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Abstract

In this study, an efficient Bayesian framework equipped with a Multivariate
Adaptive Regression Spline (MARS) technique is developed to alleviate computational
burdens encountered in a conventional Bayesian inversion of a geothermal prospect. Fast
MARS models are developed from training dataset generated by CPU-intensive
hydrothermal models and used as surrogate of high-fidelity physical models in Markov
Chain Monte Carlo (MCMC) sampling. This Bayesian inference with MARS-enabled
MCMC method is used to reduce prior estimates of uncertainty in structural or
characteristic hydrothermal flow parameters of the model to posterior distributions. A
geothermal prospect near Superstition Mountain in Imperial County of California in USA
is used to illustrate the proposed framework and demonstrate the computational
efficiency of MARS-based Bayesian inversion. The developed MARS models are also
used to efficiently drive calculation of Sobol’ total sensitivity indices. Only top sensitive
parameters are included in Bayesian inference to further improve the computational
efficiency of inversion. Sensitivity analysis also confirms that water circulation through
high permeable structures, rather than heat conduction through impermeable granite, is
the primary heat transfer method. The presented framework is demonstrated an efficient
tool to update knowledge of geothermal prospects by inversing field data. Although only
thermal data is used in this study, other type of data, such as flow and transport

observations, can be jointly used in this method for underground hydrocarbon reservoirs.

Keywords: Geothermal prospect; inversion; surrogate; uncertainty; sensitivity
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1. Introduction

Quantitative, model-based prediction of geothermal reservoir behavior requires
knowledge of both structural and parametric hydrothermal characteristics of the reservoir
system. These include the location, size, and shape of important hydrogeologic flow units
and faults, their associated permeability and thermal conductivity, as well as bounding
temperature and fluid pressure and saturation conditions. These elements are difficult to
fully characterize in the subsurface prior to reservoir development and are, at best, not
completely known. This uncertainty will limit the accuracy of reservoir model predictions
and reduce the reliability of any type of geothermal production or design that is based
upon such predictive capabilities. Inverse methods are often utilized to better identify and
estimate uncertain flow properties or system characteristics by matching field
observations to corresponding predictive model simulations (Carrera et al., 2005; Hill and
Tiedeman, 2007; Tompson et al., 2013; Tonkin and Doherty, 2009), yielding a model
with improved accuracy and reduced uncertainties. Depending on the specific techniques
used, inverse modeling may be subject to mathematical limitations or require a large

number of intensive forward model simulations in order to be successful.

It is widely recognized that incomplete knowledge of the underground fluid reservoir
may introduce considerable uncertainty into modeling analyses of such systems and can
typically lead to ill-posed nonlinear inverse problems with multiple solutions (Carrera,
1988; de Marsily et al, 1999; Oliver et al., 2008). The idea of “Bayesian inference” has
been demonstrated to provide an effective inverse framework which addresses the issues
of ill-posedness and non-uniqueness by incorporating prior information and presenting

the inversed solution in terms of probability distribution (e.g., Cui et al., 2011; Fu and
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Gomez-Hernandez, 2009; Oliver et al., 1997; Tarantola, 2004). In most cases, the
posterior densities are difficult to sample directly from the analytical forms of distribution.
Markov Chain Monte Carlo (MCMC) approaches provide a more practical simulation
method for sampling from target distributions as a means to approximating posterior
distributions for parameters or quantities of interest (e.g., Efendiev et al., 2005). However,
for many types of large-scale modeling problems, including geothermal prospect
characterization, MCMC simulations may become computationally prohibitive because
of the large number of uncertain parameters that need to be considered (curse of
dimensionality), the absolute size and discretization of the modeling domain of interest,
and/or the complexity of the flow physics involved in each forward calculation (Smith
and Marshall, 2008; Tompson et al., 2013). Although significant advancements in
MCMC sampling efficiency have been made recently (Liu et al., 2000; Mariethoz et al.,
2010; Vrugt et al., 2009), the computational burden may still be unaffordable for large-

scale high-resolution numerical simulation problems.

Two promising ways to address this challenge include (1) the use of up-front
parameter sensitivity analyses to identify the most important parameters pertinent to an
analysis of interest, prior to any formal inversion effort, and (2) the development of
cheaper “surrogate” forward models for application in the MCMC sampling. Surrogate
models attempt to replicate the behavior of complex models with simpler models using
fewer but sensitive parameters. Sensitivity is a measure of the contribution of an input
variable to the total variances of an output variable. In this study, the sensitivity analysis

is used as a “screening” analysis to help focus the stochastic inversion work on
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parameters, properties, or characteristics that would appear to be most important, thus

focusing computational efforts where they will be most beneficial.

A surrogate model is meant to provide a fast approximation of a high-fidelity physical
model calculation. Applications of surrogate modeling techniques in hydrology have
been extensively studied in recent years (Razavi et al., 2012). A variety of approximation
techniques haven been tried, such as polynomials (e.g., Fen et al., 2009), radial basis
functions (RBFs) (e.g., Regis and Shoemaker, 2007), kriging (e.g., Simpson and Mistree,
2001), support vector machines (SVMs) (Zhang et al., 2009), artificial neural networks
(ANNSs) (Behzadian et al., 2009; Dowla and Rogers, 2003), and sparse grid interpolation
(Zeng et al., 2012). However, few studies have applied the multivariate adaptive
regression spline (MARS) technique, a non-parametric approximation method developed
by Friedman (1991). In a thorough review of surrogate modeling applications in water
resources, none of 48 applications reviewed by Razavi (2012) has used the MARS
technique. In a recent application of surrogates in optimizing the process of hydraulic
fracturing, Chen et al. (2013) compared MARS to a suite of polynomial models including
different number of input parameters and in various orders, and surrogate model
approximated by MARS was demonstrated to have the best predictive performance.
Motivated by this successful application of MARS in optimization, this study employs
this function approximation technique to construct a surrogate of hydrothermal flow

model for use in applying a Bayesian inversion algorithm to a geothermal prospect.

2. Methodology
The proposed methodology involves identification of important, yet uncertain

parameters for the problem of interest, sampling in high-dimensional parameter space,
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development of numerical hydrothermal flow models, evaluation of response functions,
construction and validation of MARS models, performing global sensitivity analyses, and

coupled execution of Bayesian inference with MARS models.
2.1. Inversion framework
As illustrated in Figure 1, the inversion proceeds as follows:

1. A et of M design variables pertinent to the problem are identified and associated with
statistical distributions descriptive of their priori uncertainty. In this case, these
variables pertain to a series of parametric and structural characteristics of the
hydrothermal flow Case Study described below. Their uncertainty, as indicated by
their distributions and ranges, are representative of prior knowledge about the target
geothermal field and formation.

2. Each of these variables are sampled N times from their probability distributions using
a Latin Hypercube (LH) method (McKay et al., 1979). These N data realizations are
used to drive N hydrothermal flow model realizations to (in our case below) a natural
steady state and their corresponding responses (in our case below, temperatures at a
finite set of observation locations) are evaluated from the simulated results.

3. The N design variable-response pairs (shaded in Figure 1) are then used as a training
and validation dataset to construct a surrogate MARS model. To make best use of
limited dataset, leave-one-out cross validation (LOOCV) method is applied to
validate the fitted MARS model (Picard and Cook, 1984). Given N input samples, a
surrogate MARS model is constructed N times, each time leaving out one of the input

sample from training, and using the omitted sample to test the model.
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4. The importance of the design variables in the hydrothermal model system are ranked
according to Sobol’ total sensitivity indices (Sobol’, 1993, 2003), obtained from a
global sensitivity analysis of response surface to input design variables. The Sobol’
method computes and decomposes the variances of response into fractions attributed
to each input (first-order indices) variable and their interactions (second- or higher-
order indices), and hence the fractions (sensitivity indices) measure contribution of
each input variable to variances of response variable (Chen et al., 2013). Only
sensitive variables are included in Bayesian inference.

5. The surrogate model is utilized in place of the hydrothermal flow model within a
Bayesian inversion scheme (Tompson et al., 2013), from which posterior distributions
of the sensitive variables are inferred from comparisons with observed temperature
data. The posterior data distributions represent a subset of the prior data that lead to

solutions most consistent with the observed temperature data.
2.2. Hydrothermal model

The mass balance equation for transient hydrothermal water flow in saturated porous
media is considered in this study can be written as:

d(pp)/ot = =V-(¢pv) +Q, (1)
where Q is the source/sink term, ¢ is the porosity, p is the fluid density , and v is the
velocity, which can be computed from Darcy’s law: ¢pv = —K(VP + pgVz)/u, where k
is the permeability tensor, P is the fluid pressure, w is the fluid viscosity, g is the
gravitational constant, and z is an elevation above some datum. In the current
implementation, the principal axes of the permeability tensor are assumed to be aligned

with the xyz coordinate system so that k is diagonal (ky, ky, k;). Permeability of each
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geological unit is assumed isotropic (k= ky =k;) so we use K instead of k to represent
permeability below this point. Note that the density and viscosity will, in general, be
temperature (T) and pressure (P) dependent.

In addition to the mass balance equation, the energy balance equation governing heat

transfer can be expresses as:

d[ppu + (1 = ¢)psCps(T = T,)] /0t = V- [ppHKVP/pu + K7 - VT + Qr,  (2)
where ¢ is the rock porosity, u is the water internal energy, p; is the rock density, C,; is
the rock heat capacity, T;. is a reference temperature, H is the water enthalpy, K; is the
averaged thermal conductivity of both water an rock, and Q is the heat source/sink term.

The above mass and energy balance partial differential equations are discretized and
solved numerically in NUFT (Nonisothermal Unsaturated-saturated Flow and Transport),
a code developed in Lawrence Livermore National Laboratory and applied successfully
in many models simulating mass and heat transfer (Nitao, 1998). NUFT is used to build
hydrothermal models in this study. Fault size, temperature T at reservoir bottom boundary,
rock permeability K and thermal conductivity K; of each geologic unit are assumed key
uncertain reservoir properties for heat transfer, and hence selected as design variables for
inversion stage. All the hydrothermal model simulations run to steady state under natural

condition.

2.3. Multivariate adaptive regression spline (MARS)
Multivariate adaptive regression spline represents a nonparametric technique which
adaptively develops local models in local regions for flexible regression modeling of high

dimensional data. A MARS model can be expressed as

f®=XiaB;(®), (3
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where x € R™, and R™ is the m-dimensional domain of interest. k and a; are the number

and coefficients of associated basis functions B;(x) given by
1, i=1

Bi(0) = {l’[f‘;l[Sﬁ (g )], =23, ®)
where (+), = max(0, -), J; is the interaction order of basis B;, that is, the number of
variables included in the basis function, S;; = +1 is the sign indicators, v(j,i) is the index
of the design variable x which is split on knots t;. For example, suppose a basis function
is given by B; = (x5 + 2.5) . [—(xs — 3.3)],. Apparently, the interaction order is 2, so
Ji = 2. The sign indicators S;; = 1,S,; = —1. The index for the design variable are

v(1,i) = 3,v(2,i) = 5, and the knots are given by t,; = —2.5, t,; = 3.3.

The first and second derivatives are enforced to match on the boundaries of adjacent
regions to ensure continuity between local models. Once the number of locations of knots
(points at the boundaries) is adaptively chosen based on the response function changes,
the coefficients a; and basis functions B;(x) can be examined and determined.
Comprehensive illustration of the MARS algorithm can be found in Friedman (1991).
Compared to other popular techniques, the use of MARS is limited to automatic
engineering design applications (e.g., Sudjianto et al., 1998) and has seldom been
reported in hydrothermal literature. The superiority of MARS over other high
dimensional regression methods appears to be accuracy and reduction in computational

cost of fitting process (Chen et al., 2013; Jin et al., 2001).

2.4. MARS-enabled Bayesian inference
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The purpose of Bayesian inference is to update the beliefs about uncertain parameters
by combining information from the prior distribution and the measurements through the
calculation of the posterior distribution. Assuming X is the vector formed by design
variables to be inversed, y is the measurements, Bayes’ theorem relates the posterior
distribution p(x|y) to the product of the conditional probability of the measurements

p(y|x) and the prior probability p(x) of design variables as follows:

pxly) =py®XpX)/p(y), (5)

where marginal distribution p(y) = [ p(X)p(y|x)dx is an integral, which doesn’t
provide any additional information about posterior distribution and can be seen as a
normalized constant. p(x) represents uncertainty prior to any knowledge of
measurements, and is assumed uniformly distributed within an appropriate range in this

study. Hence, the posterior p(x|y) is proportional only to p(y|x).

p(y|x) is also called likelihood function, which quantifies the degree of fit between
predictions and measurements. The likelihood can be calculated by forwarding
hydrothermal models with the given design variables to steady state, at which the errors

between predicted and measured temperatures at observed locations can be included

e=y—-fx), (6

where ¢ is the errors, f(x) is the predictions from NUFT models. The smaller the errors
are, the higher the likelihood is. By assuming € follows multiple dimensional Gaussian
distribution with zero mean and known covariance matrix C, the likelihood can be

expressed as (Zeng et al., 2012):

p(ylx) = exp(—¢" C~"&/2)/[(2m)"/?|C|"/?], ()
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where n is the number of measurements, |C| is the determinant of C. In the study, MARS
model £ (x) is used as surrogate of NUFT hydrothermal model £ (x) in calculating this
Gaussian likelihood function. In this way, the posterior can be obtained without running
expensive NUFT models during MCMC sampling, thus accelerating Bayesian inversion

significantly.

2.5. Implementation
The proposed framework is written in Python by incorporating hydrothermal NUFT
models and various numerical codes from PSUADE suite (Tong, 2009), including LH

sampling, MARS approximation, Sobol” method, and MCMC algorithm.

3. Case studies and discussions

To illustrate and demonstrate the proposed approach, a geothermal prospect at
Superstition Mountain in California is chosen as the example study owing to its data
availability of geological stratigraphy and borehole temperature logs from Navy

geothermal program (Figure 2) (Bjornstad et al., 2006; Tiedeman et al., 2011).

3.1. Three-dimensional model development for Superstition Mountain

A three-dimensional geologic model built with digital elevation and layer horizon
data in Tompson et al. (2008) are used to conceptualize the geologic structure of
Superstition Mountain (Figure 2c). Geophysical and drilling logs from the three
boreholes near Superstition Mountain provide additional information to refine the model
(Figure 2b). The prospect is bounded on the southwest by granite basement and
sedimentary layers to the northeast. A major active fault, the Superstition Mountain fault

(SMF), lies near the prospect. The study by Layman Energy Associates (2012) supported
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a hypothesis that one or more of the high-permeable principal or cross faults serve as the
vertical pathways for hot water flow from deep zones to shallow aquifers through low
permeable granite zone. This water circulation is believed to be the cause of elevated
temperatures observed in three NAFEC boreholes and nearby shallow temperature
surveys. A recent hydrothermal model developed using NUFT for the prospect (Mellors
et al., 2013; Tompson et al., 2013), which contained a vertical conjugate fault (CF)
transverse to SMF and extending to northeast through NAFEC-3, predicted temperature
profiles closely matching temperature logs of three NAFEC boreholes.

This NUFT model domain is adapted in our model as the core region enclosed by a
larger far field domain (Figure 3a). The X direction in the core domain is parallel with the
CF, while the Y direction is parallel with the SMF. The core model domain used here
extends along the X axis 6.5 km to the northeast of the SMF and is restricted to a 1.5 km
width in the Y direction, with the center of the left boundary intersecting CF at right
angle (Figure 2b). The core domain extends vertically downwards 3.2 km from the
ground surface and is discretized into 100 m cubic grid blocks. The current system is
considered to be fully saturated throughout the domain. In the future it will be upgraded
to more representative partially saturation conditions in the shallower sediments. The
larger far-field domain incorporates reduced grid resolution beyond its core as a means to
control computational costs. Representation of geological structures in the model grid is
simplified from the geologic model. As shown in vertical X-Z section crossing the center
of left boundary, where CF is located, the five geologic units crossing the core domain
section are sequenced from the bottom as a fractured, low permeability Granite, a

permeable sandstone layer Ti, and alluvial sediment layers Tp2, Tp1, Qb, along a
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downward slope in X direction (Figure 3b). The left boundary is consistent with SMF at
X=0 m, and the 100-m thick permeable vertical CF is normal to the left boundary with
uncertain length and height (Figure 3c). Pressure and temperature are specified at the top
boundaries to represent the average atmospheric conditions. High temperature is fixed at
the bottom boundary to mimic the geothermal heat source, with a lower fixed temperature
at the ground surface. Groundwater is allowed to flow from the left (X = 0) to the right
(X = 6.5km) sides of the as a result of specified pressure conditions that reproduce a
small hydraulic gradient in this area, and is also allowed to enter the bottom of the
domain as a result of another fixed pressure condition. Depending on permeability
conditions, such inflows may support the generation of hydrothermal inflows that may
circulate and exit the right side of the boundary. No flow conditions are maintained along
the Y faces of the domain.

Because this is considered a “natural” flow system, the hydrothermal models are used
to develop a steady-state flow and temperature solution by running them in a transient
mode from provisional initial conditions for one million years. The predicted
temperatures at steady state time are compared to measurements at observing locations

along three NAFEC boreholes during Bayesian inversion.

3.2. MARS models construction

Following the procedure outlined in Figure 1 and Section 2.1, the inversion starts
with the identification of a set of parameters to be treated uncertain (design variables).
The differential equation governing geothermal heat transfer (Eq. 2) indicates formation
permeability K and thermal conductivity Ky will be crucial properties controlling hot

groundwater circulation and heat conduction respectively. Thus the two properties for
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faults, Granite and four sediment formations, totally 12 variables, are included as design
variables. The values of temperature fixed at the bottom boundary, which represent the
strength of heat source, are partially unknown (certainly warmer than the surface
temperature) but may affect steady state temperature distribution across the model
domain, and hence are included as design variables too. In addition, the length and height
of CF, which is anchored at the SMF at low left corner, are also considered random. The
CF unit is considered to be a more permeable feature able to support geothermal
circulation into shallower zones if sufficient flow connectivity exists. These 15 design
variables, along with their lower and upper bounds, are listed in Table 1. The log-
transformed permeabilities and all the other variables are assumed to follow uniformly
random distribution across their indicated ranges. A total of 1500 input samples are
drawn from the 15-dimensional parameter space using the LH method, with each sample
vector containing, as components, 15 values of the design variables. The 15 component
values of each sample vector, together with other fixed parameters, are written into the
input file of NUFT model for simulation. The temperatures at 23 observation locations
(red circles in Figure 4) along the three NAFEC boreholes, obtained from the output of
the NUFT model, are used as the response values. The 1500 NUFT model simulations,
specifically the 1500 sets of input vectors and 1500 sets of output response values, are
used as both a training and a validation dataset to construct the MARS models. Each
MARS model £ (x) consists of 100 basis functions B;(x), each with 10 orders of
interactions J; (10 design variables x). It should be noted that a well-fitted MARS model
does not necessarily mean that it will have good performance for prediction due to over-

fitting issue, and hence it has to be validated before the use for prediction. The predictive



315  performance of MARS models in this study is measured by LOOCYV method (Chen et al.,
316  2013; Picard and Cook, 1984). The quality of the MARS models can be illustrated by
317  scatter plot comparing the response values simulated by the surrogate model versus those
318  simulated by the physical NUFT model, based upon the 1500 samples. As shown in

319  Figure 5, the R-squared values obtained for the scatter plots in both the fitting and

320  validation steps of the MARS model (with mean response values) are 0.979 and 0.959

321  respectively, suggesting a good predictive ability of the well-fitted MARS model.

322  3.3. Global sensitivity analysis

323 Sensitivity of model responses to the design variables values can be efficiently

324  calculated using MARS models. The Sobol’ total sensitivity indices (SI) for 15 variables
325  are listed in Table 1 and visualized in Figure 6 (Sobol’ 2003). As expected, the

326  dimensional characteristics of CF, i.e., height and length, rank as the top two (1 and 2)
327  sensitive variables for defining the temperature distribution in the aquifer where NAFEC
328  boreholes are located (depth < 1000 m), while the permeability of the CF and Ti units,
329  which represent primary groundwater circulation pathways, are moderately sensitive (SI >
330 0.1). The low sensitivity (SI < 0.05) of the specified temperature at bottom boundary

331  (heat source of the model) indicates that its variations between 125 °C and 225°C lead to
332 little change of the temperature values in shallow aquifers. This finding demonstrates that
333 the efficiency of heat transfer is more important than heat storage for a geothermal field.
334  Low SlIs (< 0.05) associated with the thermal conductivity of both granite and the Ti units
335  reveal that the heat conduction is a minor mechanism of heat transfer, compared to

336 groundwater convection, through these two formations in the Superstition Mountain

337  geothermal prospect. It is not surprising that the granite permeability is insensitive (SI <



338 0.01), given that its value ranges between 10™° and 10" m? which can be considered
339 effectively impermeable, as compared to the crossing CF permeability (104 — 102 m?).
340  Neither the permeability nor the thermal conductivity of the upper sediment aquifers (Tp2,
341  Tpl, and QDb) is sensitive for temperature around NAFEC boreholes, which is could be
342  considered a potential geothermal production area. It is reasonable since these formations
343  are not the primary groundwater circulation pathways. Overall, the sensitivity

344  quantification and associated ranking for the hydrothermal model system of the

345  geothermal prospect demonstrates that groundwater circulation is the primary mechanism
346  of heat transfer in the field, consistent with previous studies for this area. Reducing the
347  uncertainty of those most sensitive properties, which is critical for potential geothermal
348  reservoir development and management, is a critical priority of exploration investment.
349  In addition to those expensive geophysical surveying approaches, Bayesian inversion
350  equipped with fast MARS models is applied to achieve better knowledge of these

351  important properties from the temperature observations shown as red circles in Figure 4.

352  3.4.Bayesian inversion with MARS-enabled MCMC

353 The MARS surrogate model was used to enable a MCMC-based Bayesian inversion
354  process using the prior probability density functions (PDFs) shown in Table 1 for the six
355  top sensitive design variables identified in Figure 6. The MCMC procedure starts with
356  burn-in phase in which 10,000 MARS model simulations are employed. During the

357  following phase of creating posteriors, the chain converges after MARS model calls

358 amount to three sequential sample increments, with each 10,000 in size for convergence
359  check. The total MARS model runs for the complete MCMC, therefore, is 40,000 in this

360 case of Bayesian inversion, which cost about 5 minutes of computing time, while an
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equivalent NUFT model simulation on a scalar machine take around 10 minutes
averagely. Compared to NUFT-based inversion, the MARS-based approach is projected
to improve the inversing efficiency by 10/5*40,000= 80,000 times. Although NUFT
model simulations were, in fact, used to support the inversions described in Tompson et
al (2013) on a similar model domain as the core domain in this study, they were
accomplished using a parallel implementation of NUFT and exploited the naturally
parallel benefits of conducting multiple MCMC simulation chains. That said, the power
of the MARS method can be most effectively exploited when, for example, a larger scale
and higher resolution model grid is used for more realistic, variably-saturated
hydrothermal flow simulations, a configuration that the NUFT-only platform cannot
currently address in an efficient, cost effective manner.

Among the six posterior PDFs are shown in Figure 7, the two least sensitive variables,
bottom temperature and granite thermal conductivity, are almost equally likely in their
ranges, suggesting that little additional knowledge is gained from prior information by
Bayesian inference due to their low identifiability. Among the other four variables, CF
height is identified as 3200 m at its upper bound that results in best matches with
observation data with a highest probability of 0.45, more than twice the magnitude of the
second highest probability. This result strongly suggests CF fault penetrates the entire
granite zone vertically. Figure 7b indicates that CF length should be 1100m in order to
best match the data, with the highest probability of 0.33. The probabilities of lengths
larger than 1100 m are much higher than those for smaller values, indicating CF should
be long enough in order to maintain contact with (and support fluid flows into) the

shallower and permeable Ti formation (Figure 3b). This finding makes sense since a
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contiguous connection through a permeable CF and Ti supports a viable groundwater
circulation pathway to convective heat transfer to the observation wells. The log-
transformed permeabilities of the CF and Ti units have highest probability of 0.138,
0.146 at values of -13.16 and -13.44 m? respectively. While the possible CF permeability
clusters in the mean value of its range, Ti permeability is prone to higher values within
the range. The comparison between simulated results by NUFT model using the
parameter set with highest probability and measured temperatures along three NAFEC
boreholes shows a good match in Figure 4. The corresponding temperature distributions
on vertical slice consistent with CF, and horizontal slice at depth of 800 m, are contoured

in Figure 3b and 3c, respectively.

4. Conclusions

In this study, an efficient Bayesian inference framework equipped with multivariate
adaptive regression spline (MARS) method has been used to reduce geological
uncertainties associated with evaluation of a geothermal prospect. Fast surrogate models
for hydrothermal flow were constructed by a MARS-based approach for use in a
Bayesian MCMC inversion procedure. Computational efficiencies gained in this process
(over traditional high-fidelity hydrothermal simulation codes) suggest that more complex
aspects of the system can be ultimately addressed, certainly when the costs of physical
models becomes too unwieldy. In addition, Sobol’ total sensitivity indices for each design
variable can also be efficiently calculated using a MARS model instead of a higher-
fidelity code. Insensitive variables were screened out of inverse process, enabling
Bayesian inference to be conducted that much more efficiently. Owing to the data

availability, a geothermal prospect near Superstition Mountain was chosen as the pilot
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site to test the efficiency and validity of this method. It was demonstrated that MARS-
enable Bayesian inference entailing 40 thousands model runs can be accomplished in 5
minutes, while an individual high-fidelity model (NUFT) run can cost around 10 minutes.
Future work will be focused on adapting the MARS technique to more realistic
problems that incorporate larger and higher-resolution domains, or variably saturated
flow conditions, aspects that could not have been effectively addressed with high-fidelity
hydrothermal models. In addition, the MARS technique can be further utilized in
subsequent optimization calculations that may be associated with the design and
engineering of a geothermal production operation. In this case, an optimization phase
involving hundreds or even thousands of objective function evaluations of reservoir
performance under various design configurations could be more readily conducted using
a MARS-based simulation approach. Higher-fidelity hydrothermal models incorporating
transient source/sink term will cost much more computational time than those in natural
condition in this work. This type of operation will also be better constrained, of course,
once a viable hydrothermal model of an undisturbed prospect is achieved from as
inversion process as described above. Preliminary numerical experiments show that a
single geothermal production model simulating up to 1000 years of operation lasts about
5 hours. While only temperature data are used in study to demonstrate the developed
method, various data sources are possible to be jointly inversed by extending the current

Bayesian framework.
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533  Tables and Figures

534

535 Table 1. Ranges of input design variables in constructing MARS models. The importance
536  of inputs are ranked according to Sobol’ total sensitivity indices for average temperatures
537  along the three NAFEC boreholes

Input parameter set Min Max Indices Rank
Fault height (m) 100 3200 0.712 1
Fault length (m) 100 3200 0.406 2
Fault log permeability (m?) -14  -12 0119 3
Ti log permeability (m?) -15  -13 0107 4
Bottom boundary temperature (°C) 125 225 0.0378 5
Granite thermal conductivity (W/m-C) 0.1 4.0 0.0286 6
Ti thermal conductivity (W/m-C) 0.1 4.0 0.0139 7
Granite log permeability (m?) -19 -17 0007 8
Fault thermal conductivity (W/m-C) 0.1 4.0 0.0037 7
Tpl thermal conductivity (W/m-C) 0.1 4.0 0.0033 10
Tp2 log permeability (m?) -15 -13 0.0 11
Tp2 thermal conductivity (W/m-C) 01 4.0 0.0 12
Tpllog permeability (m?) -15 -13 0.0 13
Qb thermal conductivity (W/m-C) 01 40 0.0 14
Qb log permeability (m?) -15 -13 0.0 15
538
539
M# uncertain parameters
Fault length g-
Fault log permeability ] s N
i log permeabili . = MAR - |
l;ro':togn:) bound::yt\'/l' frior PO = @ Responses
Granite thermal cond.
Ti thermal cond. | Observed Temperature ‘ Sensitivity analysis:
| K# top sensitive
parameters selected for
inversion (K<M)
540

541  Figure 1. Schematic diagram of the MARS-based Bayesian inversion framework. The
542  gray-shaded boxes indicate the construction of the training dataset used to develop the
543 MARS surrogate model. The full list of design variables is shown in Table 1. The
544  Bayesian Inversion within the oval is conducted with MCMC simulation using the
545 MARS surrogate model.
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Figure 2. Superstition mountain geothermal prospect. (a) Location in Imperial County,
California, USA (Bjornastad et al., 2006); (b) Surface geology and three NAFEC
boreholes. Black and yellow dashed lines show the areal projection of the core domain
and faults of hydrothermal models (Figure 3). Adapted from Tiedeman et al. (2011); (c)
Geological model looking from the Northeast, and showing (from bottom) the granite
basement, sandstone Ti, and sedimentary layers Tp2, Tpl, Qb (Figure3b). Dashed box
outlines the 3D core domain. The three boreholes are illustrated with red tubes.
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Figure 3. Hydrothermal model domain showing (a) Far field and core area plan view (red
shaded area); (b) Vertical slice of the core model domain at Y=28km, where conjugate
fault is located. The fault height and length, and the temperature distribution are
corresponding to the input parameter set with the highest probability inferred from
Bayesian inversion (Figure 7); (c) Horizontal slice of the core model domain at Z = 800m.
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563  Figure 4. Measured and simulated temperature profiles along the three “NAFEC”
564  boreholes (Tiedeman et al., 2001). The parameter set obtained from inversion with
565  highest probability is used in simulation. The red circle marks indicate the discrete
566 locations along the measured data curves used as observations in the stochastic inversion
567  process.
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570  Figure 5. Scatter plots of mean temperature in the three observation wells obtained from
571 1500 surrogate and physical model simulations. Plot (a) corresponds to the surrogate
572 | model fitting step, while plot (b) corresponds to the surrogate model -cross-validation
573  step.
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576  Figure 6. Parameters ranking according to the sensitivity of mean temperature along three
577  boreholes to the 15 hydrothermal parameters (Table 1). The sensitivity is measured by
578  Sobol’ total indice.
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581  Figure 7. Posterior probability density function (PDF) of the six most sensitive
582  parameters: (a) fault height, (b) fault length, (c) fault permeability, (d) Ti permeability, ()
583  bottom boundary temperature, and (f) granite thermal conductivity. Note the prior
584  probability of each parameter is uniformly distributed within its range.
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