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Focus of Study & Outline

= High-throughput tensile testing & batch analysis
= Material characterization

= Statistical analysis of mechanical performance

= Analysis of abnormally low ductility in HIP samples
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High-throughput specimen design

= ]mm X Imm nominal cross section

= 4-to-1 gauge length ratio to reduce premature necking
= 45° grip head to reduce overhang
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High-throughput tensile test setup

Salzbrenner BC, Rodelas JM, Madison D, Jared BH, Swiler LP, Shen Y-L, Boyce BL: High-throughput stochastic tensile performance of additively manufactured stainless steel.
Journal of Materials Processing Technology 2017, 241:1-12.
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MatLab Analysis — AVID: Area Values from Image Dimensions ©

= Edge detection via MatLab image processing toolbox
= ]stdegree polynomial line fit

= Contact measurement vs digital measurement error: 3% + 2% over-estimation
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MatLab Analysis — BATS: Batch Analysis of Tensile Specimens ©

= Application of strain scalar to produce strain values

= Qutput Results

Unloading Modulus
0.2% Yield Stress

0.2% Yield Strain
Ultimate Tensile Strength
Uniform Elongation
Elongation at Failure

= Additional Results

= Yield Stress & Strain from published modulus
= Toughness (area under curve)
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Inconel 625 powder characterization

= Minimal variation in powder chemical composition
= Builds 1 & 2 had higher oxygen levels and increased pressure

= Filter cleaned prior to Build 3

Composition| Units |ASTM F3056|Build 1 (virgin)|Build 2 (virgin)(Build 3 (reuse)
Al Wt % 0.4 max 0.16 0.16 0.15
B Wt % ; <0.0005 <0.0005 <0.0005
C Wt% | 0.10 max 0.035 0.034 0.036
Co Wt% | 1.00 max 0.215 0.21 0.205
cr Wt % | 20.00-23.00 21.39 21.22 21.23 Build 1 Build 2 Build 3
Fe Wt% | 5.00 max 0.044 0.39 0.063
Mn Wt % | 0.50 max 0.0061 0.0064 0.0076 Max Oxygen Level 2.0 45 )8
Mo Wt% | 8.00-10.00 8.81 8.68 8.75 (ppm) : : .
Nb Wt% | 3.15-4.15 3.67 3.62 3.67
Ni Wt % Bal 65.3 65.8 65.6
P Wt% | 0.015 max 0.004 0.004 0.003 Pressure (mbar) 84 93 36
S Wt% | 0.015 max 0.0013 0.0012 0.0011
Si Wt% | 0.50 max 0.043 0.044 0.049
Ta Wt % - <0.002 <0.002 <0.002
Ti Wt% | 0.40 max 0.12 0.12 0.13
0 Wt % - 0.012 0.01 0.007
N Wt % _ 0.006 0.006 0.007
H Wt % - 0.0007 0.0007 0.0009




Inconel 625 heat treatment schedule and orientation

= Stress relieved with all samples attached to build plate

= Portion of virgin build solution annealed
= Portion of virgin build HIPed

= All reused powder stress relieved

Heat
Schedule
Treatment

Standard

Stress Relief
1040°C £+ 15°C x 60 min + 6 min

(SR)

AMS 2774 E

)

Sandia

Build 1 Build 2

Build 3




Determination of Inconel 625 microstructure

Build Direction

Min: 0.13
Max: 3.00

SR - Virgin SR - Reuse Sol HT HIP
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Inconel 625 mechanical properties

=  ASTM F3056 requirements:
= Yield Strength — 275 MPa
= Tensile Strength — 485 MPa
= Elongation to Failure — 30%
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3-parameter Weibull plots of Yield Strength, UTS, Modulus, and Ductility
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Hall-Petch relation suggests a correlation between yield strength and grain
size
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Gao Y, Zhou M: Superior Mechanical Behavior and Fretting Wear Resistance of 3D-Printed " -
Inconel 625 Superalloy. Applied Sciences 2018, 8. = i -
g
1 1 gu; e =" i = = =Calculated Yield Stress
Sample | Avg. Grain Size (um) | p~32 (nm”~ 2 Yield Stress (MPa) £ . | o ®  Measured Yield Stress
5 350
2
SR — Virgin 11.8 0.29 518 300
250
SR — Reuse 12.2 0.28 508
200
Sol HT 0.150 0.170 0.190 0.210 0.230 0.250 0.270 0.290 0310
21.6 0.21 361 e
HIP 24.4 0.20 356




Texture and anisotropy may have effects on Young’s modulus

Zener ratio of nickel, Z = 2.54
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Columnar grain growth may exaggerate the anisotropic behavior

Hm S ] 100 Hm - '
EHT =10.00 kV WD= 59 mm Signal A=BSD Width = 1.000 mm |—| EHT =10.00 kV WD = 6.0 mm Signal A=BSD Width = 1000.0 pm

SR — Virgin HIP
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The HIP samples show lowest ductility

= Analysis methods:
= Determination of porosity

=  Microstructure analysis e "
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Inconel 625 — Fracture Surfaces and Porosity

Gas Pores
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SEM images of the stress relieved, solution annealed, and HIP samples show
an increase in population and size of precipitates in the HIP material

EHT=1000kY  WD= 60mm Signal A=BSD Width = 2000 pm
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Inconel 625 — Solution Annealed Precipitates
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3787x magnification

MAG: 3T87x HV: 5KV Px: 61.9 nm

Precipitate size:
~340 nm
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Inconel 625 — HIP Precipitates

i
2093x magnification

MAG: 2093x HV:8kV Px: 0.11pm

Precipitate size:
~900 nm
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Conclusions

= Statistically determined low-probability outliers all above ASTM minimum requirements

= Reusing powder for a subsequent build had negligible effects on mechanical properties

= Columnar grains and untextured microstructure may have had negative effects on elastic modulus
values

= Solution annealing and HIPing resulted in larger grain sizes, potentially reducing the yield strength as
explained by the Hall-Petch relation

= A large number of precipitates found in the HIP samples significantly reduced the elongation at failure




