide
(Gd,0,) as neutron absorbers.

Effects of Additives Il
Catapal B (AIOOH), gibbsite (Al(OH),), and
metakaolin as aluminum sources.
Ammonium dihydrogen phosphate
(NH,H,PQO,), sodium pentahydrogen
phosphate, (NaH;(PO,),) and ammonium
pentahydrogen phosphate NH,H;(PO,), as
phosphate sources.

energy.gov/ne



APCs at Elevated Pressures (~1 MPa)

= Reaction between Al,O; and aqueous
H;PO, at 150 — 200 °C at ~1 MPa for 0.5 to
2 days yields well consolidated monoliths.

= Reactants ‘set’ to produce one or more
binder phases: berlinite (a-AlPO,),
AIPO,*H,0O and AIPO, — cristobalite.

= Subsequent curing at 250 °C for 8 hours
yields berlinite (a-AIPO,), and/or AIPO, —

cristobalite. ”
= |tis unclear which AIPO, phase is more APC sampln Pyrex tube (1.25
effective as a binder. in x 5 in) after setting and curing.

= Adequate unconfined compressive strength
measured at 5.5 MPa.
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APCs at Ambient Pressure (0.1 MPa)

= The reaction Al,O; + 2H,PO, & 2AIPO, + 3H,0 takes
place at = 130 °C. Product water as steam causes large
voids as APCs set at ambient pressure.

= Additional aluminum sources such as gibbsite (Al(OH),)
and metakaolin reduce or eliminate expansion and large
void formation during setting of the cement.

Standard APC at

_ Ambient Pressure
= These sources react with acid phosphates at room

temperature, causing APCs to begin setting below 100 °C.

= NH,H,PO,, NaH;(PO,),, and NH4H;(PO,), were also
tested as alternative phosphate sources.

= APC with metakaolin and NaH;(PO4), additives yielded a
unconfined compressive strength of 9.5 MPa.

= Binder phase(s) for the ambient pressure APCs is
unidentified in almost all cases and likely amorphous. Apc with metakaolin and NaH¢(PO,)

at Ambient Pressure
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Wollastonite Aluminum Phosphate

Cements (WAPCs

In the presence of a wollastonite (CaSiO,) filler,
Al(OH); reacts with aqueous NaH;(PO,), to
make well consolidated monoliths.

Mixtures are set by slowly ramping temperature
to 130 °C, then are cured at 250 °C.

Unconfined compressive strength for WAPC
material pictured (11.5 MPa) was greater than
all APCs tested.

Binder phase(s) cannot be identified by XRD
and could be amorphous and/or possibly a

glass. WAPC Monolith
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Calcium Phosphate Cements (CPCs)

Ca,(PO,),0 + CaHPO, = Cas(PO,)s(OH)

= Tetracalcium Phosphate (TTCP) and Dibasic
Calcium Phosphate (DCPA) react aqueously at
room temperature to form CPC (hydroxyapatite).

= Set time is rapid < 25 minutes. Calcium chelators
(carboxylic acid-based) were explored to increase
set times to 2-3 hours.

= Dodecanedioic Acid (DDDA) a Dicarboxylic Acid
was determined to be most effective but required
the use of 1 M K;PO, solution (in H,O) for complete
dissolution.

CPC Monolith
= Produces CPC monoliths composed of

hydroxyapatite with some residual starting product
(TTCP) that negatively affects strength and integrity.
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Summary and Next Steps

= Currently APCs and WAPCs show the greatest promise for continued
development.

= Continue process and formulation optimization of both cements.

= Development of CPCs that set at elevated temperatures (100-200 °C) is
underway.

= Measurements of filler porosity as well as their permeability to water and gas are
also underway.

= Future work includes:
* Radiation stability and long term solubility testing on optimized products.
* Develop in-package chemistry models with fillers.

* Small scale testing of fillers in DPC mock ups.
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