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1 Engineering Science - Analysis Goal

A large portion of people using the finite element method are faced
with a general task:

Deliver critical engineering analyses in a timeframe
consistent with project requirements
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Engineering Analysis, Process Cost Breakdown
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I M. F. Hardwick, R. L. Clay, P.T. Boggs, et al.,"DART system analysis", Sandia National Laboratories,
Tech. Rep. SAND2005-4647, 2005.



I Application Spaces

Engineering analyses common at Sandia. Goal is to have a general solution, must
address the more burdensome models: multi-body /material, complex
geometries, contact, nonlinear materials, dynamic loading

Battery Microstructure Mars Rover
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Conforming Reproducing Kernel

The Conforming Reproducing Kernel (CRK) LDRD used meshfree ideas to improve
design-to-simulation agility

r•
• 

Developed a means for handling boundary conditions and challenging geometries
Designed efficient  integration techniques for  simulating nearly incompressible materials 

• Brought bond-based fracture into a Galerkin framework
• Prototyped an efficient meshfree implementation using STK

CRK is in-between a mesh-based and meshfree method. It is designed to be robust, accurate
and efficient on automatically generated meshes.



1 Reproducing Kernel Meshfree Approximation:

Approximate solutions are constructed over a meshfree discretization (point cloud). Shape
functions are constructed as the product of a kernel function and a correction function.
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• Kernel function: compact support, determines smoothness of the approximation
- Correction function: enforces polynomial reproducibility, allowing solution convergence

Liu, W. K., Jun, S., and Zhang, Y. F. Reproducing kernel particle methods. International Journal for Numerical Methods in Fluids 20:1081-1106, 1995.



Conforming Reproducing Kernel

Define kernel functions using, smooth spline spaces on triangles or tetrahedra
r

(Bernstein-Bezier polynomials)
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Elasticity Patch Test

Figure: Deformed
triangulation

Figure: RKPM.
transformation method

Figure: CRK,
static condensation
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• Weak Kronecker-Delta —> Kinematically Admissible Approximations
• Interpolatory along boundary: Ili' (xi) di —> directly impose essential boundaries (like FEM)
• Conforming kernels also address issues with material interfaces and concavities



Integration for Meshfree Methods

Variationally consistent integration can be accomplished using a smoothed gradient operator:
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Where .01_ is the smoothing volume surrounding corresponding to a material point L
with boundary F1 , volume VLand outward facing surface normal n

• Variationally consistent integration: passes patch test Example Nodal Domain (SCNl)

• Efficient with a single material point per domain
• Robust
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The advent of smoothed gradient integrations lead to the smoothed finite
element method (SFEM) and inspired the virtual element method (VEM) Example Smoothing Cell

But, can have
• Low energy modes
• Pressure oscillations for nearly incompressible materials

J.-S. Chen, C.-T.Wu, S.Yoon, and Y.You,"A stabilized conforming nodal integration for Galerkin mesh-free methods,"
International Journal for Numerical Methods in Engineering, vol. 50, no. 2, pp. 435-466, 2001.



New Integration Technique for Nearly Incompressible Materials

A method is proposed to address low energy modes and pressure oscillations. A
multiplicative split is used to decompose the deformation gradient
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The volumetric part is replaced with a projected value
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I New Integration Technique for Nearly Incompressible Materials

Now for

we consider a smoothed deviatoric deformation gradient

P(Wet

and a smoothed volumetric volumetric deformation gradient
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Where C is the number of smoothing subcells in the
smoothing domain.

Nested smoothing domains

Meshed domains



Example: Cook's Membrane, Poisson's Ratio = 0.499
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Nodal volumetric and deviatoric

I
Nodal volumetric

3 deviatoric cells per volumetric cell
Plus mid tet bubbles

New integration method is displacement and integration stable
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Stable Time Increment Comparison Using a Morph Mesh
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I Taylor Bar Impact
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I Foam Crush / Compression



I Rubber Mesostructure in Shear
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17 Foam Mesostructu re
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Additional Highlights and Conclusions

Realization of a multi-stage vision:
• Motivation came from analysis experience
• Core research completed in the doctoral study program and LDRD
• Prototyped in the LDRD
• In development in Sierra/SM
• Next: testing on components and systems,Y&V, put into production

Funding:
• Past: doctoral study program, CRK LDRD (2 years)
• Current:WIPP, Goodyear, Foam LDRD, NGS, ASC/IC

Built on sound theories:
• It is a Galerkin method
• Integration properties are well understood
• Boundary condition enforcement is straight-forward
• Leverages many ideas from FEM to solve other challenges


