SAND2020- 7263PE

The Kokkos Lectures

Module 1: Introduction, Building and Parallel Dispatch

July 16, 2020

Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and

Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S,

Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.
SAND2019-1055814

Welcome to Kokkos

Kokkos is C++ Performance Portability
> Write a single source implementation using C++
> Use a descriptive Programming Model
» Compile for GPUs and CPUs

Kokkos is Ready for Use
> Well established project since 2012
> Major buy-in by DOE National Labs
P> Well over 100 projects with over 500 developers use Kokkos
» Dedicated developer staff at 5 National Labs
>

Robust support for software stacks: GCC 5+, Clang 4+, NVCC 9+, ROCM 3.5,
XL16

July 16,

Welcome to Kokkos

Online Resources:

» https://github.com/kokkos:
» Primary Kokkos GitHub Organization

» https://github.com/kokkos/kokkos-tutorials/
LectureSeries:

> Find these slides
» https://github.com/kokkos/kokkos/wiki:
» Wiki including API reference

» https://kokkosteam.slack.com:
» Slack channel for Kokkos.
» Please join: fastest way to get your questions answered.
» Can whitelist domains, or invite individual people. Email:
crtrott@sandia.gov

Lecture Series Outline

07/17 Module 1: Introduction, Building and Parallel Dispatch
07/24 Module 2: Views and Spaces

07/31 Module 3: Data Structures + MultiDimensional Loops
08/07 Module 4: Hierarchical Parallelism

08/14 Module 5: Tasking, Streams and SIMD

08/21 Module 7: Internode: MPI and PGAS

08/28 Module 8: Tools: Profiling, Tuning and Debugging
09/04 Module 9: Kernels: Sparse and Dense Linear Algebra
09/11 Reserve Day

vVvvyvyVvYvVvyVvyvYvyy

July 16,

What to Expect

Lectures
> Typically 90 minutes of lecture
» Submodules have associated exercise as homework
> Typically 2-3 Exercises per lecture

> Exercises will be talked through at next meeting.

Exercises
> Exercises are small codes with places to do modifications.

» Access to GPUs helpful for most of them, but most can be
done on pure CPU systems.

» Only dependent on standard compilers (e.g. Clang, NVCC)
» Office hours on Tuesdays (potentially with AWS access).
» Ongoing support at https://kokkosteam.slack.com

July 16,

Introduction

What is Kokkos? Who is behind it? Why should you use it?

Parallel Dispatch

Pattern, Policy and Body: how to parallelize simple code with
Kokkos.

Building
What do you need to build Kokkos and Apps? How to integrate
into your build system?

| .

July 16, 2020

Introduction

Learning objectives:
> Why do we need Kokkos
» The Kokkos EcoSystem
» The Kokkos Team

July 16, 2020

The HPC Hardware Landscape

Current Generation: Programming Models OpenMP 3, CUDA and OpenACC depending on machine

) B W emes s

LANL/SNL Trinity LLNL SIERRA ORNL Summit SNL Astra Riken Fugaku
Intel Haswell / Intel 1BM Power9 / NVIDIA VoltiBM Power9 / NVIDIA Volta ARM CPUs ARM CPUs with SVE
L CUDA / OpenMP* CUDA / OpenACC / OpenMP* OpenMP 3 OpenMP 3/ OpenACC**
OpenMP 3

Upcoming Generation: Programming Models OpenMP 5, CUDA, HIP and DPC++ depending on machine

U e RO

NERSC Perlmutter ORNL Frontier ANL Aurora LLNL EI Capitan
AMD CPU / NVIDIA AMD CPU / AMD Xeon CPUs / Intel GPUs AMD CPU / AMD
GPU GPU DPC++/ OpenMP 5***** GPU
CUDA / OpenMP 5*** HIP / OpenMP 5**** HIP / OpenMP 5****

* Initially not working. Now more robust for Fortran than C++, but getting better.
** Research effort.

*** OpenMP 5 by NVIDIA.

**%* OpenMP 5 by HPE.

**k%% QpenMP 5 b
July 16, 2020

Intel.

Cost of Coding

Industry Estimate

A full time software engineer writes 10 lines of production code per
hour: 20k LOC/year.

» Typical HPC production app: 300k-600k lines
» Sandia alone maintains a few dozen
» Large Scientific Libraries:

> E3SM: 1,000k lines
» Trilinos: 4,000k lines

Conservative estimate: need to rewrite 10% of an app to switch
Programming Model

July 16, 2020

Cost of Coding

Industry Estimate

A full time software engineer writes 10 lines of production code per
hour: 20k LOC/year.

» Typical HPC production app: 300k-600k lines
» Sandia alone maintains a few dozen
» Large Scientific Libraries:

> E3SM: 1,000k lines
» Trilinos: 4,000k lines

Conservative estimate: need to rewrite 10% of an app to switch
Programming Model

Software Cost Switching Vendors

Just switching Programming Models costs multiple person-years
per app!

July 16, 2020

What is Kokkos?

» A C++ Programming Model for Performance Portability
» Implemented as a template library on top CUDA, HIP,
OpenMP, ...
» Aims to be descriptive not prescriptive
P Aligns with developments in the C++ standard
» Expanding solution for common needs of modern science and
engineering codes
» Math libraries based on Kokkos
» Tools for debugging, profiling and tuning
> Utilities for integration with Fortran and Python
» |s is an Open Source project with a growing community

» Maintained and developed at https://github.com/kokkos
» Hundreds of users at many large institutions

July 16, 2020

Kokkos at the Center

Applications Libraries Frameworks
3

“ SNL LAMMPS UT Uintah
i Combustine
NREL/SNL NALU MolecularlDynamlcs .
Wind Turbine CFD ORNL Raptor
Large Eddy Sim
O O

\d v ¥ !

Cray / AMD GPU i
Y LANL/SNL Trinity ANL Aurora SNL Astra LLNL SIERRA
Intel Haswell / Intel KNL |0 xeaon CPUS + Xe Compute ARM Architecture |BM Power9 / NVIDIA Volta

July 16, 2020

The Kokkos EcoSystem

Science and Engineering Applications (\
Kokkos
Trilinos fiepory

Kokkos EcoSystem

rKokkos Remote Spaces ” Kokkos Kernels
Kokkos Core

v o Y *
s i B

Multi-Core ~ Many-Core APU CPU+GPU

[

July 16, 2020

The Kokkos Team

Lkokkos

A D Sandia
- Los Alamos i | Netiona Argonne &
N AT]ONAELSYL:-\gijO RATORY laboratories NATIONAL LABORATORY

¥ OAK RIDGE (BN BERKELEY LAB <¥g® CSCS

National Laboratory

Kokkos Core: C.R.Trott, J. Ciesko, V. Dang, N. Ellingwood, D.S. Hollman, D.
Ibanez, J. Miles, J. Wilke, , H. Finkel, N. Liber, D. Lebrun-Grandie,
D. Arndt, B. Turcksin, J. Madsen, R. Gayatri
former: H.C. Edwards, D. Labreche, G. Mackey, S. Bova, D. Sunder-
land

Kokkos Kernels: S. Rajamanickam, L. Berger, V. Dang, N. Ellingwood, E. Harvey, B.
Kelley, K. Kim, C.R. Trott, J. Wilke, S. Acer

Kokkos Tools D. Poliakoff, C. Lewis, S. Hammond, D. Ibanez, J. Madsen, S. Moore,
C.R. Trott

Kokkos Support C.R. Trott, G. Shipmann, G. Womeldorff, and all of the above

former: H.C. Edwards, G. Lopez, F. Foertter

July 16, 2020

Kokkos and the C++ Standard

Kokkos helps improve 1SO C++

S
@ 7
2 %0
Q\e¢ o™ %, OS¢
ac’c,e \Ie(s o) /76,
eot \9‘3"’0\l s S, h/f@a
X0 16/70' ’(/re
Q/-o,
Kokkos Legacy C++ Standard
/ N
peé) /77@/) (\\ @
sy, Cf/f/és Yoy " C++ Backport @
4 O
*x)‘é/) ’G’ﬁ /;?ecy QO(\'\
U, S o %00“*

Ten current or former Kokkos team members are members of the
ISO C++ standard committee.

July 16, 2020

C++420 std::atomic_ref

C++11 std::atomic insufficient for HPC
» Objects, not functions, with only atomic access

> Can't use non-atomic access in one operation, and then
atomic access in the next

C++420 std::atomic_ref adds atomic capabilites as in Kokkos
» Can wrap standard allocations.

> Works also for sizes which can’t be done lock-free (e.g.
complex<double>)

P> Atomic operations on reasonably arbitrary types

// Kokkos today
Kokkos::atomic_add (&al[i] ,5.0);

// atomic_ref in IS0 C++20
std::atomic_ref(al[i]) += 5.0;

July 16, 2020

C++23 std::mdspan

C++4 does not provide multi dimensional arrays

» Every scientific programming language has them: Fortran,
Matlab, Python, ...

C++23 std::mdspan adds Kokkos::View like arrays
> Reference semantics.
» Compile time and runtime extents (also mixed)

> Data layouts to allow for adapting hardware specific access
patterns.

» Subviews!

// Kokkos today
View<int#**[5], LayoutLeft> a("A",10,12); a(3,5,1) = 5;

// atomic_ref in IS0 C++23
using ext = extents<dynamic_extent ,dynamic_extent ,5>;
basic_mdspan<int,ext,layout_left> a(ptr,10,12); a(3,5,1)+=5;

July 16, 2020

Prerequisites for Tutorial Exercises

Knowledge of C++: class constructors, member variables,
member functions, member operators, template arguments

Using your own ${HOME}

>

| 4
>
>

v

Git
GCC 4.8.4 (or newer) OR Intel 15 (or newer) OR Clang 3.5.2 (or newer)
CUDA nvcc 9.0 (or newer) AND NVIDIA compute capability 3.0 (or newer)

git clone https://github. com/kokkos/kokkos
into ${HOME}/Kokkos/kokkos

git clone https://github. com/kokkos/kokkos-tutorials
into ${HOME}/Kokkos/kokkos-tutorials

Slides are in
${HOME}/Kokkos/kokkos-tutorials/Intro-Full/Slides

Exercises are in
${HOME}/Kokkos/kokkos-tutorials/Intro-Full/Exercises

Exercises’ makefiles look for ${HOME}/Kokkos/kokkos

July 16, 2020

Lecture Series Objectives

Kokkos’ basic capabilities:
» Simple 1D data parallel computational patterns
» Deciding where code is run and where data is placed
> Managing data access patterns for performance portability
» Multidimensional data parallelism
Kokkos’ advanced capabilities:
» Thread safety, thread scalability, and atomic operations
» Hierarchical patterns for maximizing parallelism
P> Task based programming with Kokkos
Kokkos’ tools and Kernels:
» How to profile, tune and debug Kokkos code
> Interacting with Python and Fortran
» Using Kokkos Kernels math library

July 16, 2020

Tutorial Takeaways

> Kokkos enables Single Source Performance Portable
Codes

> Simple things stay simple - it is not much more complicated
than OpenMP

» Advanced performance optimizing capabilities easier to
use with Kokkos than e.g. CUDA or HIP

» Kokkos provides data abstractions critical for performance
portability not available in other programming models
Controlling data access patterns is key for obtaining
performance

» The Kokkos Ecosystem comes with tools (profiling,
debugging, tuning, math libraries, etc.) needed for application
development in professional settings

July 16,

Operating assumptions (0)

Assume you are here because:

> Want to use all HPC node architectures; including GPUs

» Are familiar with C++4

» Want GPU programming to be easier

» Would like portability, as long as it doesn’t hurt performance
Helpful for understanding nuances:

> Are familiar with data parallelism

» Are familiar with OpenMP

» Are familiar with GPU architecture and CUDA

July 16, 2020

Operating assumptions (1)

Target machine:

On-Package

Memory

|
MIOMIBN [eulaix3

198UU02JB1U| [eUIBIXT

On-Package

July 16, 2020

Important Point: Performance Portability

Important Point

There's a difference between portability and
performance portability.

Example: implementations may target particular architectures and
may not be thread scalable.
(e.g., locks on CPU won't scale to 100,000 threads on GPU)

July 16, 2020

Important Point: Performance Portability

Important Point

There's a difference between portability and
performance portability.

Example: implementations may target particular architectures and
may not be thread scalable.

(e.g., locks on CPU won't scale to 100,000 threads on GPU)
Goal: write one implementation which:
» compiles and runs on multiple architectures,

> obtains performant memory access patterns across
architectures,

> can leverage architecture-specific features where possible.

July 16,

Important Point: Performance Portability

Important Point

There's a difference between portability and
performance portability.

Example: implementations may target particular architectures and
may not be thread scalable.
(e.g., locks on CPU won't scale to 100,000 threads on GPU)

Goal: write one implementation which:
» compiles and runs on multiple architectures,

> obtains performant memory access patterns across
architectures,

> can leverage architecture-specific features where possible.

Kokkos: performance portability across manycore architectures.

July 16, 2020

Concepts for Data Parallelism

Learning objectives:
» Terminology of pattern, policy, and body.
> The data layout problem.

July 16, 2020

Concepts: Patterns, Policies, and Bodies

for (element = 0; element < numElements; ++element) {
total = 0;
for (gp = 0; gqp < numQPs; ++gp) {
total += dot(left[element]l[qpl, right[element]l[qpl);
}

elementValues [element] = total;

July 16, 2020

Concepts: Patterns, Policies, and Bodies

Policy
element < numElements; ++element) {

Pattern
for (element = 0;
total = 0;
> for (gp = 0; gp < numQPs; ++qgp) {
E total += dot(left[element][qpl, right[element]l[qpl);
}
= total;

elementValues [element]

}

Terminology:
> Pattern: structure of the computations

for, reduction, scan, task-graph, ...

> Execution Policy: how computations are executed
static scheduling, dynamic scheduling, thread teams,

» Computational Body: code which performs each unit of

work; e.g., the loop body
= The pattern and policy drive the computational body.

July 16, 2020

1

Threading “Parallel for'

What if we want to thread the loop?

for (element = 0; element < numElements; ++element) {
total = 0;
for (gp = 0; gp < num@Ps; ++qp) {
total += dot(left[element][qpl, right[element][qpl);
¥
elementValues [element] = total;

}

July 16, 2020

Threading “Parallel for”

What if we want to thread the loop?

#pragma omp parallel for
for (element = 0; element < numElements; ++element) {
total = 0;
for (gp = 0; qp < numQPs; ++gp) {
total += dot(left[element][qpl, right[element][qpl);
}

elementValues [element] = total;

(Change the execution policy from “serial” to “parallel.”)

July 16, 2020

Threading “Parallel for”

What if we want to thread the loop?

#pragma omp parallel for
for (element = 0; element < numElements; ++element) {
total = 0;
for (gp = 0; gqp < numQPs; ++qp) {
total += dot(left[element][qpl, right[element][qpl);
}
elementValues [element] = total;

}

(Change the execution policy from “serial” to “parallel.”)

OpenMP is simple for parallelizing loops on multi-core CPUs,
but what if we then want to do this on other architectures?

Intel PHI and NVIDIA GPU and AMD GPU and ...

July 16, 2020

“Parallel for" on a GPU via pragmas

Option 1: OpenMP 4.5

#pragma omp target data map(...)

#pragma omp teams num_teams(...) num_threads(...) private(...)
#pragma omp distribute
for (element = 0; element < numElements; ++element) {

total = 0

#pragma omp parallel for
for (gp = 0; qp < numQPs; ++qp)
total += dot(left[element]l[qpl, right[element][qpl);
elementValues [element] = total;

}

July 16, 2020

“Parallel for" on a GPU via pragmas
Option 1: OpenMP 4.5

#pragma omp target data map(...)

#pragma omp teams num_teams (...) num_threads(...) private(...)
#pragma omp distribute
for (element = 0; element < numElements; ++element) {

total = 0

#pragma omp parallel for
for (gp = 0; qp < numQPs; ++qp)
total += dot(left[element]l[qpl, right[element][qpl);
elementValues [element] = total;

}
Option 2: OpenACC

#pragma acc parallel copy(...) num_gangs(...) vector_length(...)
#pragma acc loop gang vector
for (element = 0; element < numElements; ++element) {
total = 0;
for (gp = 0; gp < numQPs; ++qgp)
total += dot(left[element][qpl, right[element][qpl);
elementValues[element] = total;

}

July 16, 2020 26/69

Portable, but not performance portable

A standard thread parallel programming model
may give you portable parallel execution
if it is supported on the target architecture.

But what about performance?

July 16, 2020

Portable, but not performance portable

A standard thread parallel programming model
may give you portable parallel execution
if it is supported on the target architecture.

But what about performance?

Performance depends upon the computation’s
memory access pattern.

July 16, 2020

Problem: memory access pattern

#pragma something, opencl, etc.

for (element = 0; element < numElements; ++element) {
total = 0;
for (gp = 0; qp < numQPs; ++qp) {
for (i = 0; i < vectorSize; ++i) {
total +=

left[element * numQPs * vectorSize +
qQp * vectorSize + i] =*

right [element * numQPs * vectorSize +
qp * vectorSize + il;

¥

elementValues [element] = total;

July 16, 2020

Problem: memory access pattern

#pragma something, opencl, etc.

for (element = 0; element < numElements; ++element) {
total = 0;
for (qp = 0; gp < numQPs; ++qp) {
for (i = 0; i < vectorSize; ++i) {
total +=

left [element * numQPs * vectorSize +
qp * vectorSize + i] *

right [element * numQPs * vectorSize +
qp * vectorSize + i];

}
elementValues [element] = total;

¥

Memory access pattern problem: CPU data layout reduces GPU
performance by more than 10X.

July 16, 2020

Problem: memory access pattern

#pragma something, opencl, etc.

for (element = 0; element < numElements; ++element) {
total = 0;
for (qp = 0; gqp < numQPs; ++qp) {
for (i = 0; i < vectorSize; ++i) {
total +=

left [element * numQPs * vectorSize +
qp * vectorSize + i] *
right [element * numQPs * vectorSize +
qp * vectorSize + i];
}
}
elementValues [element] = total;

}

Memory access pattern problem: CPU data layout reduces GPU
performance by more than 10X.

Important Point

For performance the memory access pattern
must depend on the architecture.

July 16, 2020

Kokkos overview

How does Kokkos address performance portability?

Kokkos is a productive, portable, performant, shared-memory
programming model.
» is a C++ library, not a new language or language extension.
» provides clear, concise, scalable parallel patterns.

> lets you write algorithms once and run on many architectures
e.g. multi-core CPU, GPUs, Xeon Phi, ...

» minimizes the amount of architecture-specific
implementation details users must know.

> solves the data layout problem by using multi-dimensional
arrays with architecture-dependent layouts

July 16,

Data parallel patterns

Learning objectives:
» How computational bodies are passed to the Kokkos runtime.
» How work is mapped to cores.

» The difference between parallel for and
parallel_reduce.

> Start parallelizing a simple example.

July 16, 2020

Using Kokkos for data parallel patterns (0)

Data parallel patterns and work

for (atomIndex = 0; atomIndex < numberOfAtoms; ++atomIndex) {
atomForces [atomIndex] = calculateForce(...data...);

}

Kokkos maps work to execution resources

July 16, 2020

Using Kokkos for data parallel patterns (0)

Data parallel patterns and work

for (atomIndex = 0; atomIndex < numberOfAtoms; ++atomIndex) {
atomForces [atomIndex] = calculateForce(...data...);

}

Kokkos maps work to execution resources

» each iteration of a computational body is a unit of work.
> an iteration index identifies a particular unit of work.

> an iteration range identifies a total amount of work.

July 16, 2020

Using Kokkos for data parallel patterns (0)

Data parallel patterns and work

for (atomIndex = 0; atomIndex < numberOfAtoms; ++atomIndex) {
atomForces [atomIndex] = calculateForce(...data...);

}

Kokkos maps work to execution resources
» each iteration of a computational body is a unit of work.
> an iteration index identifies a particular unit of work.

> an iteration range identifies a total amount of work.

Important concept: Work mapping

You give an iteration range and computational body (kernel)
to Kokkos, and Kokkos decides how to map that work to execution

resources.

July 16, 2020

Using Kokkos for data parallel patterns (2)

How are computational bodies given to Kokkos?

July 16, 2020

Using Kokkos for data parallel patterns (2)

How are computational bodies given to Kokkos?

As functors or function objects, a common pattern in C+—+.

July 16, 2020

Using Kokkos for data parallel patterns (2)

How are computational bodies given to Kokkos?

As functors or function objects, a common pattern in C+—+.

Quick review, a functor is a function with data. Example:
struct ParallelFunctor {

void operator () (a work assignment) const {
/% computational body ... */

3

July 16, 2020

Using Kokkos for data parallel patterns (3)

How is work assigned to functor operators?

July 16, 2020

Using Kokkos for data parallel patterns (3)

How is work assigned to functor operators?

A total amount of work items is given to a Kokkos pattern,

ParallelFunctor functor;
Kokkos::parallel_for (numberOfIterations, functor);

July 16, 2020

Using Kokkos for data parallel patterns (3)

How is work assigned to functor operators?

A total amount of work items is given to a Kokkos pattern,

ParallelFunctor functor;
Kokkos::parallel_for (numberOfIterations, functor);

and work items are assigned to functors one-by-one:

struct Functor {
void operator () (const int64_t index) const {...}

}

July 16, 2020

Using Kokkos for data parallel patterns (3)

How is work assigned to functor operators?

A total amount of work items is given to a Kokkos pattern,

ParallelFunctor functor;
Kokkos::parallel_for (numberOfIterations, functor);

and work items are assigned to functors one-by-one:

struct Functor {
void operator () (const int64_t index) const {...}

}

Warning: concurrency and order

Concurrency and ordering of parallel iterations is not guaranteed
by the Kokkos runtime.

July 16, 2020

Using Kokkos for data parallel patterns (4)

How is data passed to computational bodies?

for (atomIndex = 0; atomIndex < numberOfAtoms; ++atomIndex) {
atomForces [atomIndex] = calculateForce(...data...);

}

struct AtomForceFunctor {

void operator () (const int64_t atomIndex) comnst {
atomForces [atomIndex] = calculateForce(...data...);

}

July 16, 2020

Using Kokkos for data parallel patterns (4)

How is data passed to computational bodies?

for (atomIndex = 0; atomIndex < numberOfAtoms; ++atomIndex) {
atomForces [atomIndex] = calculateForce(...data...);

}

struct AtomForceFunctor {

void operator () (const int64_t atomIndex) const {
atomForces [atomIndex] = calculateForce(...data...);

}

How does the body access the data?

Important concept

A parallel functor body must have access to all the data it needs
through the functor's data members.

July 16, 2020

Using Kokkos for data parallel patterns (5)
Putting it all together: the complete functor:

struct AtomForceFunctor {
ForceType _atomForces;
AtomDataType _atomData;
AtomForceFunctor (/* args */) {...}
void operator () (const int64_t atomIndex) comnst {
_atomForces [atomIndex] = calculateForce(_atomData);

}
33

July 16, 2020

Serial

Using Kokkos for data parallel patterns (5)
Putting it all together: the complete functor:

struct AtomForceFunctor {
ForceType _atomForces;
AtomDataType _atomData;
AtomForceFunctor (/* args */) {...}
void operator () (const int64_t atomIndex) comnst {
_atomForces [atomIndex] = calculateForce(_atomData);
}
};

Q/ How would we reproduce serial execution with this functor?

for (atomIndex = 0; atomIndex < numberOfAtoms;
atomForces[atomIndex] = calculateForce(data);

++atomIndex)q{

}

July 16, 2020

Using Kokkos for data parallel patterns (5)
Putting it all together: the complete functor:

struct AtomForceFunctor {
ForceType _atomForces;
AtomDataType _atomData;
AtomForceFunctor (/* args */) {...}
void operator () (const int64_t atomIndex) comnst {
_atomForces [atomIndex] = calculateForce(_atomData);
}
};

Q/ How would we reproduce serial execution with this functor?

®| for (atomIndex = 0; atomIndex < numberOfAtoms; ++atomIndex){
.5 atomForces[atomIndex] = calculateForce(data);

wn

8 AtomForceFunctor functor (atomForces, data);

ﬁ for (atomIndex = 0; atomIndex < numberOfAtoms; ++atomIndex){
§ functor (atomIndex);

w|r

July 16, 2020

Using Kokkos for data parallel patterns (6)

The complete picture (using functors):

1. Defining the functor (operator+data):

struct AtomForceFunctor {
ForceType _atomForces;
AtomDataType _atomData;

AtomForceFunctor (ForceType atomForces , AtomDataType data)
_atomForces (atomForces), _atomData(data) {}

void operator () (const int64_t atomIndex) const {
_atomForces [atomIndex] = calculateForce(_atomData);
}
}

2. Executing in parallel with Kokkos pattern:

AtomForceFunctor functor (atomForces, data);
Kokkos::parallel_for (numberOfAtoms, functor);

July 16, 2020

Using Kokkos for data parallel patterns (7)

Functors are tedious = C++411 Lambdas are concise

atomForces already exists
data already exists
Kokkos::parallel_for (numberOfAtoms,
[=] (const int64_t atomIndex) {
atomForces [atomIndex] = calculateForce(data);
}
)

July 16, 2020

Using Kokkos for data parallel patterns (7)

Functors are tedious = C++411 Lambdas are concise

atomForces already exists
data already exists
Kokkos::parallel_for (numberOfAtoms,
[=] (const int64_t atomIndex) {
atomForces [atomIndex] = calculateForce(data);

)3

A lambda is not magic, it is the compiler auto-generating a
functor for you.

July 16, 2020

Using Kokkos for data parallel patterns (7)

Functors are tedious = C++411 Lambdas are concise

atomForces already exists
data already exists
Kokkos::parallel_for (numberOfAtoms,
[=] (const int64_t atomIndex) {
atomForces [atomIndex] = calculateForce(data);

)3

A lambda is not magic, it is the compiler auto-generating a
functor for you.

Warning: Lambda capture and C++ containers

For portability to GPU a lambda must capture by value [=].
Don't capture containers (e.g., std::vector) by value because it will
copy the container's entire contents.

July 16, 2020

parallel_for examples

How does this compare to OpenMP?

for (int64_t i = 0; i < N; ++i) {
/* loop body */
}

#pragma omp parallel for

for (int64_t i = 0; i < N; ++i) {
/* loop body */

}

parallel_for (N, [=] (const int64_t i) {
/* loop body */
s

Kokkos OpenMP Serial

Important concept

Simple Kokkos usage is no more conceptually difficult than
OpenMP, the annotations just go in different places.

July 16, 2020

Scalar integration (0)

Riemann-sum-style numerical integration:

4

upper 2 D e 8
y :/ function(x) dx NEE=E | 1
I

ower

-2 -1 0 1 2

Wikipedia

July 16, 2020

Scalar integration (0)

Riemann-sum-style numerical integration:

upper g P
y:/ function(x)dx ol S oot | |]
lower
-2 -1 0 1 2
Wikipedia
double totallntegral = O0;
for (int64_t i = 0; i < numberOfIntervals; ++i) {
const double x =
lower + (i/numberOfIntervals) * (upper - lower) ;
const double thisIntervalsContribution = function(x);

totallIntegral += thisIntervalsContribution;
}
totallIntegral *= dx;

July 16, 2020

Scalar integration (0)

Riemann-sum-style numerical integration:

upper g P
y = / function(x) dx NEE=S A1
lower
-2 -1 0 1 2
Wikipedia
double totallntegral = 0;
for (int64_t i = 0; i < numberOfIntervals; ++i) {
const double x =
lower + (i/numberOfIntervals) * (upper - lower) ;
const double thisIntervalsContribution = function(x);

totalIntegral += thisIntervalsContribution;
}
totallIntegral *= dx;

How do we parallelize it? Correctly?

July 16, 2020

Scalar integration (0)

Riemann-sum-style numerical integration:

upper g Aﬂ A5
Y= / function(x) dx NEE=S A]
lower
-2 -1 0 1 2
Wikipedia
Pattern?
double totallntegral = 0; Policy?
for (int64_t i = 0; i < numberOfIntervals; ++i) {
. const double x =
2 lower + (i/numberOfIntervals) * (upper - lower) ;
O const double thisIntervalsContribution function(x) ;
- totalIntegral += thisIntervalsContribution;
}

totalIntegral *= dx;

How do we parallelize it? Correctly?

July 16, 2020

Scalar integration (1)

An (incorrect) attempt:

double totallntegral = 0;
Kokkos::parallel_for (numberOfIntervals,
[=] (const int64_t index) {
const double x =
lower + (index/numberOfIntervals) * (upper - lower);
totalIntegral += function(x);},
)
totallntegral *= dx;

First problem: compiler error; cannot increment totalIntegral
(lambdas capture by value and are treated as const!)

July 16, 2020

Scalar integration (2)

An (incorrect) solution to the (incorrect) attempt:

double totallntegral = 0;
double * totallntegralPointer = &totallntegral;
Kokkos::parallel_for (numberOfIntervals,
[=] (const int64_t index) {
const double x =
lower + (index/numberOfIntervals) * (upper - lower);
*totalIntegralPointer += function(x);},
);
totallIntegral *= dx;

July 16, 2020

Scalar integration (2)

An (incorrect) solution to the (incorrect) attempt:

double totallIntegral = O0;

double * totallntegralPointer = &totallntegral;

Kokkos::parallel_for (numberOfIntervals,
[=] (const int64_t index) {
const double x =
lower + (index/numberOfIntervals) * (upper - lower);
*totalIntegralPointer += function(x);},
)3
totallIntegral *= dx;
Second problem: race condition
step | thread 0 | thread 1
0 load
1 increment load
2 write increment
3 write

July 16, 2020

Scalar integration (3)

Root problem: we're using the wrong pattern, for instead of
reduction

July 16, 2020

Scalar integration (3)

Root problem: we're using the wrong pattern, for instead of
reduction

Important concept: Reduction

Reductions combine the results contributed by parallel work.

July 16, 2020

Scalar integration (3)

Root problem: we're using the wrong pattern, for instead of
reduction

Important concept: Reduction

Reductions combine the results contributed by parallel work.

How would we do this with OpenMP?

double finalReducedValue = 0;
#pragma omp parallel for reduction(+:finalReducedValue)
for (int64_t i = 0; i < N; ++i) {

finalReducedValue +=

}

July 16, 2020

Scalar integration (3)

Root problem: we're using the wrong pattern, for instead of
reduction

Important concept: Reduction

Reductions combine the results contributed by parallel work.

How would we do this with OpenMP?

double finalReducedValue = 0;
#pragma omp parallel for reduction(+:finalReducedValue)
for (int64_t i = 0; i < N; ++i) {

finalReducedValue +=

}

How will we do this with Kokkos?
double finalReducedValue = 0;
parallel_reduce (N, functor, finalReducedValue);

July 16, 2020

Scalar integration (4)

Example: Scalar integration

Q.| double totallIntegral = 0;

:E #pragma omp parallel for reduction(+:totallntegral)
5 for (int64_t i = 0; i < numberOfIntervals; ++i) {
ol totallntegral += function(...);

O3

double totallntegral = 0;
parallel_reduce (numberOfIntervals,
[=] (const int64_t i, double & valueToUpdate) {
valueToUpdate += function(...);
}’
totallntegral);

Kokkos

> The operator takes two arguments: a work index and a value
to update.

» The second argument is a thread-private value that is
managed by Kokkos; it is not the final reduced value.

July 16,

Amdahl’s Law (1)

Warning: Parallelism is NOT free
Dispatching (launching) parallel work has non-negligible cost.

July 16, 2020

Amdahl’s Law (1)

Warning: Parallelism is NOT free
Dispatching (launching) parallel work has non-negligible cost.

Simplistic data-parallel performance model: Time = o + B*PN

» « = dispatch overhead
> 3 = time for a unit of work
» N = number of units of work

» P = available concurrency

July 16, 2020

Amdahl’s Law (1)

Warning: Parallelism is NOT free

Dispatching (launching) parallel work has non-negligible cost.

Simplistic data-parallel performance model: Time = o + B*PN

» « = dispatch overhead
> 3 = time for a unit of work
» N = number of units of work

P> P = available concurrency

Speedup = P + (1 -+ g;‘ﬁ)
» Should have ax P < Bx N

> All runtimes strive to minimize launch overhead «

» Find more parallelism to increase N

> Merge (fuse) parallel operations to increase /3

July 16,

I
o
Q
2]
2
(0]
>
o
o
3

el
(7
[0
Q.
7]

July 16, 2020

Amdahl’s Law (2)

Results: illustrates simple speedup model = P + (1 + O‘*P)

BxN

Kokkos speedup over serial: Scalar Integration

10000
Kokkos Cuda Pascal60
Kokkos OpenMP HSW
Kokkos OpenMP KNL
1000 L= = ﬁgﬁ;e OpenMP KNL e
100 / T e
10 -
A ¥
1 / -
0.1 ,/?
0.01
100 1000 10000 100000 1x108 1x107 1x108

number of intervals [-]

Note: log scale

e ——————msNaming your kernels
Always name your kernels!

Giving unique names to each kernel is immensely helpful for
debugging and profiling. You will regret it if you don't!

» Non-nested parallel patterns can take an optional string
argument.

> The label doesn't need to be unique, but it is helpful.

» Anything convertible to "std::string”

» Used by profiling and debugging tools (see Profiling Tutorial)

Example:

double totallntegral = O0;
parallel_reduce ("Reduction",numberOfIntervals,
[=] (const int64_t i, double & valueToUpdate) {
valueToUpdate += function(...);

}’
totallntegral);

July 16, 2020

Recurring Exercise: Inner Product

Exercise: Inner product < y, A x >

~ ~
. N R M
(T =0
yT L A .XJ

Details:
> yis Nx1, Ais NxM, x is Mx1

» We'll use this exercise throughout the tutorial

July 16, 2020

Exercise #1: include, initialize, finalize Kokkos

The first step in using Kokkos is to include, initialize, and finalize:

#include <Kokkos_Core.hpp>
int main(int argc, char*x argv) {

/* ... do any necessary setup (e.g., initialize MPI) ... */
Kokkos::initialize (argc, argv);

{

/* ... do computations ... */

}

Kokkos::finalize ();
return O0;

(Optional) Command-line arguments or environment variables:

--kokkos-threads=INT or | total number of threads
KOKKOS_NUM_THREADS
--kokkos-device-id=INT or | device (GPU) ID to use
KOKKOS_DEVICE_ID

July 16, 2020

Exercise #1: Inner Product, Flat Parallelism on the CPU

Exercise: Inner product < y, A% x >

~ ~
N M
[<llllllllltl =M
Details: y' ~ A —_—
» Location: Exercises/01/Begin/
» Look for comments labeled with “EXERCISE"
» Need to include, initialize, and finalize Kokkos library
> Parallelize loops with parallel _for or parallel _reduce
» Use lambdas instead of functors for computational bodies.
» For now, this will only use the CPU.

Exercise #1: logistics
Compiling for CPU

gcc using OpenMP (default) and Serial back-ends,
(optional) change non-default arch with KOKKOS_ARCH
make -j KOKKOS_DEVICES=0penMP,Serial KOKKOS_ARCH=...

Running on CPU with OpenMP back-end

Set OpenMP affinity

export OMP_NUM_THREADS=8

export OMP_PROC_BIND=spread OMP_PLACES=threads
Print example command line options:

./01 _Exercise.host -h

Run with defaults on CPU

./01 _Exercise.host

Run larger problem

./01 _Exercise.host -S 26

Things to try:

» Vary problem size with cline arg -S s

v

Vary number of rows with cline arg -N n
» Num rows = 2", num cols = 2™, total size = 2° == 2"+m

Bandwidth (GB/s)

350

300

250

200

150

100

50

July 16,

<y,Ax> Exercise 01, Fixed Size

Exercise #1 results

—— HSW :
——— KNL
—— KNL (HBM

L T T

1 |

100

1000

10000 100000
Number of Rows (N)

1 s "
1x10% 1x107

1x108

1x10

Exercise #1 Going beyond

More things to try: port your solution to work on the device
» You will need to update the dynamic memory allocation.

> Replace std: :malloc and std: :dealloc with
Kokkos: :kokkos_malloc and Kokkos: :kokkos_free.

» Bonus question: Why does this perform so poorly? (hint: the
answer is in this slide deck somewhere)

» Note that this is just for learning purposes and by no mean a
recommended way to manage the lifetime of your arrays. We
will see a better way to do this soon.

Compiling for GPU

provide KOKKOS_ARCH below
common values include Kepler35, Pascal60, Volta70, etc.
make -j KOKKOS_DEVICES=Cuda KOKKOS_ARCH=...

July 16, 2020

Basic capabilities we haven't covered

» Customizing parallel reduce data type and reduction
operator
e.g., minimum, maximum, ...

> parallel_scan pattern for exclusive and inclusive prefix sum

» Using tag dispatch interface to allow non-trivial functors to
have multiple “operator ()" functions.
very useful in large, complex applications

July 16, 2020

Section Summary

> Simple usage is similar to OpenMP, advanced features are
also straightforward

» Three common data-parallel patterns are parallel for,
parallel reduce, and parallel scan.

» A parallel computation is characterized by its pattern, policy,
and body.

» User provides computational bodies as functors or lambdas
which handle a single work item.

July 16,

Building Applications with
Kokkos

Learning objectives:
> Install Kokkos via CMake
» Build Kokkos inline via CMake
» Using Spack
» Build Kokkos inline via GNU Makefiles

July 16, 2020

Options for Building Kokkos

> Install Kokkos via CMake: For large projects with multiple
dependencies installing Kokkos via CMake and then building
against it is the best option.

> Build Kokkos inline via CMake: This is an option suited for
projects which have few dependencies and want to build
Kokkos inline.

» Using Spack: For projects which largely rely on components
provided by Spack.

> Build Kokkos inline via GNU Makefiles: The option for
projects which don’t want to use CMake. Only inline builds
are supported via Makefiles though. Often this works well for
small codes.

July 16,

Kokkos CMake Basics

» In the spirit of C++ for code performance portability, modern
CMake aims for build system performance portability

P Projects that depend on Kokkos should be agnostic to the
exact build configuration of Kokkos
> No CUDA details in C++! No CUDA details in CMake!

» Single build system call in your project should configure all

compiler/linker flags:
add_library(myLib goTeamVenture.cpp)
target_link_libraries (myLib PUBLIC Kokkos::kokkos)

» Kokkos configure options are enabled/disabled via CMake as:

cmake -DKokkos_XYZ=0N

July 16,

CMake Backend Options

\4

Numerous backends can be activated
» Only one GPU, one parallel CPU, and Serial at the same time!

-DKokkos_ENABLE_CUDA=0N
-DKokkos_ENABLE_HIP=0N
-DKokkos_ENABLE_OPENMP=0N
-DKokkos_ENABLE_OPENMPTARGET=0N

vvyyypywy

July 16, 2020

>

vvyyVvyyvyy

July 16,

CMake Backend Options

Numerous backends can be activated
» Only one GPU, one parallel CPU, and Serial at the same time!

-DKokkos_ENABLE_CUDA=0N
-DKokkos_ENABLE_HIP=0N
-DKokkos_ENABLE_OPENMP=0N
-DKokkos_ENABLE_OPENMPTARGET=0N

Verify execution spaces in CMake Output, e.g. CUDA

-- The project name is: Kokkos

-- Execution Spaces:

== Device Parallel: CUDA
] Host Parallel: NONE
== Host Serial: SERIAL

CMake Architecture Options

> Device backends require architecture be specified (CUDA ,
OpenMPTarget, and HIP)

» -DKokkos_ARCH_VOLTA70=0N
> -DKokkos_ARCH_VEGA906=0N: MI50/MI60
» Host backends recommend architecture be specified to enable
architecture-specific optimizations
» -DKokkos_ARCH_HSW=0N: Haswell
> -DKokkos_ARCH_ZEN2=0N: Ryzen (2nd gen)
» Architecture flags will automatically propagate to your project
via transitive CMake properties

July 16,

CMake Architecture Options

> Device backends require architecture be specified (CUDA ,
OpenMPTarget, and HIP)

» -DKokkos_ARCH_VOLTA70=0N
> -DKokkos_ARCH_VEGA906=0N: MI50/MI60
» Host backends recommend architecture be specified to enable
architecture-specific optimizations
» -DKokkos_ARCH_HSW=0N: Haswell
» -DKokkos_ARCH_ZEN2=0N: Ryzen (2nd gen)
» Architecture flags will automatically propagate to your project
via transitive CMake properties

> Verify architectures in CMake Output, e.g. Volta 7.0

-- The project name is: Kokkos

-- Architectures:
-- VOLTA7O

July 16, 2020

CMake And CUDA

» Kokkos is a C++ performance portability layer, but CUDA is
usually built as a separate language with nvcc.

» nvcc doesn't accept all C++ compiler flags

> Kokkos' solution for now is to provide nvcc_wrapper that
converts nvcc into a full C++ compiler.!

July 16, 2020

CMake And CUDA

» Kokkos is a C++ performance portability layer, but CUDA is
usually built as a separate language with nvcc.

» nvcc doesn't accept all C++ compiler flags

> Kokkos' solution for now is to provide nvcc_wrapper that
converts nvcc into a full C++ compiler.!

» Set CMake C++ compiler to nvcc_wrapper

> cmake ${KOKKOS_SRC}
-DCMAKE_CXX_COMPILER=${KOKKOS_SRC}/bin/nvcc_wrapper
-DKokkos_ENABLE_CUDA=0N

July 156 2020
uly 16, 2020

CMake And CUDA

» Kokkos is a C++ performance portability layer, but CUDA is
usually built as a separate language with nvcc.

» nvcc doesn't accept all C++ compiler flags

> Kokkos' solution for now is to provide nvcc_wrapper that
converts nvcc into a full C++ compiler.?

» Set CMake C++ compiler to nvcc_wrapper
> CMake will report compiler as host C++ compiler

> cmake ${KOKKOS_SRC}
-DCMAKE_CXX_COMPILER=${KOKKOS_SRC}/bin/nvcc_wrapper
-DKokkos_ENABLE_CUDA=0N

-- The CXX compiler identification is GNU 7.2.0
-- Check for working CXX compiler: bin/mnvcc_wrapper

CMake And CUDA

>
>

Kokkos is a C++ performance portability layer, but CUDA is
usually built as a separate language with nvcc.

nvcc doesn't accept all C++ compiler flags

Kokkos' solution for now is to provide nvcc_wrapper that
converts nvcc into a full C++ compiler.?

Set CMake C++ compiler to nvcc_wrapper

CMake will report compiler as host C++ compiler

> cmake ${KOKKOS_SRC}
-DCMAKE_CXX_COMPILER=${KOKKOS_SRC}/bin/nvcc_wrapper
-DKokkos_ENABLE_CUDA=0N

-- The CXX compiler identification is GNU 7.2.0

>

Check for working CXX compiler: bin/nvcc_wrapper

Or simply use clang++ as your compiler...

CMake And HIP

Enable experimental HIP backend Configure with:

-D Kokkos_ENABLE_HIP=0N

Compiler Starting from ROCm v3.5 release, HCC is deprecated
and replaced with HIP-Clang. Transition is transparent when using
hipcc:

-D CMAKE_CXX_COMPILER=hipcc

Architecture flags Chose one from:

-D Kokkos_ARCH_VEGA900=0N # for AMD Radeon Instinct MI25
-D Kokkos_ARCH_VEGA906=0N # for AMD Radeon Instinct MI50 or MI60

July 16, 2020

CMake And OpenMPTarget

» Similar configuration as CUDA/HIP backends, but use:
cmake -DKokkos_ENABLE_OPENMPTARGET=0N

> Still requires target device architecture to be given:
cmake -DKokkos_ARCH_VOLTA70=0N

» Currently very sensitive to exact compiler/STL combination
> Clang9+
> GCC6 Toolchain
» See scripts/docker/Dockerfile.openmptarget for recipe
» C+4+17 is required

» Working on Spack packages to handle complex version
dependencies

July 16,

Building Against an Installed Kokkos (i)

Find exported Kokkos configuration (include dirs, libraries to link
against, compile options, etc.) and generate my project’s build
system accordingly.

Basic starting point Create a CMakeLists.txt file.

cmake_minimum_required (VERSION 3.12)
project (myProject CXX) # C++ needed to build my project

find_package (Kokkos REQUIRED) # fail if Kokkos not found

build my executable from the specified source code
add_executable (myExe source.cpp)

declare dependency on Kokkos
target_link_libraries (myExe PRIVATE Kokkos::kokkos)

Working with a library

find_package (Kokkos 3.1 REQUIRED) # request Kokkos minimum versio
add_library (myLib ${SOURCES})
target_link_libraries (myLib PUBLIC Kokkos::kokkos)

July 16, 2020

Building Against an Installed Kokkos (ii)
Finding Kokkos Add Kokkos installation prefix to the list of
directories searched by CMake:

cmake .. -DCMAKE_PREFIX_PATH=<prefix> -DCMAKE_CXX_COMPILER=<...>

or via -DKokkos_RO0T=<prefix> if you explicitly set policy
CMP0OO074 to NEW in your project.
Kokkos package introspection Assert that support for __host__,
__device__ annotations in lambdas declaration is enabled
(optional) assume my project uses lambdas
if (Kokkos _ENABLE_CUDA)

fatal error if not enabled

kokkos_check (OPTIONS CUDA_ENABLE_LAMBDA)
endif ()

or query that generation of relocatable device code is enabled

kokkos_check (DEVICES CUDA OPTIONS CUDA_RELOCATABLE_DEVICE_CODE
RESULT_VARIABLE KOKKOS_HAS_CUDA_RDC)
if (KOKKOS_HAS_CUDA_RDC)

July 16, 2020

CMake Building Kokkos Inline

Build Kokkos as part of your own project (as opposed to finding a
pre-installed Kokkos) 2

add_subdirectory (<kokkos source dir>)

identical as when finding an installed Kokkos package
add_library (myLib ${SOURCES})

target_link_libraries (myLib PUBLIC Kokkos::kokkos)

Pass Kokkos options along with app-specific options at
configuration time

cmake .. -DCMAKE_CXX_COMPILER=<kokkos dir>/bin/nvcc_wrapper \

-DKokkos _ENABLE_CUDA=0N -DKokkos_ENABLE_CUDA_LAMBDA=0ON \
-DmyApp_ENABLE_F00=0N -DmyApp_ENABLE_BAR=0N

July 16, 2020

Kokkos via Spack: Command Line

» Spack provides a package manager that automatically
downloads, configures, and installs package dependencies

> Kokkos itself can be easily installed with specific variants (+)
and compilers (%)
spack install kokkos@develop +openmp %gcc@8.3.0

> Good practice is to define “best variant® in your

packages.yaml directory, e.g. for Volta system
packages:
kokkos:
variants: +cuda +openmp +cuda_lambda +wrapper \
“cuda@10.1 cuda_arch=70
compiler: [gcc@7.2.0]

» Build rules in package.py automatically map Spack variants
to correct CMake options

» Run spack info kokkos to see full list of variants

July 16,

Kokkos via Spack: Package Files

» Build rules created in a package.py file

> Step 1: Declare dependency on specific version of kokkos (3.x,

master, or develop)
class myLib(CMakePackage):
depends_on (’kokkos@3.27)

> Step 2: Add build rule pointing to Spack-installed Kokkos and

same C+4++ compiler Kokkos uses
def cmake_args(self):
options = []

options.append (’-DCMAKE_CXX_COMPILER={}’.format (
self .spec[’kokkos’].kokkos_cxx)
options.ppend(’-DKokkos_ROOT={}’.format (
self .spec[’kokkos’].prefix)
return options

» Full details can be found in Spack.md in Kokkos repo.

July 16, 2020

Building Kokkos Inline via GNU Makefiles

Building Kokkos inline with GNU Makefiles in three steps:

> Set Kokkos Options e.g. KOKKOS_DEVICES, KOKKOS_ARCH
» Include Makefile.kokkos
> Add KOKKOS_CXXFLAGS, KOKKOS_LDFLAGS etc. to build rules

Most Important Settings:

» KOKKOS_DEVICES: What backends to enabled. Comma
separated list: Serial,OpenMP,Cuda,HIP,OpenMPTarget

> KOKKOS_ARCH: Set architectures. Comma separated list:
HSW,Volta70,Power9, ...

July 16,

Building Kokkos Inline via GNU Makefiles

Building Kokkos inline with GNU Makefiles in three steps:

> Set Kokkos Options e.g. KOKKOS_DEVICES, KOKKOS_ARCH
» Include Makefile.kokkos
> Add KOKKOS_CXXFLAGS, KOKKOS_LDFLAGS etc. to build rules

Most Important Settings:

» KOKKOS_DEVICES: What backends to enabled. Comma
separated list: Serial,OpenMP,Cuda,HIP,OpenMPTarget

> KOKKOS_ARCH: Set architectures. Comma separated list:
HSW,Volta70,Power9, ...

Order Matters!

Add default target, Kokkos settings, and CXXFLAGS before
including Makefile.kokkos!

July 16, 2020

Example Makefile

KOKKOS_PATH = ${HOME}/Kokkos/kokkos
SRC = $(wildcard *.cpp)
KOKKOS_DEVICES=0penMP , Cuda
KOKKOS_ARCH = SKX,Volta70

default: test
echo "Start Build"

CXX = clang++
CXXFLAGS = -03 -g
LINK = ${CXX}

0BJ = $(SRC:.cpp=.0)

include $(KOKKOS_PATH)/Makefile.kokkos

test: $(0BJ) $(KOKKOS_LINK_DEPENDS)
$(LINK) $(KOKKOS_LDFLAGS) $(0OBJ) $(KOKKOS_LIBS) -o test

%.0:%.cpp $(KOKKOS_CPP_DEPENDS)
$ (CXX) $(KOKKOS_CPPFLAGS) $(KOKKOS_CXXFLAGS) $(CXXFLAGS)
-c $<

July 16, 2020

