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Engineering Science - Analysis Goal

A large portion of people using the finite element method are faced
with a general task:

Deliver critical engineering analyses in a timeframe
consistent with project requirements



Engineering Analysis, Process Cost Breakdown'
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Application Spaces

Engineering analyses common at Sandia. Goal is to have a general solution, must
address the more burdensome models: multi-body /material, complex
geometries, contact, nonlinear materials, dynamic loading

Battery Microstructure Mars Rover



Conforming Reproducing Kernel

The Conforming Reproducing Kernel (CRK) LDRD used meshfree ideas to improve
design-to-simulation agility

* Developed a means for handling boundary conditions and challenging geometries
* Designed efficient integration techniques for simulating nearly incompressible materials

* Brought bond-based fracture into a Galerkin framework
* Prototyped an efficient meshfree implementation using STK

CRK is in-between a mesh-based and meshfree method. It is designed to be robust, accurate
and efficient on automatically generated meshes.



Reproducing Kernel Meshfree Approximation:

Approximate solutions are constructed over a meshfree discretization (point cloud). Shape
functions are constructed as the product of a kernel function and a correction function.
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* Kernel function: compact support, determines smoothness of the approximation
* Correction function: enforces polynomial reproducibility, allowing solution convergence

Liu, W. K., Jun, S., and Zhang, Y. F. Reproducing kernel particle methods. International Journal for Numerical Methods in Fluids 20:1081-1106, 1995.




Conforming Reproducing Kernel

Define kernel functions using, smooth spline spaces on triangles or tetrahedra
(Bernstein-Bezier polynomials)
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| Elasticity Patch Test
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Figure: Deformed Figure: RKPM, Figure: CRK,

triangulation transformation method static condensation

Method L’ H,
RKPM with transformation method 2.05e-03 2.44e-02

Conforming window RK with static condensation 7.65e-17 1.04e-15

* Weak Kronecker-Delta — Kinematically Admissible Approximations
* Interpolatory along boundary: u' (x7) = dj — directly impose essential boundaries (like FEM)
* Conforming kernels also address issues with material interfaces and concavities




Integration for Meshfree Methods

Variationally consistent integration can be accomplished using a smoothed gradient operator:
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Where (); is the smoothing volume surrounding corresponding to a material point [,
with boundary [} , volume V; and outward facing surface normal n

* Variationally consistent integration: passes patch test
* Efficient with a single material point per domain
* Robust

But, can have
* Low energy modes
* Pressure oscillations for nearly incompressible materials

The advent of smoothed gradient integrations lead to the smoothed finite
element method (SFEM) and inspired the virtual element method (VEM) Example Smoothing Cell

J.-S. Chen, C.-T.Wu, S.Yoon, and Y. You, “A stabilized conforming nodal integration for Galerkin mesh-free methods,”
International Journal for Numerical Methods in Engineering, vol. 50, no. 2, pp. 435—466,2001.




New Integration Technique for Nearly Incompressible Materials

A method is proposed to address low energy modes and pressure oscillations. A
multiplicative split is used to decompose the deformation gradient

F — Fdff Fia"f,‘l»’
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The volumetric part is replaced with a projected value

F — Fiﬁ! Fdr:‘l'

with
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New Integration Technique for Nearly Incompressible Materials

Now for

F — Fa’it‘ Fde*v
we consider a smoothed deviatoric deformation gradient

F‘df’l L (Qdﬂ]

and a smoothed volumetric volumetric deformation gradient

Where C' is the number of smoothing subcells in the
smoothing domain.

Nested smoothing domains

Meshed domains




Example: Cook’s Membrane, Poisson’s Ratio = 0.499

Nodal volumetric
3 deviatoric cells per volumetric cell
Plus mid tet bubbles

Nodal volumetric and deviatoric
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New integration method is displacement and integration stable



Relative Stable Time Increment
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Taylor Bar Impact
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Foam Crush / Compression




Rubber Mesostructure in Shear
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Foam Mesostructure
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Additional Highlights and Conclusions

Realization of a multi-stage vision:

* Motivation came from analysis experience

* Core research completed in the doctoral study program and LDRD
* Prototyped in the LDRD

* In development in Sierra/SM

* Next: testing on components and systems,V&YV, put into production

Funding:
* Past: doctoral study program, CRK LDRD (2 years)
* Current:WIPP, Goodyear, Foam LDRD, NGS, ASC/IC

Built on sound theories:

* ltis a Galerkin method

* Integration properties are well understood

* Boundary condition enforcement is straight-forward

* Leverages many ideas from FEM to solve other challenges



