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2 I Battery Management System Goals

1. Keep cells safe

2. Keep cells balanced

3. Report capacity to host

4. Predict failures

5. Detect poor health
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3 I Cell Protection

Scenarios that should be prevented:
o Overvoltage

o Undervoltage

o Temperature
0 Charge/Discharge

O Overcurrent (Short Circuit) Measurements

° Can be done in Hardware or Software

. Fast charge low voltage cells

. Reverse Current

Methods
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. Diodes

Battery and Temp
Connections

Cell Balancing

Voltage and Temp

USB

Programming
Connector

Microcontroller

Negative Battery
Terminal

Output to
Load Terminal

Current Sense

Generic 6 Cell Battery Management System

Positive Battery
Terminal



Passive Battery Management System
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I LT Passive Board
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Charge every battery cell directly from isolated power
supplies.
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Differential Power Processing - Battery Cell to Battery Cell
(Switched Capacitor or Inductor)
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I Active Board - Custom Controller
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Differential Power Processing - Battery to pack
(Unidirectional or Bidirectional)
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I Cell Balancing

'4, f,

Keeping cell voltages equal increases the battery capacity
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I Active Board — LT Controller
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Why do cell balancing?

• If all cells in series have the same
capacity, but are different states of
charge, the highest SOC cell will
reach max safe voltage first during
charge, and the lowest SOC cell will
reach min safe voltage first during
discharge

• Battery capacity will be set by the
difference between maximum and
minimum cell capacity for cells in
series
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So, how much drift should we expect? Small cell
measurements.
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The spread in performance with cycle is not very high even for for small cells- only about
6% over 500 cycles
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Expected capacity spread between VC with 41 parallel cells
• Based on CI for 41 samples, with 95% CI on st. dev. Estimat:

• Based on 95% CI, Assurning 41 sarnples

• Based on measured CI (6 sarnples)

— Based on measured CI (6 sam pie s)

Based on 95% CI, Assuming 41 samples

—0— Based on CI for 41 sarnples, with 95% CI on st. dev. Estimate

• This is further reduced when considering a multi-parallel virtual cell (VC).The
performance of aVC is the average of the individual cells, so drift is reduced. For 41 cells
(example), the expected spread will drop by half.

• Grid storage batteries will be much large- hundreds of cells- and therefore spread will be
less.

Cell capacity changes are likely less than a 3% over 500 cycles



Does 3% in cell capacity make any difference?

For a standalone power application, the battery can never come close to running out of capacity.

0 25% margin would be a minimum safety factor, so 3% is in the noise for battery sizing.

Battery lifetime is improved by narrowing the voltage window (e.g. doing 50% SOC cycles).

The decision on how large to make the voltage swings is far more consequential to battery sizing than 3%
from spread
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Does 3% in cell capacity make any difference?

The efficiency of the BMS is critical to maximizing energy storage

• In a passive BMS, all the extra energy is burned off, so the system gains nothing by cell balancing. Any
benefit at the end of discharge cycling was lost during the end of charge

In an active BMS, the parasitic current draw of the complex circuitry reduces efficiency.

• Our active BMS draws 170 mW continuously while off, or 1.4 kWh/yr. For our application (-50 cycles/year
on a 4 kWh battery), that is a 1% capacity hit.

• Scale up to MWh batteries will also scale up parasitic currents, so circuitry must be efficient

• DC/DC conversion can be >80% efficient, so the actual power movement is OK



I How does active balancing help?

In large parallel cell arrays, individual cells can become disconnected (CID opening, bad welds). This
reduces the VC capacity, and therefore the entire battery capacity.

Active balancing during discharge can move energy from high capacity cells to the weak cell, making the total
battery capacity the average of all series cell capacities rather than being limited by the capacity of the
weakest cell.

Active balancing during charge must bypass the weak cell.
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I Using balancing to assess state of health
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I System Modes

Four Levels to Define Battery State of Health
o Nominal Level

• Every part of the battery power module is good

• Warning Level

O Something is broken but it is not critical

O Send out a warning message

o Critical Level

• Keep the load switch closed but shut down as soon as possible. Non-critical functions like cell
balancing and charging will be disabled.

o Catastrophic Level

• Disable all functions and shut down


