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Abstract 23 

   In this study, an efficient Bayesian framework equipped with a Multivariate 24 

Adaptive Regression Spline (MARS) technique is developed to alleviate computational 25 

burdens encountered in a conventional Bayesian inversion of a geothermal prospect. Fast 26 

MARS models are developed from training dataset generated by CPU-intensive 27 

hydrothermal models and used as surrogate of high-fidelity physical models in Markov 28 

Chain Monte Carlo (MCMC) sampling. This Bayesian inference with MARS-enabled 29 

MCMC method is used to reduce prior estimates of uncertainty in structural or 30 

characteristic hydrothermal flow parameters of the model to posterior distributions. A 31 

geothermal prospect near Superstition Mountain in Imperial County of California in USA 32 

is used to illustrate the proposed framework and demonstrate the computational 33 

efficiency of MARS-based Bayesian inversion. The developed MARS models are also 34 

used to efficiently drive calculation of Sobol’ total sensitivity indices. Only top sensitive 35 

parameters are included in Bayesian inference to further improve the computational 36 

efficiency of inversion. Sensitivity analysis also confirms that water circulation through 37 

high permeable structures, rather than heat conduction through impermeable granite, is 38 

the primary heat transfer method. The presented framework is demonstrated an efficient 39 

tool to update knowledge of geothermal prospects by inversing field data. Although only 40 

thermal data is used in this study, other type of data, such as flow and transport 41 

observations, can be jointly used in this method for underground hydrocarbon reservoirs. 42 

 43 
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1. Introduction 46 

Quantitative, model-based prediction of geothermal reservoir behavior requires 47 

knowledge of both structural and parametric hydrothermal characteristics of the reservoir 48 

system. These include the location, size, and shape of important hydrogeologic flow units 49 

and faults, their associated permeability and thermal conductivity, as well as bounding 50 

temperature and fluid pressure and saturation conditions. These elements are difficult to 51 

fully characterize in the subsurface prior to reservoir development and are, at best, not 52 

completely known. This uncertainty will limit the accuracy of reservoir model predictions 53 

and reduce the reliability of any type of geothermal production or design that is based 54 

upon such predictive capabilities. Inverse methods are often utilized to better identify and 55 

estimate uncertain flow properties or system characteristics by matching field 56 

observations to corresponding predictive model simulations (Carrera et al., 2005; Hill and 57 

Tiedeman, 2007; Tompson et al., 2013; Tonkin and Doherty, 2009), yielding a model 58 

with improved accuracy and reduced uncertainties. Depending on the specific techniques 59 

used, inverse modeling may be subject to mathematical limitations or require a large 60 

number of intensive forward model simulations in order to be successful. 61 

It is widely recognized that incomplete knowledge of the underground fluid reservoir 62 

may introduce considerable uncertainty into modeling analyses of such systems and can 63 

typically lead to ill-posed nonlinear inverse problems with multiple solutions (Carrera, 64 

1988; de Marsily et al, 1999; Oliver et al., 2008). The idea of “Bayesian inference” has 65 

been demonstrated to provide an effective inverse framework which addresses the issues 66 

of ill-posedness and non-uniqueness by incorporating prior information and presenting 67 

the inversed solution in terms of probability distribution (e.g., Cui et al., 2011; Fu and 68 



Gomez-Hernandez, 2009; Oliver et al., 1997; Tarantola, 2004). In most cases, the 69 

posterior densities are difficult to sample directly from the analytical forms of distribution. 70 

Markov Chain Monte Carlo (MCMC) approaches provide a more practical simulation 71 

method for sampling from target distributions as a means to approximating posterior 72 

distributions for parameters or quantities of interest (e.g., Efendiev et al., 2005). However, 73 

for many types of large-scale modeling problems, including geothermal prospect 74 

characterization, MCMC simulations may become computationally prohibitive because 75 

of the large number of uncertain parameters that need to be considered (curse of 76 

dimensionality), the absolute size and discretization of the modeling domain of interest, 77 

and/or the complexity of the flow physics involved in each forward calculation (Smith 78 

and Marshall, 2008; Tompson et al., 2013). Although significant advancements in 79 

MCMC sampling efficiency have been made recently (Liu et al., 2000; Mariethoz et al., 80 

2010; Vrugt et al., 2009), the computational burden may still be unaffordable for large-81 

scale high-resolution numerical simulation problems.  82 

Two promising ways to address this challenge include (1) the use of up-front 83 

parameter sensitivity analyses to identify the most important parameters pertinent to an 84 

analysis of interest, prior to any formal inversion effort, and (2) the development of 85 

cheaper “surrogate” forward models for application in the MCMC sampling. Surrogate 86 

models attempt to replicate the behavior of complex models with simpler models using 87 

fewer but sensitive parameters. Sensitivity is a measure of the contribution of an input 88 

variable to the total variances of an output variable. In this study, the sensitivity analysis 89 

is used as a “screening” analysis to help focus the stochastic inversion work on 90 



parameters, properties, or characteristics that would appear to be most important, thus 91 

focusing computational efforts where they will be most beneficial.  92 

A surrogate model is meant to provide a fast approximation of a high-fidelity physical 93 

model calculation. Applications of surrogate modeling techniques in hydrology have 94 

been extensively studied in recent years (Razavi et al., 2012). A variety of approximation 95 

techniques haven been tried, such as polynomials (e.g., Fen et al., 2009), radial basis 96 

functions (RBFs) (e.g., Regis and Shoemaker, 2007), kriging (e.g., Simpson and Mistree, 97 

2001), support vector machines (SVMs) (Zhang et al., 2009), artificial neural networks 98 

(ANNs) (Behzadian et al., 2009; Dowla and Rogers, 2003), and sparse grid interpolation 99 

(Zeng et al., 2012). However, few studies have applied the multivariate adaptive 100 

regression spline (MARS) technique, a non-parametric approximation method developed 101 

by Friedman (1991). In a thorough review of surrogate modeling applications in water 102 

resources, none of 48 applications reviewed by Razavi (2012) has used the MARS 103 

technique. In a recent application of surrogates in optimizing the process of hydraulic 104 

fracturing, Chen et al. (2013) compared MARS to a suite of polynomial models including 105 

different number of input parameters and in various orders, and surrogate model 106 

approximated by MARS was demonstrated to have the best predictive performance. 107 

Motivated by this successful application of MARS in optimization, this study employs 108 

this function approximation technique to construct a surrogate of hydrothermal flow 109 

model for use in applying a Bayesian inversion algorithm to a geothermal prospect. 110 

2. Methodology 111 

The proposed methodology involves identification of important, yet uncertain 112 

parameters for the problem of interest, sampling in high-dimensional parameter space, 113 



development of numerical hydrothermal flow models, evaluation of response functions, 114 

construction and validation of MARS models, performing global sensitivity analyses, and 115 

coupled execution of Bayesian inference with MARS models. 116 

2.1. Inversion framework 117 

As illustrated in Figure 1, the inversion proceeds as follows: 118 

1. A set of M design variables pertinent to the problem are identified and associated with 119 

statistical distributions descriptive of their priori uncertainty. In this case, these 120 

variables pertain to a series of parametric and structural characteristics of the 121 

hydrothermal flow Case Study described below. Their uncertainty, as indicated by 122 

their distributions and ranges, are representative of prior knowledge about the target 123 

geothermal field and formation. 124 

2. Each of these variables are sampled N times from their probability distributions using 125 

a Latin Hypercube (LH) method (McKay et al., 1979). These N data realizations are 126 

used to drive N hydrothermal flow model realizations to (in our case below) a natural 127 

steady state and their corresponding responses (in our case below, temperatures at a 128 

finite set of observation locations) are evaluated from the simulated results.  129 

3. The N design variable-response pairs (shaded in Figure 1) are then used as a training 130 

and validation dataset to construct a surrogate MARS model. To make best use of 131 

limited dataset, leave-one-out cross validation (LOOCV) method is applied to 132 

validate the fitted MARS model (Picard and Cook, 1984). Given N input samples, a 133 

surrogate MARS model is constructed N times, each time leaving out one of the input 134 

sample from training, and using the omitted sample to test the model. 135 



4. The importance of the design variables in the hydrothermal model system are ranked 136 

according to Sobol’ total sensitivity indices (Sobol’, 1993, 2003), obtained from a 137 

global sensitivity analysis of response surface to input design variables. The Sobol’ 138 

method computes and decomposes the variances of response into fractions attributed 139 

to each input (first-order indices) variable and their interactions (second- or higher-140 

order indices), and hence the fractions (sensitivity indices) measure contribution of 141 

each input variable to variances of response variable (Chen et al., 2013). Only 142 

sensitive variables are included in Bayesian inference. 143 

5. The surrogate model is utilized in place of the hydrothermal flow model within a 144 

Bayesian inversion scheme (Tompson et al., 2013), from which posterior distributions 145 

of the sensitive variables are inferred from comparisons with observed temperature 146 

data. The posterior data distributions represent a subset of the prior data that lead to 147 

solutions most consistent with the observed temperature data.  148 

2.2. Hydrothermal model 149 

The mass balance equation for transient hydrothermal water flow in saturated porous 150 

media is considered in this study can be written as: 151 

 (  )       (   )     (1) 152 

where Q is the source/sink term, ϕ is the porosity, ρ is the fluid density , and v is the 153 

velocity, which can be computed from Darcy’s law:      (       )  , where k 154 

is the permeability tensor, P is the fluid pressure, μ is the fluid viscosity, g is the 155 

gravitational constant, and z is an elevation above some datum. In the current 156 

implementation, the principal axes of the permeability tensor are assumed to be aligned 157 

with the xyz coordinate system so that k is diagonal (kx, ky, kz). Permeability of each 158 



geological unit is assumed isotropic (kx= ky =kz) so we use K instead of k to represent 159 

permeability below this point. Note that the density and viscosity will, in general, be 160 

temperature (T) and pressure (P) dependent. 161 

In addition to the mass balance equation, the energy balance equation governing heat 162 

transfer can be expresses as: 163 

 [    (   )     (    )]      [              ]      (2) 164 

where ϕ is the rock porosity, u is the water internal energy,    is the rock density,     is 165 

the rock heat capacity,    is a reference temperature, H is the water enthalpy,    is the 166 

averaged thermal conductivity of both water an rock, and    is the heat source/sink term. 167 

The above mass and energy balance partial differential equations are discretized and 168 

solved numerically in NUFT (Nonisothermal Unsaturated-saturated Flow and Transport), 169 

a code developed in Lawrence Livermore National Laboratory and applied successfully 170 

in many models simulating mass and heat transfer (Nitao, 1998). NUFT is used to build 171 

hydrothermal models in this study. Fault size, temperature T at reservoir bottom boundary, 172 

rock permeability K and thermal conductivity    of each geologic unit are assumed key 173 

uncertain reservoir properties for heat transfer, and hence selected as design variables for 174 

inversion stage. All the hydrothermal model simulations run to steady state under natural 175 

condition. 176 

2.3. Multivariate adaptive regression spline (MARS) 177 

 Multivariate adaptive regression spline represents a nonparametric technique which 178 

adaptively develops local models in local regions for flexible regression modeling of high 179 

dimensional data. A MARS model can be expressed as 180 

 ̂( )  ∑     ( ) 
 
    (3) 181 



where     , and    is the m-dimensional domain of interest. k and    are the number 182 

and coefficients of associated basis functions   ( ) given by 183 

  ( )  {
                                              

∏ [    (  (   )     )]
  
    

            (4) 184 

where ( )      (   ), Ji is the interaction order of basis Bi, that is, the number of 185 

variables included in the basis function,        is the sign indicators,  v(j,i) is the index 186 

of the design variable x which is split on knots tji. For example, suppose a basis function 187 

is given by    (      ) [ (      )] . Apparently, the interaction order is 2, so 188 

    . The sign indicators             .   The index for the design variable are 189 

 (   )     (   )   , and the knots are given by                 . 190 

The first and second derivatives are enforced to match on the boundaries of adjacent 191 

regions to ensure continuity between local models. Once the number of locations of knots 192 

(points at the boundaries) is adaptively chosen based on the response function changes, 193 

the coefficients    and basis functions   ( ) can be examined and determined. 194 

Comprehensive illustration of the MARS algorithm can be found in Friedman (1991). 195 

Compared to other popular techniques, the use of MARS is limited to automatic 196 

engineering design applications (e.g., Sudjianto et al., 1998) and has seldom been 197 

reported in hydrothermal literature. The superiority of MARS over other high 198 

dimensional regression methods appears to be accuracy and reduction in computational 199 

cost of fitting process (Chen et al., 2013; Jin et al., 2001). 200 

2.4. MARS-enabled Bayesian inference 201 



The purpose of Bayesian inference is to update the beliefs about uncertain parameters 202 

by combining information from the prior distribution and the measurements through the 203 

calculation of the posterior distribution. Assuming x is the vector formed by design 204 

variables to be inversed, y is the measurements, Bayes’ theorem relates the posterior 205 

distribution  ( | ) to the product of the conditional probability of the measurements 206 

 ( | ) and the prior probability  ( ) of design variables as follows: 207 

 ( | )   ( | ) ( )  ( )  (5) 208 

where marginal distribution  ( )  ∫ ( ) ( | )   is an integral, which doesn’t 209 

provide any additional information about posterior distribution and can be seen as a 210 

normalized constant.  ( ) represents uncertainty prior to any knowledge of 211 

measurements, and is assumed uniformly distributed within an appropriate range in this 212 

study. Hence, the posterior  ( | ) is proportional only to  ( | ).   213 

 ( | ) is also called likelihood function, which quantifies the degree of fit between 214 

predictions and measurements. The likelihood can be calculated by forwarding 215 

hydrothermal models with the given design variables to steady state, at which the errors 216 

between predicted and measured temperatures at observed locations can be included 217 

     ( )  (6) 218 

where ε is the errors,  ( )  is the predictions from NUFT models. The smaller the errors 219 

are, the higher the likelihood is. By assuming ε follows multiple dimensional Gaussian 220 

distribution with zero mean and known covariance matrix C, the likelihood can be 221 

expressed as (Zeng et al., 2012): 222 

 ( | )     (           ) [(  )   | |   ]   (7) 223 



where n is the number of measurements, | | is the determinant of C. In the study, MARS 224 

model  ̂( ) is used as surrogate of NUFT hydrothermal model  ( ) in calculating this 225 

Gaussian likelihood function. In this way, the posterior can be obtained without running 226 

expensive NUFT models during MCMC sampling, thus accelerating Bayesian inversion 227 

significantly. 228 

2.5. Implementation 229 

The proposed framework is written in Python by incorporating hydrothermal NUFT 230 

models and various numerical codes from PSUADE suite (Tong, 2009), including LH 231 

sampling, MARS approximation, Sobol’ method, and MCMC algorithm.  232 

3. Case studies and discussions 233 

To illustrate and demonstrate the proposed approach, a geothermal prospect at 234 

Superstition Mountain in California is chosen as the example study owing to its data 235 

availability of geological stratigraphy and borehole temperature logs from Navy 236 

geothermal program (Figure 2) (Bjornstad et al., 2006; Tiedeman et al., 2011).  237 

3.1. Three-dimensional model development for Superstition Mountain 238 

A three-dimensional geologic model built with digital elevation and layer horizon 239 

data in Tompson et al. (2008) are used to conceptualize the geologic structure of  240 

Superstition Mountain (Figure 2c). Geophysical and drilling logs from the three 241 

boreholes near Superstition Mountain provide additional information to refine the model 242 

(Figure 2b).  The prospect is bounded on the southwest by granite basement and 243 

sedimentary layers to the northeast. A major active fault, the Superstition Mountain fault 244 

(SMF), lies near the prospect. The study by Layman Energy Associates (2012) supported 245 



a hypothesis that one or more of the high-permeable principal or cross faults serve as the 246 

vertical pathways for hot water flow from deep zones to shallow aquifers through low 247 

permeable granite zone. This water circulation is believed to be the cause of elevated 248 

temperatures observed in three NAFEC boreholes and nearby shallow temperature 249 

surveys. A recent hydrothermal model developed using NUFT for the prospect (Mellors 250 

et al., 2013; Tompson et al., 2013), which contained a vertical conjugate fault (CF) 251 

transverse to SMF and extending to northeast through NAFEC-3, predicted temperature 252 

profiles closely matching temperature logs of three NAFEC boreholes.  253 

This NUFT model domain is adapted in our model as the core region enclosed by a 254 

larger far field domain (Figure 3a). The X direction in the core domain is parallel with the 255 

CF, while the Y direction is parallel with the SMF. The core model domain used here 256 

extends along the X axis 6.5 km to the northeast of the SMF and is restricted to a 1.5 km 257 

width in the Y direction, with the center of the left boundary intersecting CF at right 258 

angle (Figure 2b). The core domain extends vertically downwards 3.2 km from the 259 

ground surface and is discretized into 100 m cubic grid blocks. The current system is 260 

considered to be fully saturated throughout the domain. In the future it will be upgraded 261 

to more representative partially saturation conditions in the shallower sediments. The 262 

larger far-field domain incorporates reduced grid resolution beyond its core as a means to 263 

control computational costs. Representation of geological structures in the model grid is 264 

simplified from the geologic model. As shown in vertical X-Z section crossing the center 265 

of left boundary, where CF is located, the five geologic units crossing the core domain 266 

section are sequenced from the bottom as a fractured, low permeability Granite, a 267 

permeable sandstone layer Ti, and alluvial sediment layers Tp2, Tp1, Qb, along a 268 



downward slope in X direction (Figure 3b). The left boundary is consistent with SMF at 269 

X=0 m, and the 100-m thick permeable vertical CF is normal to the left boundary with 270 

uncertain length and height (Figure 3c). Pressure and temperature are specified at the top 271 

boundaries to represent the average atmospheric conditions. High temperature is fixed at 272 

the bottom boundary to mimic the geothermal heat source, with a lower fixed temperature 273 

at the ground surface. Groundwater is allowed to flow from the left (X = 0) to the right 274 

(X = 6.5km) sides of the as a result of specified pressure conditions that reproduce a 275 

small hydraulic gradient in this area, and is also allowed to enter the bottom of the 276 

domain as a result of another fixed pressure condition. Depending on permeability 277 

conditions, such inflows may support the generation of hydrothermal inflows that may 278 

circulate and exit the right side of the boundary. No flow conditions are maintained along 279 

the Y faces of the domain.  280 

Because this is considered a “natural” flow system, the hydrothermal models are used 281 

to develop a steady-state flow and temperature solution by running them in a transient 282 

mode from provisional initial conditions for one million years. The predicted 283 

temperatures at steady state time are compared to measurements at observing locations 284 

along three NAFEC boreholes during Bayesian inversion. 285 

3.2. MARS models construction 286 

Following the procedure outlined in Figure 1 and Section 2.1, the inversion starts 287 

with the identification of a set of parameters to be treated uncertain (design variables). 288 

The differential equation governing geothermal heat transfer (Eq. 2) indicates formation 289 

permeability K and thermal conductivity KT will be crucial properties controlling hot 290 

groundwater circulation and heat conduction respectively. Thus the two properties for 291 



faults, Granite and four sediment formations, totally 12 variables, are included as design 292 

variables. The values of temperature fixed at the bottom boundary, which represent the 293 

strength of heat source, are partially unknown (certainly warmer than the surface 294 

temperature) but may affect steady state temperature distribution across the model 295 

domain, and hence are included as design variables too. In addition, the length and height 296 

of CF, which is anchored at the SMF at low left corner, are also considered random. The 297 

CF unit is considered to be a more permeable feature able to support geothermal 298 

circulation into shallower zones if sufficient flow connectivity exists. These 15 design 299 

variables, along with their lower and upper bounds, are listed in Table 1. The log-300 

transformed permeabilities and all the other variables are assumed to follow uniformly 301 

random distribution across their indicated ranges. A total of 1500 input samples are 302 

drawn from the 15-dimensional parameter space using the LH method, with each sample 303 

vector containing, as components, 15 values of the design variables. The 15 component 304 

values of each sample vector, together with other fixed parameters, are written into the 305 

input file of NUFT model for simulation. The temperatures at 23 observation locations 306 

(red circles in Figure 4) along the three NAFEC boreholes, obtained from the output of 307 

the NUFT model, are used as the response values. The 1500 NUFT model simulations, 308 

specifically the 1500 sets of input vectors and 1500 sets of output response values, are 309 

used as both a training and a validation dataset to construct the MARS models. Each 310 

MARS model  ̂( ) consists of 100 basis functions   ( ), each with 10 orders of 311 

interactions Ji (10 design variables x). It should be noted that a well-fitted MARS model 312 

does not necessarily mean that it will have good performance for prediction due to over-313 

fitting issue, and hence it has to be validated before the use for prediction. The predictive 314 



performance of MARS models in this study is measured by LOOCV method (Chen et al., 315 

2013; Picard and Cook, 1984). The quality of the MARS models can be illustrated by 316 

scatter plot comparing the response values simulated by the surrogate model versus those 317 

simulated by the physical NUFT model, based upon the 1500 samples. As shown in 318 

Figure 5, the R-squared values obtained for the scatter plots in both the fitting and 319 

validation steps of the MARS model (with mean response values) are 0.979 and 0.959 320 

respectively, suggesting a good predictive ability of the well-fitted MARS model.   321 

3.3. Global sensitivity analysis 322 

 Sensitivity of model responses to the design variables values can be efficiently 323 

calculated using MARS models. The Sobol’ total sensitivity indices (SI) for 15 variables 324 

are listed in Table 1 and visualized in Figure 6 (Sobol’ 2003). As expected, the 325 

dimensional characteristics of CF, i.e., height and length, rank as the top two (1 and 2) 326 

sensitive variables for defining the temperature distribution in the aquifer where NAFEC 327 

boreholes are located (depth < 1000 m), while the permeability of the CF and Ti units, 328 

which represent primary groundwater circulation pathways, are moderately sensitive (SI > 329 

0.1). The low sensitivity (SI < 0.05) of the specified temperature at bottom boundary 330 

(heat source of the model) indicates that its variations between 125
 o
C and 225

o
C lead to 331 

little change of the temperature values in shallow aquifers. This finding demonstrates that 332 

the efficiency of heat transfer is more important than heat storage for a geothermal field. 333 

Low SIs (< 0.05) associated with the thermal conductivity of both granite and the Ti units 334 

reveal that the heat conduction is a minor mechanism of heat transfer, compared to 335 

groundwater convection, through these two formations in the Superstition Mountain 336 

geothermal prospect. It is not surprising that the granite permeability is insensitive (SI < 337 



0.01), given that its value ranges between 10
-19

 and 10
-17

 m
2
, which can be considered 338 

effectively impermeable, as compared to the crossing CF permeability (10
-14

 – 10
-12

  m
2
). 339 

Neither the permeability nor the thermal conductivity of the upper sediment aquifers (Tp2, 340 

Tp1, and Qb) is sensitive for temperature around NAFEC boreholes, which is could be 341 

considered a potential geothermal production area. It is reasonable since these formations 342 

are not the primary groundwater circulation pathways. Overall, the sensitivity 343 

quantification and associated ranking for the hydrothermal model system of the 344 

geothermal prospect demonstrates that groundwater circulation is the primary mechanism 345 

of heat transfer in the field, consistent with previous studies for this area. Reducing the 346 

uncertainty of those most sensitive properties, which is critical for potential geothermal 347 

reservoir development and management, is a critical priority of exploration investment. 348 

In addition to those expensive geophysical surveying approaches, Bayesian inversion 349 

equipped with fast MARS models is applied to achieve better knowledge of these 350 

important properties from the temperature observations shown as red circles in Figure 4. 351 

3.4. Bayesian inversion with MARS-enabled MCMC 352 

 The MARS surrogate model was used to enable a MCMC-based Bayesian inversion 353 

process using the prior probability density functions (PDFs) shown in Table 1 for the six 354 

top sensitive design variables identified in Figure 6. The MCMC procedure starts with 355 

burn-in phase in which 10,000 MARS model simulations are employed. During the 356 

following phase of creating posteriors, the chain converges after MARS model calls 357 

amount to three sequential sample increments, with each 10,000 in size for convergence 358 

check. The total MARS model runs for the complete MCMC, therefore, is 40,000 in this 359 

case of Bayesian inversion, which cost about 5 minutes of computing time, while an 360 



equivalent NUFT model simulation on a scalar machine take around 10 minutes 361 

averagely. Compared to NUFT-based inversion, the MARS-based approach is projected 362 

to improve the inversing efficiency by 10/5*40,000= 80,000 times. Although NUFT 363 

model simulations were, in fact, used to support the inversions described in Tompson et 364 

al (2013) on a similar model domain as the core domain in this study, they were 365 

accomplished using a parallel implementation of NUFT and exploited the naturally 366 

parallel benefits of conducting multiple MCMC simulation chains. That said, the power 367 

of the MARS method can be most effectively exploited when, for example, a larger scale 368 

and higher resolution model grid is used for more realistic, variably-saturated 369 

hydrothermal flow simulations, a configuration that the NUFT-only platform cannot 370 

currently address in an efficient, cost effective manner. 371 

Among the six posterior PDFs are shown in Figure 7, the two least sensitive variables, 372 

bottom temperature and granite thermal conductivity, are almost equally likely in their 373 

ranges, suggesting that little additional knowledge is gained from prior information by 374 

Bayesian inference due to their low identifiability. Among the other four variables, CF 375 

height is identified as 3200 m at its upper bound that results in best matches with 376 

observation data with a highest probability of 0.45, more than twice the magnitude of the 377 

second highest probability. This result strongly suggests CF fault penetrates the entire 378 

granite zone vertically. Figure 7b indicates that CF length should be 1100m in order to 379 

best match the data, with the highest probability of 0.33. The probabilities of lengths  380 

larger than 1100 m are much higher than those for smaller values, indicating CF should 381 

be long enough in order to maintain contact with (and support fluid flows into) the 382 

shallower and permeable Ti formation (Figure 3b). This finding makes sense since a 383 



contiguous connection through a permeable CF and Ti supports a viable groundwater 384 

circulation pathway to convective heat transfer to the observation wells. The log-385 

transformed permeabilities of the CF and Ti units have highest probability of 0.138, 386 

0.146 at values of -13.16 and -13.44 m
2
 respectively. While the possible CF permeability 387 

clusters in the mean value of its range, Ti permeability is prone to higher values within 388 

the range. The comparison between simulated results by NUFT model using the 389 

parameter set with highest probability and measured temperatures along three NAFEC 390 

boreholes shows a good match in Figure 4. The corresponding temperature distributions 391 

on vertical slice consistent with CF, and horizontal slice at depth of 800 m, are contoured 392 

in Figure 3b and 3c, respectively.  393 

4. Conclusions 394 

In this study, an efficient Bayesian inference framework equipped with multivariate 395 

adaptive regression spline (MARS) method has been used to reduce geological 396 

uncertainties associated with evaluation of a geothermal prospect. Fast surrogate models 397 

for hydrothermal flow were constructed by a MARS-based approach for use in a 398 

Bayesian MCMC inversion procedure. Computational efficiencies gained in this process 399 

(over traditional high-fidelity hydrothermal simulation codes) suggest that more complex 400 

aspects of the system can be ultimately addressed, certainly when the costs of physical 401 

models becomes too unwieldy. In addition, Sobol’ total sensitivity indices for each design 402 

variable can also be efficiently calculated using a MARS model instead of a higher-403 

fidelity code. Insensitive variables were screened out of inverse process, enabling 404 

Bayesian inference to be conducted that much more efficiently. Owing to the data 405 

availability, a geothermal prospect near Superstition Mountain was chosen as the pilot 406 



site to test the efficiency and validity of this method. It was demonstrated that MARS-407 

enable Bayesian inference entailing 40 thousands model runs can be accomplished in 5 408 

minutes, while an individual high-fidelity model (NUFT) run can cost around 10 minutes.  409 

Future work will be focused on adapting the MARS technique to more realistic 410 

problems that incorporate larger and higher-resolution domains, or variably saturated 411 

flow conditions, aspects that could not have been effectively addressed with high-fidelity 412 

hydrothermal models. In addition, the MARS technique can be further utilized in 413 

subsequent optimization calculations that may be associated with the design and 414 

engineering of a geothermal production operation. In this case, an optimization phase 415 

involving hundreds or even thousands of objective function evaluations of reservoir 416 

performance under various design configurations could be more readily conducted using 417 

a MARS-based simulation approach. Higher-fidelity hydrothermal models incorporating 418 

transient source/sink term will cost much more computational time than those in natural 419 

condition in this work. This type of operation will also be better constrained, of course, 420 

once a viable hydrothermal model of an undisturbed prospect is achieved from as 421 

inversion process as described above. Preliminary numerical experiments show that a 422 

single geothermal production model simulating up to 1000 years of operation lasts about 423 

5 hours. While only temperature data are used in study to demonstrate the developed 424 

method, various data sources are possible to be jointly inversed by extending the current 425 

Bayesian framework. 426 
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Tables and Figures 533 
 534 

Table 1. Ranges of input design variables in constructing MARS models. The importance 535 

of inputs are ranked according to Sobol’ total sensitivity indices for average temperatures 536 

along the three NAFEC boreholes  537 

Input parameter set Min Max Indices Rank 

Fault height (m) 100 3200 0.712 1 

Fault length (m) 100 3200 0.406 2 

Fault log permeability (m
2
) -14 -12 0.119 3 

Ti log permeability (m
2
) -15 -13 0.107 4 

Bottom boundary temperature (
o
C) 125 225 0.0378 5 

Granite thermal conductivity (W/m-C) 0.1 4.0 0.0286 6 

Ti thermal conductivity (W/m-C) 0.1 4.0 0.0139 7 

Granite log permeability (m
2
) -19 -17 0.007 8 

Fault thermal conductivity (W/m-C) 0.1 4.0 0.0037 7 

Tp1 thermal conductivity (W/m-C) 0.1 4.0 0.0033 10 

Tp2 log permeability (m
2
) -15 -13 0.0 11 

Tp2 thermal conductivity (W/m-C) 0.1 4.0 0.0 12 

Tp1 log  permeability (m
2
) -15 -13 0.0 13 

Qb thermal conductivity (W/m-C) 0.1 4.0 0.0 14 

Qb log permeability (m
2
) -15 -13 0.0 15 

 538 
 539 

 540 

Figure 1. Schematic diagram of the MARS-based Bayesian inversion framework. The 541 

gray-shaded boxes indicate the construction of the training dataset used to develop the 542 

MARS surrogate model. The full list of design variables is shown in Table 1. The 543 

Bayesian Inversion within the oval is conducted with MCMC simulation using the 544 

MARS surrogate model. 545 



 546 
Figure 2. Superstition mountain geothermal prospect. (a) Location in Imperial County, 547 

California, USA (Bjornastad et al., 2006);  (b) Surface geology and three NAFEC 548 

boreholes. Black and yellow dashed lines show the areal projection of the core domain 549 

and faults of hydrothermal models (Figure 3). Adapted from Tiedeman et al. (2011); (c) 550 

Geological model looking from the Northeast, and showing (from bottom) the granite 551 

basement, sandstone Ti, and sedimentary layers Tp2, Tp1, Qb (Figure3b). Dashed box 552 

outlines the 3D core domain. The three boreholes are illustrated with red tubes. 553 

 554 



 555 
Figure 3. Hydrothermal model domain showing (a) Far field and core area plan view (red 556 

shaded area); (b) Vertical slice of the core model domain at Y=28km, where conjugate 557 

fault is located. The fault height and length, and the temperature distribution are 558 

corresponding to the input parameter set with the highest probability inferred from 559 

Bayesian inversion (Figure 7); (c) Horizontal slice of the core model domain at Z = 800m.  560 

 561 

 562 



Figure 4. Measured and simulated temperature profiles along the three “NAFEC” 563 

boreholes (Tiedeman et al., 2001). The parameter set obtained from inversion with 564 

highest probability is used in simulation. The red circle marks indicate the discrete 565 

locations along the measured data curves used as observations in the stochastic inversion 566 

process.  567 

 568 

 569 
Figure 5. Scatter plots of mean temperature in the three observation wells obtained from 570 

1500 surrogate and physical model simulations. Plot (a) corresponds to the surrogate 571 

model fitting step, while plot (b) corresponds to the surrogate model  cross-validation 572 

step. 573 

 574 



 575 
Figure 6. Parameters ranking according to the sensitivity of mean temperature along three 576 

boreholes to the 15 hydrothermal parameters (Table 1). The sensitivity is measured by 577 

Sobol’ total indice.  578 

 579 



 580 
Figure 7. Posterior probability density function (PDF) of the six most sensitive 581 

parameters: (a) fault height, (b)  fault length, (c) fault permeability, (d) Ti permeability, (e) 582 

bottom boundary temperature, and (f) granite thermal conductivity. Note the prior 583 

probability of each parameter is uniformly distributed within its range. 584 
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