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Disclaimer

This is a technical presentation that does not take into account the contractual
limitations or obligations under the Standard Contract for Disposal of Spent
Nuclear Fuel and/or High-Level Radioactive Waste (Standard Contract) (10
CFR Part 961). For example, under the provisions of the Standard Contract,
spent nuclear fuel in multi-assembly canisters is not an acceptable waste form,
absent a mutually agreed to contract amendment.

To the extent discussions or recommendations in this presentation conflict with
the provisions of the Standard Contract, the Standard Contract governs the
obligations of the parties, and this presentation in no manner supersedes,
overrides, or amends the Standard Contract.

This presentation reflects technical work which could support future decision
making by DOE. No inferences should be drawn from this presentation
regarding future actions by DOE, which are limited both by the terms of the
Standard Contract and Congressional appropriations for the Department to
fulfill its obligations under the Nuclear Waste Policy Act including licensing and
construction of a spent nuclear fuel repository.

SFWST 2 energy.gov/ne



Cross-Cutting Research and Development (R&D)
Dual Purpose Canister (DPC) Considerations

■ Geologic Disposal Safety Assessment (GDSA) reference
cases, modeled with the PFLOTRAN code
• Source Terms — based on large, higher-temperature waste packages

• Waste package degradation model

• Waste form degradation model

• Interactions With Engineered Barriers

• Effects of different geologies

• Effect of high-temperature on engineered barriers (e.g., bentonite)

■ Thermal and shielding implications for the transportation
schedule
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Source Term Processes

Waste Package (WP) Degradation
• Determines WP breach time
• Available models

• Sampled general corrosion rate for each WP 7
• Time of breach for all WPs

Waste Form (WF) Dissolution
• Determines WF dissolution rate,

subsequent to WP breach <-00
• Available models
( • Fuel Matrix Degradation {FMD} model )

• Built-in rate equations (e.g., gIass)

IJser-provided fractional dissolution rate 
1( •

• Instantaneous dissolution

WF Radionuclide Release
• Instantaneous release at WP breach
• Congruent radionuclide release from remaining WF

-1

WF Properties
• Radionuclide inventory,

including decay and ingrowth
• Bulk volume
• Instant release fractions
• Surface area

Flow and

4.1 Transport

Domain
L

Source: adapted from Mariner et al. 2019, Figure 2-4
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Waste Package Canister Vitality Model

• Canister vitality (wall thickness remaining) is
a simple probabilistic rate (Mariner et al. 2016)
• temperature-dependent general corrosion

• can also define a breach time (e.g., early failures)

• Future development (Mariner et al. 2018)
• mechanistic corrosion (general, localized)

• DECOVALEX Task F

• effects of groundwater chemistry / redox

• seismic, igneous (site specific)

• Dual-purpose canister (DPC) considerations
• Elevated temperatures

• Disposal overpack materials (Cu, alloy 22, ... ?)

C Reff = canister degradation rate
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Waste Form Dissolution Rate Model

• Spent nuclear fuel (SNF) dissolution rate that begins
following waste package failure (Mariner et al. 2016)
• Instant release fraction (specified radionuclides)

• Fractional dissolution (e.g., 10-5/yr)

• Directly implemented in PFLOTRAN
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Electrochemical Fuel Matrix Degradation (FMD)
Model

• 1-D reactive transport model to simulate diffusion of
chemical species (Jerden et al. 2017)

• SNF dissolution rate is a function of (Mariner et al. 2018

• Radiolysis

• Growth of alteration layer on UO2 surface

• Diffusion of reactants through the alteration layer

• Interfacial corrosion potential

Inputs Outputs

• Initial concentration profiles across 1D corrosion/water layer

.
•

.

(UO2(s), UO3(s), U04(s), H202, U022+, UC032-, UO2, C032-,
02, Fe2+, and H2)
Initial corrosion layer thickness
Dose rate at fuel surface (= f (time, burnup))
Temperature

• Time, time step length
• Environmental concentrations (C032-, 02, Fe2+, and H2)

• Final concentration
profiles across 1D
corrosion/water layer

• Final corrosion layer
thickness

• Fuel dissolution rate

• Mechanistic model and emulators coupled to
PFLOTRAN (Mariner et al. 2019)
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(adapted from Jerden et al. 2017)
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Waste Form Degradation Model for DPCs

■ DPC considerations
• In-package chemistry and UO2 degradation

• elevated temperature, boiling?

• reduced instant release fraction for higher burn-up fuels?

• effects of different geologies (e.g., groundwater chemistry)

• chemical effects from filler materials

• criticality event?

— changes to radionuclide inventory

— additional radiolytic oxidants from beta and gamma radiation

• Cladding degradation

• elevated temperature?

• criticality event?
— intact cladding assumed

• Neutron absorbers

• degradation of aluminum-based materials
— e.g., BoraITM, MetamicTM
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Interactions with Engineered Barriers (Rutqvist 2019)

• For DPC direct disposal, a peak backfill temperature of 200°C
is likely to occur, unless the SNF is aged for hundreds of
years before backfilling (Hardin et al. 2015)

• For clay-based materials, a peak temperature of 100°C is
often adopted to limit thermal-hydrologic-mechanical-
chemical effects (e.g., chemical changes, material
degradation, clay phase change, smectite swelling)

• FEBEX: bentonite heated to 100°C in 18-year test at Grimsel Test Site

• Backfill peak temperature >100°C is currently being evaluated

• Mont Terri: ongoing in-situ heater test up to 140°C in Opalinus Clay
(Rutqvist et al. 2018; 2019)

• HotBENT: planned heater test at 150°C to 200°C at Grimsel Test Site

• Bentonite backfill mixtures can be engineered to increase the thermal
conductivity by mixing in graphite or graphene oxide

• Jobmann and Buntebarth 2009; Chen et aI. 2018
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Interactions with Engineered Barriers (cont.)

• The thermal-hydrologic-mechanical-
chemical (THMC) effects of high-
temperature on bentonite and near-
field host rock are being examined in
multiple SFWST Work Packages
• Argillite Disposal R&D

• Engineered Barrier System (EBS) R&D

• International Collaborations Research

• These effects will be captured in
GDSA reference cases
• DPC disposal in unsaturated alluvium

• DPC disposal in saturated argillite
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(Source: Rutqvist 2019, Figure 1-1)
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Implications for Transportation

• The same tools and specific data that are used to evaluate
criticality margin for the direct disposal of DPCs can also be
used to evaluate the thermal and shielding criteria to
determine when the DPC is transportable —

• UNF-ST&DARDS and the Unified Database (UDB)

• Assembly ID

• Assembly
type

• Initial
enrichment

• Discharge
burnup

• Cycle start
and end
dates

• Geometric
configuration

• Materials of
construction

• Design
dimensions

• Control
components

• Cycle specific
burnup

• Soluble
boron

• Rod
insertion
history

• Batch
loadings

• Axial burnup
profiles

• Moderator
temperature

• Geometric
configuration

• Materials of
construction

• Design
dimensions

• Cask loading
patterns

• Component
loading

Models

pletion:
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ORIGEN

• Thermal:
CO RA-SFS

• Criticality:
KENO-VI
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• Fuel performance
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• Fuel geometry, dimensions,
and materials

• Reactor irradiation histories
(e.g. reactor cycle length,
specific power)

• Cask system data, including
Certificate of Compliance
(CoC) requirements
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Unified Database (UDB) checks against transportation Certificate
of Compliance (CoC) limits can be used to determine dates when
SNF could be shi• •ed
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Assembly Decay Heat Example

Per assembly COC decay heat limit

4-1 Loading date
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time in dry storage
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assemblies meet
decay heat limit
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Unified Database (UDB) checks against transportation Certificate
of Compliance (CoC) limits can be used to determine dates when
SNF could be shi• •ed

Assembly Minimum Cooling Time Example (Dose Related) 
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Questions?

SFWST 1 5 energy.gov/ne


