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Abstract

Thermally-activated 1/2 {111) screw dislocation motion is the controlling plastic mechanism at low
temperatures in body-centered cubic (bcc) crystals. Dislocation motion proceeds by nucleation and
propagation of atomic-sized kink pairs in close-packed planes. The atomistic character of kink pairs can
be studied using techniques such as molecular dynamics (MD). However, MD’s natural inability to
properly sample thermally-activated processes as well as to capture {1104{110} screw dislocation glide
calls for the development of other methods capable of overcoming these limitations. Here we develop a
kinetic Monte Carlo (kMC) approach to study single screw dislocation dynamics from room temperature
to 0.5T,, and at stresses 0< 0 <0.9 ¢ », Where T, and o , are the melting point and the Peierls stress. The
method is entirely parameterized with atomistic simulations using an embedded atom potential for
tungsten. To increase the physical fidelity of our simulations, we calculate the deviations from Schmid’s
law prescribed by the interatomic potential used and we study single dislocation kinetics using both
projections. We calculate dislocation velocities as a function of stress, temperature, and dislocation line
length. We find that considering non-Schmid effects has a strong influence on both the magnitude of the
velocities and the trajectories followed by the dislocation. We finish by condensing all the calculated
data into effective stress and temperature dependent mobilities to be used in more homogenized
numerical methods.

1. Introduction



1/2 {111) screw dislocations are the main carriers of plasticity in body-centered cubic (bcc) single
crystals. Experimentally, bcc slip is seen to occur on {110},{112}, and {123} planes, or any combination
thereof. To determine the slip plane for a general stress state, Schmid’ s law is used, which states that
glide on a given slip system commences when the resolved shear stress on that system, the Schmid
stress, reaches a critical value (Schmid and Boas, 1935). This law is known to break down in bcc metals,
which has great implications on the overall plastic flow and deformation behavior in these systems.
Experimentally, non-Schmid behavior is well documented in the literature going back several decades (
Sestak and Zarubova, 1965, Sherwood et al., 1967, Zwiesele and Diehle, 1979, Christian, 1983 and Pichl,
2002), 1 and its reasons have been thoroughly investigated. First, as Vitek and co-workers have noted (
Duesbery and Vitek, 1998 and Ito and Vitek, 2001), slip planes in bcc crystals do not display mirror
symmetry (a common characteristic of planes belonging to the {111) zone), and so the sign of the
applied stress does matter to determine the critical stress. This is most often referred to as the
twinning-antitwinning asymmetry . Second, studies using accurate atomistic methods (semi empirical
interatomic potentials and density functional theory calculations) have shown that stress components
that are not collinear with the Burgers vector bb couple with the core structure of screw dislocations
resulting also in anomalous slip ( Bulatov et al., 1999, Woodward and Rao, 2001, Gréger and Vitek, 2005
and Chaussidon et al., 2006).

Although effective corrections that reflect deviations from Schmid law have been implemented in crystal
plasticity models, and their effects assessed at the level of grain deformation (Dao et al., 1996, Vitek et
al., 2004, Groger and Vitek, 2005, Yalcinkaya et al., 2008, Wang and Beyerlein, 2011, Lim et al., 2013,
Chen et al., 2013 and Soare, 2014), there is no model establishing the fundamental impact of non-
Schmid behavior on single screw dislocation motion. Molecular dynamics (MD) simulations naturally
include non-Schmid effects as part of the simulated dynamics of screw dislocations (Gilbert et al., 2011
and Cereceda et al., 2013). However, it is exceedingly difficult to separate these effects from the bundle
of processes (and artifacts) brought about by size and time limitations inherent to MD simulations. In
addition, screw dislocation motion proceeds by way of the nucleation and sideward relaxation of so-
called kink pairs in a broad stress and temperature range. Kink pair nucleation may be regarded as a rare
event occurring on a periodic energy substrate known as the Peierls potential. MD’ s inability to sample
these events accurately often leads to overdriven dynamics and unrealistically high dislocation velocities
( Cereceda et al., 2013).

Here, we develop a kinetic Monte Carlo (kMC) model to study thermally activated screw dislocation
motion in tungsten (W). Our approach - which builds on previous works on the same topic (Lin and
Chrzan, 1999, Cai et al., 2001, Cai et al., 2002, Deo and Srolovitz, 2002, Scarle et al., 2004 and Ariza et al.,
2012) - is based on the stochastic sampling of kink pair nucleation coupled with kink motion. The entire
model is parameterized using dedicated atomistic simulations using a state-of-the-art interatomic
potential for W (Marinica et al., 2013). Non-Schmid effects are incorporated via a dimensionless
representation of the resolved shear stress, which provides the deviation from standard behavior for all
the different activated slip planes. We explore the impact of these deviations on single dislocation glide
and compare the results to direct MD simulations. Another novel aspect of our simulations is the



inclusion of stress-assisted kink drift and kink diffusion simultaneously in our model. This quantitatively
reflects the dynamic behavior observed atomistically for an isolated screw dislocation.

The paper is organized as follows. First we describe the kMC algorithm and the topological construct of
screw dislocations and kink segments. We then provide a detailed account of the parameterization
effort undertaken, beginning with single kink static and dynamic properties, and ending with the
calculation of the non-Schmid law. In the Results section we report calculations of Schmid and non-
Schmid glide as a function of stress, temperature, dislocation length, and maximum resolved shear
stress (MRSS) plane. We finish with a discussion of the results and the conclusions.

2. Kinetic Monte Carlo model of thermally-activated screw dislocation motion
2.1. Physical basis

All that is required to initialize a kMC run are the total initial screw dislocation line length L, the
temperature T, and the applied stress tensor o o . In the kMC calculations, we choose a working
representation of the stress tensor in its non-dimensional scalar form:

ORss
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where o0 gss is the resolved shear stress (RSS) and o pis the Peierls stress. We consider two different
contributions to o RSS: (i) from external sources - defined by an applied stress tensor ¢ - and (ii) from
internal stresses originating from segment-segment elastic interactions. At a given dislocation segment i
, the normalized resolved shear stress is:

equation(1)

t (orow-n t(0+T0r)) n
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Here, t and n are unit vectors representing the slip direction and the glide plane normal, and rij is the
distance between dislocation segments i and j . The calculation of o ij(rij) is discussed in Section 2.2 but

note that this definition of o int introduces a certain locality in sisi, hence the subindex i.

The projection of the total stress tensor on the RSS plane as in Eq. (1) is what is known as Schmid’s law .
For a straight dislocation (no internal stresses) in the coordinate system depicted in Fig. 1, the RSS is:

equation(2)
0 RSS= 0 ext=t" 0 n=-0 xzsin 0 + 0 yzcos O o RSS= 0 ext=t* o * n=- 0 xzsin O + o yzcos 6

where the angle 6 is measured from the positive x -axis to the glide plane defined by nn. Here, the only
active components of the stress tensor that result in a resolved component of the Peach-Kéhler force
on the glide plane are o xz and o yz. In Section 3.4, we explain how to substitute Eq. (2) by a suitable



projection law that reflects non-Schmid behavior. In what follows, for brevity, we use the shorthand
notation s to denote the stress at any given segment, s=sis=si, and t to refer to the resolved applied

shear stress, T = o ext.
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Fig. 1.

Schematic view of the glide planes of the [1 1 1] zone. A generic MRSS plane is labeled in red, while, by
way of example, the (101) is the glide plane. The suffixes ‘T’ and ‘AT’ refer to the twinning and

antitwinning senses, respectively.

In the same spirit as previous works on the topic, our approach is to generate kink-pair configurations by
sampling the following general function representing the kink-pair nucleation probability per unit time:

equation(3)

ri(s5: T) = of (s) exp {— &:‘F} }

f(s) = s > ws)

0 if I; < w(s)

where o o is the attempt frequency, A H(s) is the kink-pair activation enthalpy, w(s)w(s) is the kink-
pair separation, k is Boltzmann’ s constant, and T is the absolute temperature. The variable lili
represents the length of a rectilinear screw segment i, with L= X iliL= X ili. Typically, a non screw

segment - e.g. a kink - separates each segment i from one another.

The expression above merits some discussion. The stress-dependent functions A H(s) and w(s)w(s) are
of the following form:



equation(4)

A H(s)=AHO1-spq
equation(5)
w(s)=wO(s-m+c)(1-s)-n

where P: 4. Wo. M. Cyngnareall adjustable parameters. Eq. (4) represents the formation enthalpy
of a kink pair at stress s and follows the standard Kocks-Argon-Ashby expression that equals the energy
of a pair of isolated kinks at zero stress and vanishes at s=1s=1 ( t = 0 p) ( Kocks et al., 1975). For its part,
Eq. (5) is a phenomenological expressions (no physical basis) that diverges for both limits s=0s=0 and
s=1s=1. This is because the equilibrium kink separation distance is undefined at zero stress, while, at the
Peierls stress, the notion of kink pair is itself ill-defined. A physical equation for w(s)w(s) could
conceivably be obtained by, e.g., generating kink pair configurations within a full elasticity model and
measuring the force balance (elastic attraction vs. stress-induced repulsion) as a function of applied
stress. However, as discussed below, kinks display a strong atomistic (inelastic) behavior at short
distances and we prefer to obtain its atomistic dependence and fit to a function that captures the
divergence for s=0s=0 and s=1s=1.

The function f(s)f(s) represents the number of possible nucleation sites for a kink pair of width w on a
segment i of available length lili. It is through this function that the well-known dependence of the screw
dislocation velocity with its length at low stress is introduced.

Kink motion is defined by thermal diffusion at zero stress, characterized by a diffusion coefficient DkDk,
and a stress dependent drift characterized by the following viscous law

equation(6)

('prs_
B

vy =

where v, is the kink drift velocity and B is a friction coefficient. Although phonon scattering treatments
predict that B increases linearly with temperature, our MD calculations show B to be constant across all
temperatures, in agreement with previous studies on kink motion ( Swinburne et al., 2013). The overall
dynamic behavior of kinks must account for both contributions to the mobility, which can be done by
treating kink diffusion as a Wiener process within the kMC model in the following fashion. Assuming that
atime step 0 t has been selected within the kMC main loop, one can write the incremental position of
the kink as:

oX = ot = \,.r.-"'.-D_fl-fjt

where the & = sign reflects the random character of diffusion. The maximum kink flight time in the
code is obtained by inverting the above expression and solving for the parameter 0 tmig with 0 x=0
xmax, which is an input parameter to the kMC algorithm (cf. Section 2.2).



2.2. Implementation details

The dislocation is represented by a piecewise straight line extending a length L along the
1/2[111]1/2111 Burgers vector direction, as depicted in Fig. 2. It consists of pure screw segments, which

can be of any length, and pure edge segments (kinks), which all have the same length h= 2_6 (o, the
unit kink height. The direction of kink segments can be any one of six 1/3 {112) 1/3112 directions,
corresponding to glide of the dislocation on the three {110}110planes of the [111]111 zone (cf. Fig. 1).
Periodic boundary conditions are used in the direction parallel to the screw direction. 2

[121]

L[112]

[211]
Fig. 2.

Schematic depiction of an arbitrarily kinked screw dislocation line showing kink-pairs on two different
{110}{110} planes. The arrows indicate the direction of motion of kinks under an applied stress that

creates a force on the dislocation in the [112] direction. The dashed line represents a cross-kink.

Even though kinks are represented by pure edge segments in our model, we implicitly assume that kink
pairs have a trapezoidal shape of a certain width a (this is discussed in Section 3.1.1). This is why the
length of a screw segment, where new kink pairs can nucleate, is effectively reduced by one kink width a
. Kink segments move parallel to the [111]111 screw direction and can recombine with other kinks of
opposite sign. The local kink-pair nucleation rate (Eq. (3)) and the drift velocity of kink segments (Eq. (6))
depend on the local stress, which is the superposition of a fixed, externally applied stress tensor and
varying internal stresses (cf. Eq. (1)). The internal contributions, o ij, originating from mutual interactions
between the piecewise straight dislocation segments, are computed using non-singular isotropic
elasticity theory with a core width of 0.5b0.5b ( Cai et al., 2006). W is a perfectly isotropic elastic
material and so using the theory by Cai et al. (2006) introduces no limitations in this regard.



The local stress on a given segment i may not be spatially uniform. To resolve this spatial dependence,
we sample the local nucleation rate at multiple random positions along lili. The simulation proceeds in
discrete time steps of variable length according to the following algorithm:

1.

The current drift velocities of existing kinks are computed from the local stress at the center of each
kink.

Assuming constant kink velocities, a migration time § tmig is computed, which is the lowest time taken
by any kink in the system to move a prescribed maximum distance § xmax=40b § xmax=40b, or before
any kink-kink collision occurs.3

3.

A nucleation time 9§ tnuc is randomly generated from the exponential distribution defined by the total
nucleation rate, which is the sum of all kink-pair nucleation rates on all screw segments and for all kink
directions.

4.

If 0 tmig< § tnuc, then all kinks move at their current velocities for a time period § tmig and the
simulation time is incremented accordingly. Otherwise, the kinks move for a time period 0 tnuc,
followed by a kink-pair nucleation on a screw segment. The nucleation site is chosen according to the
local nucleation rates by a standard kMC algorithm, and the simulation time is incremented by the
reciprocal of the total nucleation rate (Voter, 2007).

5.

Any kink-kink reactions occurring after the propagation of kinks are carried out and the topology of the
line model is updated. Return to step 1.

In the last step, kink-kink annihilation and debris dislocation loop formation is considered. As described
by Cai et al., 2001 and Marian et al., 2004, two pile-ups of cross kinks can spontaneously reconnect to
form a self-intersection of the dislocation line. At the self-intersection point, the connectivity of the line
is broken into two independent parts: the infinite screw dislocation, which continues moving through
the material, and a closed prismatic loop, which remains behind.

Two kinks on the same screw segment, which have formed on different {110}110 planes, may collide
and form a so-called cross kink if their relative velocity is negative. Because they are pushed toward one
another by the local stress, the kinks are thus constrained to move together with a compound velocity
equal to the arithmetic mean of their respective original velocities.

3. Fitting the kMC model to atomistic calculations



In a previous publication, we have conducted a detailed analysis of several W interatomic potentials for
the purpose of screw dislocation calculations (Cereceda et al., 2013). On the basis of that analysis, an
embedded-atom method (EAM) (Marinica et al., 2013) and a modified EAM (MEAM) potential (Park et
al., 2012) were deemed as the most suitable for screw dislocation property calculations. For reasons of
computational efficiency, in this work we choose to perform all supporting calculations for fitting the
kMC model with the EAM potential. As a preliminary step, we calculate the Peierls potential on a
{110}{110} and a {112}{112} plane to ascertain whether direct glide on {112}{112}-type planesis a
feasible phenomenon. This is done using nudged-elastic band (NEB) calculations of a single screw
dislocation in suitably constructed computational cells described below. The resulting functions
represent the substrate potential UP(x)UP(x) as a function of the reaction coordinate x in each case.
These are shown in Fig. 3, where it is shown that elementary glide on a {112}{112} plane is a composite
of two elementary steps on alternate {110}{110} planes. Judging by these results, we conclude that glide
on any given plane is achieved by way of sequential {110}{110} jumps. This is consistent with recent
atomistic simulations ( Gilbert et al., 2011 and Hale et al., 2014) and forms the basis to simulate
dislocation glide in the foregoing Sections.
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Fig. 3.

Peierls potential for transitions from one equilibrium position to another on a generic {110} plane and
on a {112}112} plane, twinning sense. Each transition extends over the corresponding reaction

5

coordinate, namely @0 ‘"@.*"3 and @0V 2 . The geometric decomposition of the {112} transition into two
alternating {110}{110} steps is shown for reference. The two insets show differential displacement maps

[
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3.1. Single kink calculations
3.1.1. Kink energetics

Analytical solutions for the kink-pair energy UkpUkp using elasticity models have been proposed by,
among others, Dorn and Rajnak, 1964 and Seeger, 2002, and Suzuki and collaborators (Koizumi et al.,
1993, Suzuki et al., 1995 and Edagawa et al., 1997) assuming full elastic and line tension representations
of kink-pair configurations and several functional forms for U(x)U(x). However, there is clear evidence in



the literature that isolated kink segments display an asymmetry not present in continuum models
(Mrovec et al., 2011 and Swinburne et al., 2013). This asymmetry emanates from crystallographic and
energetic considerations of atomistic nature, and thus calculating kink energies necessitates special
methods that capture these particularities. Ventelon et al. (2009) have devised a procedure to compute
the energies of so-called ‘left’ and ‘right’ kinks, the values of which are given by Marinica et al.
(2013) for the current potential:

Uy =0.71 eV
Uyg =092 eV

The energy of an infinitely separated kink pair is the sum of both energies above: Ukp(©°)=1.63eV.

Additional useful information that can be extracted from these calculations is the width of an isolated
kink, that is, the stretch along the [111][111] direction over which the kink extends. Fig. 4 shows the kink
shape and its width obtained via Volterra analysis ( Ventelon et al., 2013 and Gilbert et al., 2013). The
kink shape is fitted to a function of the form:

X(z) = g (1 + tanh (9)

where h is again the distance between Peierls valleys and €€ is a fitting parameter. 4 The kink width a is
measured as the distance over which x(z) varies from 0.05h0.05h to 0.95h0.95h, which is approximately
3e3e. Fitting x(z) to the data points shown in Fig. 4 yields a value of €=8.4be=8.4b or
a=3€=25ba=3€=25b. This is the value used in the kMC code to represent kinks as trapezoidal elastic
segments.

1.2 F Atomistic right kink .
fitting function
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-0.2 ; . . ’ 4

10 20 30 40 50 60 70 80
Dislocation line [5]

Fig. 4.

Single kink shape as obtained with atomistic calculations. The width of the kink, a, is measured from by
fitting the data points to a hyperbolic tangent function.

3.1.2. Kink mobility



As noted above, kinks can display both mechanically-driven (stress-dependent) and diffusive (stress-
independent) motion. Both of these must be characterized to define kink motion in the context of the
kMC code. In bcc metals, including W, the energy barrier to kink motion on {110{110} planes is
negligible. This calls for a diffusion model of the following type:

equation(7)

kT
Dk—hTfk

where vy k is a temperature-independent friction coefficient. For its part, stress-driven drift motion is
assumed to follow Eq. (6), which for practical reasons is expressed as:
5 b-o

B

where Uk = |z| Atomistic simulations of suitable geometric setups can be performed to obtain y k by
mapping Eq. (7) to the temperature dependence of the diffusivity, obtained as Dk=d {Az2) /dtDk=d {
Az2) /dt with {Az2) the mean square displacement. In turn, B is calculated by obtaining the velocity-
stress curves at different temperatures and mapping to Eq. (6), with the two friction coefficients
connected through Einstein’s relation B=h y k. The detailed calculations are provided in Appendix A and
are summarized here as well as in Table 1. An effective diffusivity for left and right kinks is taken:

Dk(T)=7.7 X 10-10TDk(T)=7.7 X 10-10T

with the diffusivity in m2 s—=1 and T in Kelvin. This corresponds to a friction coefficient of y k=7.0X10-5
v k=7.0X10-5 Pa s. For the drift velocity we obtain a stress dependence of:

vk=3.8X10-6 T vk=3.8 X10-6

where the velocity is in m s—1 when the stress is given in Pa. This results in a friction coefficient B=8.3 X
10-5B=8.3 X 10-5 Pa s.

Table 1.

List of parameters and functional dependencies for fitting the kMC model. All of these parameters have
been obtained using dedicated atomistic calculations.

Parameter Value or function Units
a0 3.143 A
h ﬂu '\.-"II{EI.I':E A

u 161 GPa



Parameter Value or function Units

% 0.28 -

® 9.1X1011 s—1
oP 2.03 GPa

a 25 b

vk T b/B m s—1
B 8.3X10-5 Pas

Dk kT/hv k m2s—1
v k 7.0 X10-5 Pas

AH(s;T)  AHO(1-sp)g AHO1-spgeV

AHO 1.63 eV
p 0.86 -
q 1.69 -
w(s) wO(s-m+c)(1-s)-n b
wO 231 b
o 2.02 -
m 0.50 -
n 0.15 -
Ji;f{ 005 ¥-+d :i'qipl_r:.-'i il GPa
al 1.26 -
a2 0.60 -

3.2. Kink pair enthalpy

As it was shown in the preceding section, kinks are short dislocation segments displaying a sign
asymmetry that cannot be captured by using elasticity theory. To compute AH A H, here we take a



direct atomistic approach by treating kink pair configurations as activated states of long straight
dislocation lines moving along the Peierls trajectory. In the same manner as a number of previous
studies (Wen and Ngan, 2000, Rodney and Proville, 2009, Gordon et al., 2010 and Narayanan et al.,
2014), we perform nudged-elastic band (NEB) calculations of screw dislocation lines 100b100b in length
going from one Peierls valley to the next as a function of stress. These calculations are periodic along the
dislocation line but finite on {110}{110} surfaces parallel to the glide plane, where the external shear
stress is applied. To break the translational symmetry along the [111]{111] direction, we create
intermediate replicas seeded with kink-pair configurations. We then calculate the maximum total energy
along the NEB path and measure the kink separation at the activated state. An artifact of these
calculations results from using periodic boundary conditions along the line direction for the zero stress
case. In these conditions, a separation of exactly 50b is attained, which results in a small but non-
negligible elastic interaction energy. Thus, the following limiting values are directly assumed:

AH(s = 0) = AHy = Uy, = Uy + Uy, = 1.63 eV
ws=0)—x

Fig. 5 shows the NEB calculations of the Peierls transition pathway as a function of stress for the screw
dislocation lines of length 100b100b. The unrelaxed NEB trajectory consists of straight dislocations as
the initial and final states, separated by one Peierls valley. The intermediate states are obtained by
introducing a kink pair at some arbitrary location along the line, separated by a distance varying linearly
from 50b50b for the second replica to 5b5b for the penultimate one. We then relax the entire trajectory
using the nudged elastic band procedure and measure the energy along the path. The final trajectory is
obtained as the lowest-energy superposition between the NEB energy path and the Peierls energy for
the straight screw dislocation. The activated state is chosen as the maximum energy point along the
relaxed final path.
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Fig. 5.

NEB transition pathway along the Peierls coordinate for screw dislocation segments of length 100b100b.
The activated state is taken as the point of maximum enthalpy in each case, where the kink pair
separation is measured. The insets correspond to kink pair configurations at several points along the
NEB trajectory visualized using the centrosymmetry deviation parameter.

Fig. 6a and b shows the extracted activation enthalpies and separation distances as a function of stress.
Fits to Egs. (4) and (5) result in the parameters given in Table 1, which are then used in Eq. (3) for the
kMC simulations.
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Kink pair activation enthalpy and separation as a function of stress. The data in each case are fitted to
Egs. (4) and (5), with the resulting fitting parameters shown in each case.

3.3. Attempt frequency

The attempt frequency o is chosen to be the fundamental mode of the Granato-Liicke vibrating string
model (Lin and Chrzan, 1999):

equation(8)
nC;

A

where Ct is the shear wave velocity and A is a characteristic wavelength. For the purpose of this paper,
Ct can be obtained as:

1

P

t —



where u u is the shear modulus and p o is mass density of W. p can be trivially obtained from the

_ A3
inverse of the atomic volume Q= ﬂufz . The parameter 1 is the wavelength of the vibrating
undulation, which in this case can be taken as A =w+a. Using the parameter values listed in Table 1 and,
from Fig. 6b, an effective kink pair separation of w=11b, we obtain »=9.1X10"s™.

3.4. Non-Schmid law from atomistic calculations

Schmid’s law states that a slip system will become activated when shear stress, resolved on the slip
plane and in the slip direction, reaches a certain critical value called critical resolved shear stress (CRSS).
This implies (i) that the CRSS does not depend on the orientation of the load axis, and (ii) that the CRSS is
independent of the sign of the loading direction (tension or compression). Many authors have now
demonstrated, first, that in bcc crystals the loading symmetry is broken, and, second, that there is a
coupling between CRSS and non-glide stress components, all resulting in a breakdown of Schmid’s law
(Duesbery and Vitek, 1998, Ito and Vitek, 2001, Woodward and Rao, 2001, Groger and Vitek, 2005, Chen
et al., 2013 and Barvinschi et al., 2014).

Here, our approach is to study deviations from Schmid behavior solely when pure shear stress is applied
on different maximum resolved shear stress (MRSS) planes. We use the standard geometry of the
[111][111] zone as shown in Fig. 1 to compute the CRSS using atomistic simulations. The CRSS is
calculated as a function of the angle x between the primary glide plane and the MRSS plane. For
simplicity, in the atomistic calculations the primary glide plane is represented by 0 =0 (cf. Fig. 1) and,
then, by symmetry, only the angular interval — 6§ <X = 1% needbe explored.
The calculations are done by performing atomic relaxations of a single screw dislocations in crystals with
periodic boundary conditions subjected to various levels of applied stress. The size of the simulation box

is 1X21X241X21X24 multiples of the bcc lattice vectors [111] = [121] x [101] containing
nominally 3024 atoms. This setup is essentially identical to that used in other atomistic studies. The
dependence of the CRSS with x for the EAM potential employed here is given in Fig. 7. The figure also
shows a fit to the data according to the expression:

. a10p
ot = . ‘
¢ cosy+aycos(m/3+y)

which is customarily used to represent deviations from the Schmid law (Vitek et al., 2004 and
Chaussidon et al., 2006). A least-squares fit to the data yields a1=1.26 and a2=0.60, which are added to
Table 1. The details about the implementation of this equation into the kMC code for simulations of
non-Schmid glide are given in Appendix B.
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Fig. 7.

Dependence of the critical resolved shear stress with the angle between the MRSS plane and the
primary glide plane. The standard Schmid law is shown as a vertical green-colored line. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)

4, Results

In this section, we calculate the dislocation velocity for a number of different conditions. The velocity is
obtained as the derivative of the average position of the dislocation projected on the MRSS plane with
respect to time. We study loading on both {1104{110} and {112}{112} MRSS planes at different
temperatures and stresses. We also investigate three different initial dislocation line lengths: 100b100b
is near the maximum extent of what can be presently simulated in MD simulations; 1000b1000b is near

o a—1)2
L=~ Pd " in well-annealed W single crystals (Lassner and

the average dislocation segment length (
Schubert, 1999), and 4000b4000b is approximately one micron in length. We study stresses from zero to
just below the Peierls stress 0< 0 yrss<0.9 0 p and temperatures from room temperature to 1800 K in
300-K intervals. The stress interval ensures that thermal activation is the operating dynamic mechanism,
while the temperature limits are roughly those where severe embrittlement and recrystallization are
known to limit the usefulness of W as a structural material (Lassner and Schubert, 1999 and Rieth,

2013).
4.1. Numerical calculations

Fig. 8 shows an example of the position vs. time curves for a dislocation of length 1000b1000b at
different temperatures and an applied stress of 1000 MPa on a {110}{110} plane. Velocities are obtained
from linear fits to the data. All simulations share the same qualitative features as those shown in the
figure. This linear behavior has been confirmed at room temperature and low stresses in carefully-
performed experiments in Fe (Caillard, 2010 and Caillard, 2013).
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Average dislocation position vs. time at different temperatures for L=1000b with a RSS of 1000 MPa on a
{110}{110} plane. These simulations were carried out including non-Schmid effects. Due to differences in
scale, the trajectory at 300 K is shown separately in the inset.

In Fig. 9, Fig. 10 and Fig. 11 we provide detailed results as a function of t and T for each value of L. Each
panel includes velocities considering Schmid and non-Schmid effects. In advance of discussing these
results and their implications in detail in the following section, we note the following features from the
figures:

1.

When the MRSS is applied on {110}{110} planes, using Schmid’s law results in velocities that are larger
than when considering non-Schmid effects. This difference is negligible at stresses below 600 MPa and
gradually grows up to a factor of two in some cases.

2.

On {112}{112} planes, by contrast, this tendency is reversed, with the difference being noticeable
already at low stresses.

3.

When including non-Schmid effects, dislocations move faster at lower temperatures than at higher ones
at the highest stresses (>1400 MPa). We will show below that this is a consequence of self-pinning,
which is favored in that regime. Using Schmid’s law, this tendency is observed in some selected cases,
but not generally.

4.



At high stresses, there are no appreciable differences between the velocity response for

L=100b. L= IDDDb, and L=4000b lines. A detailed investigation of the length dependence of the
dislocation velocity will be conducted below.
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Velocity-stress relations for L=100bL=100b for all temperatures, stresses, and including Schmid and non-
Schmid loading.
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Velocity-stress relations for L=1000bL=1000b for all temperatures, stresses, and including Schmid and

non-Schmid loading.
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Velocity-stress relations for L=4000bL=4000b for all temperatures, stresses, and including Schmid and

non-Schmid loading.
4.2. Dislocation length dependence

It has been traditionally assumed that screw dislocation velocity depends linearly on its length, a
dependence introduced by construction in dislocation dynamics models (Tang et al., 1998 and Naamane
et al., 2010) but also confirmed experimentally in some limited cases at room temperatures and low
stresses (Caillard, 2010 and Caillard, 2013). Here we perform a systematic study of dislocation velocity as
a function of L at several temperatures and stresses, and for Schmid and non-Schmid conditions. First
we study nominally the same regime as in the experimental works by Caillard (2010), i.e. room
temperature (300 K) and low stress (200 MPa). We present results for the two slip systems of interest in
Fig. 12, where the linear dependency is clearly distinguished. This is a direct consequence of the form of
Eg. (3), when nucleation is the rate-limiting step and the dynamics is governed by the existence of one



single kink-pair on the line at a given time, i.e. I11+I12=LI1+12=L. This is the expected behavior at low strain
rates or in quasistastic conditions.
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Fig. 12.

Dependence of the dislocation velocity on its initial length for a resolved shear stress of 200 MPa at 300
K and under Schmid and non-Schmid conditions.

However, as the stress and/or the temperature increase, this trend becomes gradually weakened until it
is lost altogether. Fig. 13 shows results for t =1000 MPa at different temperatures. In this situation,
multiple kink-pairs may coexist at once, giving rise to cross-kinks and other self-pinning features that
remove the linear dependence on L. These are the conditions that are representative of high-strain rate
situations.
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Dependence of the dislocation velocity on its initial length for a resolved shear stress of 1000 MPa at
high temperatures and under Schmid and non-Schmid conditions.

4.3. Trajectory

Next we analyze the impact of considering non-Schmid effects on the trajectory of a screw dislocation
projected on the [1 1 1] plane. Fig. 14a shows an example at 300 K and 200 MPa where the MRSS is on

the (110) plane (for this analysis we use the axes convention given in Fig. 1). As the figure shows,
considering non-Schmid effects results only in a slight deviation from the MRSS plane, characterized by
(101)

sporadic slip episodes on the plane forming +60° with the MRSS plane. More revealing is

perhaps the case of glide when the MRSS is resolved on a {112}{112} plane - (211 }T to be precise. In
this case, Schmid behavior is generally recovered when Eq. (2) is used, as Fig. 14a illustrates. The
trajectory in this case follows a zig-zag pattern, characteristic of wavy slip observed in bcc systems at low



temperature (e.g. Franciosi (1983)). However, non-Schmid behavior results in effective glide on the

(101) plane, forming +30° +30° with the MRSS plane. This behavior is not inconsistent with recent
Laue diffraction experiments of slip in W ( Marichal et al., 2013) and with MD simulations performed
with the same potential employed here by Cereceda et al. (2013).
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Fig. 14.
Trajectory of a dislocation line of length L=4000b under Schmid and non-Schmid conditions.

At higher stresses and temperatures (cf. Fig. 14b) the same general behavior can be observed, although
the deviation from the MRSS plane for non-Schmid {110} loading is more notable than under low
stress/temperature conditions. In all cases, deviations from the MRSS plane are reliably in a
counterclockwise direction. This is a direct manifestation of the twinning-antitwinning asymmetry that
biases kink-pair nucleation toward planes that are consistent with the critical stresses shown in Fig. 7.

4.4. Dislocation self-pinning

The reason for the loss of linearity in the v -L dependence at high temperature or stress ( Fig. 13a and b)
is related to the increased probability of forming kink pairs on multiple glide planes simultaneously.



According to Eq. (3), this probability increases with temperature, stress, and line length, consistent with
the behavior discussed above. As alluded to in Section 2.2, in multislip conditions the interaction among
kink pairs on different planes results in cross kinks. These defects essentially halt the progress of the
dislocation by acting as pinning points that must be overcome before motion can resume. When this
happens, debris loops are formed in the wake of the main dislocation. Fig. 15 shows the final
configuration after 5000 kMC cycles for a screw dislocation of length L=1000bL=1000b under {112}{112}-
Schmid loading at 1000 MPa and a temperature of 1800 K. The figure clearly shows trailing chains of
debris loops. The reader is referred to the work by Marian et al. (2004) for more details on the atomistic
characteristics of this process. Here we quantify the formation of these loops and relate it to dislocation
self-pinning and slowing down.

— Connected
dislocation

Fig. 15.

Final configuration after 5000 kMC cycles of a screw dislocation of length L=1000bL=1000b under
{112}{112}-Schmid loading conditions at 1000 MPa and a temperature of 1800 K. Segments in dark blue
belong to the main dislocation, while colored segments belong to detached loops. The depicted line
configuration is scaled in the z direction to facilitate viewing. See the Supplementary animation of the
time evolution of the dislocation. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

From analysis of trajectories such as that shown in Fig. 15, the number of debris loops per unit time per
unit length can be tallied as a function of t,T,L, and MRSS plane. This debris loop generation rate -

which we term 7 is shown in Fig. 16 for {112} non-Schmid loading for a dislocation with L=4000b. As



expected, 7 increases with increasing temperature and stress. However, for a given temperature and
glide condition, the loop generation rate per unit length is independent of L. This is illustrated in Fig. 17,
where 7is shown as a function of stress for {112}{112} non-Schmid conditions and at 900 K for
L=100L=100, 1000, and 4000b4000b. In other words, the debris loop generation rate only depends on
temperature, stress, and the glide condition. The example shown here is representative of other

temperatures and MRSS plane orientations.
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Debris loop generation rate as a function of temperature and applied stress for {112}{112} non-Schmid
conditions for a dislocation with L=4000bL=4000b. At 300 K there is zero loop generation.
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Debris loop generation rate at 900 K during {112}{112} non-Schmid conditions for three different initial
dislocation lengths. The apparent threshold above which self-pinning is seen to dominate the kinetics is

marked with a dashed line.



These results show that there may be a correlation between the degree of self-pinning in Fig. 9, Fig. 10

and Fig. 11 and the value of 7 for each case. For the specific example shown in Fig. 17, Fig. 11b suggests
that the dislocation velocity deviates from the nominal exponential behavior at a stress of ~~1500 MPa.

7=15x10°s1b"'

three curves in Fig. 17 at 1500 MPa). This apparent threshold is of course temperature dependent and

This corresponds to a value of =1.5X10% b (the approximate value of the
varies with loading orientation, although here we only consider the case showcased in Fig. 16 and Fig.
17.

4.5. Computational efficiency

As discussed in the previous section, the compounded effect of stress, temperature, and initial screw
dislocation length, as well as stress orientation, is to enhance the probability to nucleate kink-pairs in
multiple slip planes. This increases the number of segments and may lead to a stalled kinetic evolution
as a consequence of self-pinning. Both of these phenomena decrease the computational efficiency of
the kMC code, interpreted as the utilization of CPU time to result in net dislocation motion. The number
of segments increases the numerical workload of the O(N2)O(N2) segment-segment stress calculation
function,5 while self-pinning arrests the dislocation progress resulting in slower net motion. To assess
these overhead costs quantitatively, we plot in Fig. 18 the dependence of the computational efficiency
71 as a function of applied RSS and L . The calculations were performed for a fixed number of 2000 kMC
cycles at 900 K. For clarity we display 7 in arbitrary units to showcase the effect of each parameter
studied, with quantitative details about the numerical values in each case given in Appendix C. As shown
in the figure, increasing the stress, the dislocation line length, and/or loading on {112}{112} planes, all
contribute to efficiency losses. Stress and temperature are generally equivalent in their effect on 71, and
so here only the impact of t is evaluated.

{110} MRSS plane
{112} MRSS plane

n

Fig. 18.



Computational efficiency 7 measured in arbitrary units as a function of L, = , and MRSS plane for a
number of simulations conducted at 900 K for a fixed duration of 2000 kMC cycles.

5. Discussion

Motivation for using kMC simulations - The motion of screw dislocations proceeds via the thermally-
activated nucleation of kink-pairs and kink propagation along the screw direction. Kinks are atomistic
entities - as described in Fig. 4 - but also elastic ones. This means that their properties must be
characterized at the atomistic scale, but their effects can be potentially long-ranged. Dynamically, by
virtue of its rare-event nature, kink pair nucleation operates on time scales that are hardly accessible by
atomistic methods. This precludes, in most cases the use of direct MD or other atomistic methods.
However, dislocations containing kink pairs are subjected to long-range elastic self-forces, which have to
be integrated along the dislocation in order to be evaluated and resolved spatially. As this is typically
very numerically-intensive, we resort to discretization methods that treat dislocation lines as piece-wise
entities in which all segments interact with all segments. This, for its part, precludes the use of effective-
medium methodologies such as the line-tension approximation or other techniques in which these
O(N2)O(N2) interactions are not captured. KMC, in our mind, offers the ideal alternative to bridge these
two limits. On the one hand, the dislocation is treated as a piece-wise object attached to an underlying
lattice. This allows us to represent some of the most important atomistic features of the dislocation
fairly accurately. At the same time, this piece-wise representation enables the calculation of all the
elastic forces in an efficient manner. The result is a method that can access time scales long enough to
statistically capture dislocation motion, yet it retains sufficient detail to accurately provide a clear
connection to the underlying atomistic physical features.

Comparison with MD results - One of the main motivations behind the development of our kMC model
was MD’ s inability to sample thermally activated motion within its space and time limitations. It is
then useful to compare MD and kMC results of screw dislocation glide subjected to nominally identical
boundary conditions. However, as discussed above, the overdriven nature of MD simulations causes the
occurrence of cross-kinks and associated debris for line lengths for which the kMC simulations predict
smooth glide. This is illustrated in Fig. 19, where a screw dislocation of length 100b100b is seen to leave
vacancy clusters behind at 300 K and 1100 MPa of stress applied on a {112}{112} plane. For the current
interatomic potential, the threshold length below which cross kinks are not seen to occur was estimated
to be 25b25b ( Cereceda et al., 2013). This is below the length for which kMC simulations can support an
elementary kink pair. Therefore, we are forced to make an imperfect comparison between the MD
results with L=25bL=25b and the kMC results for L=75bL=75b, which is near the minimum length in kMC
calculations to contain one kink-pair.
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Fig. 19.

MD simulation of a screw dislocation under the following conditions: L=100b,T=300K,

Ogss = 1100 MPa, MRSS plane ={112}={112}. After a few time steps, the dislocation starts
producing debris in the form of vacancy and interstitial clusters. These are akin to small dislocation loops
in the kMC simulations.

Results from both approaches are shown in Fig. 20. The figure shows that the MD velocities are
systematically higher than their kMC counterparts below 1500 MPa. Above this value, the kMC velocities
at 300 and 600 K overtake the MD-calculated values. It is interesting to note that the qualitative shape
of the MD curves coincides with those of the kMC curves at the highest temperatures of 1200 and 1800
K. This is symptomatic of the limitations of MD, which even at low stresses and temperatures create
simulation conditions that are representative of higher values. It must also be kept in mind that a
sensitivity study has not been conducted on the kMC parameters, and thus the present comparison is
only valid inasmuch as the current parameterization can be considered a sufficiently valid one for the
method. In terms of computational overhead, MD simulations are approximately three to seven orders
of magnitude costlier than their kMC counterparts on the basis of the metric employed in Table C.3. We
refer the reader to Appendix C for more details.
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Comparison of dislocation velocities from MD results (Cereceda et al., 2013) and kMC calculations.

Dislocation self-pinning - Self-pinning occurs as a consequence of the formation of cross-kinks, which
act as strong sessile junctions. Cross-kinks may be resolved topologically by complementary kink pairs,
resulting in the closing of debris loops. The energy expended in producing debris loops is taken out of
the total mechanical work available to make the dislocation glide, which results in an effective
reduced’ stress and, therefore, lower velocities. Physically, self-pinning is seen to become important
above a certain generation rate threshold, which correlates with a leveling-off of dislocation velocity
curves as a function of stress.

This notion of threshold generation rate originates in the creation of kink-pairs on multiple slip planes,
whose effect in the kinetic behavior depends on the combined effects of cross-kink production and
resolution. An enhanced probability of kink pair production (brought about by increasing temperature,
stress, and/or multislip conditions) may facilitate the production of cross-kinks, leading to potentially
higher self-pinning. At the same time, the probability for resolution of these is also intensified by the
same processes. Resolution of cross kinks results in debris loop production. Beyond the apparent debris
generation threshold, however, the production of cross-kinks overruns the likelihood of resolution,
effectively arresting the dislocation progress and stagnating the velocity increase with temperature and
stress. When this happens, debris production is simply a manifestation of self-pinning on the larger
scale. This is one of the reasons leading to the length independent behavior observed at mid-to-high
temperatures and stresses (cf. Fig. 13), and which may be behind the anomalous behavior of some
dislocations observed experimentally ( Hsiung, 2007).

Extraction of effective mobility laws - Ultimately, the data compiled in this work via extensive kMC
calculations must be used to fit mobility functions suitable for, e.g. dislocation dynamics, phase field, or
crystal plasticity simulations (see for example Tang and Marian (2014)). The deviations exposed by our
calculations from the expected exponential behavior due to self-pinning call for a possible fitting
function of the following type:



equation(9)

v(s,T) = As"f(s.T)(1 — Bf'(s.T))
¥ . ﬂHU ]J" q"
f(s.T) = Exp{—ﬁ{l —s7) }

Where A’,B’,n’,p’, and g’ are all adjustable parameters and s is defined as in Eq. (2) or (B.4). The above
expression captures the leveling-off displayed in the v - t relations at high stress and temperature. By
way of example, here we fit the results for L=4000bL=4000b. Table 2 gives the parameters under each
specific glide condition. Fig. 21 shows the fit for non-Schmid conditions on a {112}{112} plane. The
agreement between the fitting functions and the data is similar for other glide conditions and/or values
of L.

Table 2.

Adjustable parameters for the fitting function given in Eq. (9). The units of A" A" are such that
v(s,T)v(s,T) is in m s—1, i.e. m s—1 MPa—n. All other parameters are non-dimensional.

Temperaturerange (KA A” n" n” B B p  p' d ¢
{110}{110}Schmid loading

All temperatures 36934 2.47 097 0.16 1.00
{110}{110}Non-Schmid loading

300 698.2 030 0.0 1.15 2.97
>300>300 14442 1.78 0.72 0.26 1.40
{112{112}Schmid loading

All temperatures 755.6 038 050 0.22 1.01
{112}{112} Non-Schmid loading

<600<600 2084.2 1.39 0.68 081 2.45

>600>600 3416 2.72 089 019 1.32
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Comparison between Eq. (9) (solid lines) parameterized for L=4000bL=4000b under non-Schmid
{112}{112} glide conditions and the actual kMC data.

Limitations of the method - We conclude this section discussing some of the limitations of our model.
First, the sampling function (3) contains several parameters with exponential dependence that have
been obtained via atomistic calculations using a recent interatomic potential. As such, they are
subjected to errors associated with the atomistic technique used (NEB), the type of potential and its
parameterization (EAM), and the least-squares fitting procedure. In a way, all these errors are
unavoidable - in the sense that we have employed ‘state-of-the-art’ techniques and procedures -
but their impact on the overall kinetics, although unassessed at the moment, might conceivably be
notable in some cases. Next, the very physical foundation of the code - the Arrhenius expression for the
thermally activated kink-pair nucleation rate - may be called into question under some of the conditions
explored here. Indeed, at high stresses (and temperatures) the kinetics is better represented by
generalized Arrhenius forms, e.g. the Jackson formula ( Swinburne, 2013), and this may affect the high
stress/temperature tails of the velocity-stress relations given in Fig. 9, Fig. 10 and Fig. 11. The
representation of dislocation segments may also be a source of errors in our setting. Kinks and screw
segments are joined by sharp corners that give rise to stress singularities - these are avoided here by
resorting to a screening distance within which the stress is not calculated - that are artifacts of our
piecewise rectilinear representation of dislocation lines. Another physical phenomenon not captured in
these simulations is the softening of the elastic constants and Peierls (critical) stress with temperature.
In particular, today’ s computational resources permit the direct calculation of the temperature
dependence of the critical stress ( Gilbert et al., 2013). It is not clear at this point how significant this
dependence is on the dislocation velocities calculated here. Finally, it is worth mentioning that the
impact on dislocation motion of non-glide stresses - another source of non-Schmid effects - is not
presently considered in this work, although its implementation is straightforward if the data were
available.



6. Summary

We have developed a kinetic Monte Carlo model of thermally-activated screw dislocation motion in bcc
crystals, with a current parameterization for W using a state-of-the-art interatomic potential. Our
method includes all relevant physical processes attendant to screw dislocation motion, including - for
the first time - kink diffusion and non-Schmid effects.

With the versatility and efficiency afforded by our kMC algorithm, we have studied dislocation mobility
as a function of stress, temperature, initial dislocation line length, and MRSS plane orientation. An
attractive feature of the present calculations is that they allow us to separate important mobility
dependencies and assess their impact on the kinetics individually.

We find that non-Schmid effects have an important influence on the absolute value of the velocity as
function of both stress and temperature, suggesting that they cannot be neglected in plasticity
simulations. We also find that at sufficiently high stresses and temperatures, self-pinning processes
control dislocation motion. Finally, some effective fitting functions are proposed that capture the
essential features of dislocation motion to be used in more homogenized models of crystal deformation.
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Appendix A. Computing diffusion and drift coefficients of isolated single kinks

To generate isolated kinks in an MD supercell, we use especial boundary conditions that enforce a tilt
equal to a lattice vector kk. Depending on the value of kk kinks of opposite signs - ‘right’ and ‘left
", to employ the usual convention - are created in cells containing a balanced dislocation dipole. These
configurations are then equilibrated at finite temperature and the simulation output is then time
averaged and energy filtered in both zero and finite stress conditions to produce a series of kink
positions x from which a kink drift and diffusivity can be statistically determined. This procedure is
described in detail by Swinburne et al. (2013), and a typical simulation supercell (containing around
106106 atoms) is depicted in Fig. A.22.



Fig. A.22.

Illustration of kink drift simulations. Kinks on a UE{“ 1} {1 01 }screw dislocation dipole,

characterized by a lattice ‘kink’ vector kk, are subject to an applied stress on bounding (101)
planes. Under no applied stress with fully periodic boundary conditions the kinks diffuse freely. Inset:

Cartoon of the supercell along 101 ], illustrating the relation of the kink vector to a kinked dislocation
line.

The results of these simulations are displayed in Fig. A.23. Kinks were observed to freely diffuse with a
diffusivity D=kT/BD=kT/B under no applied stress with fully periodic boundary conditions, while, under
stresses of 2-10 MPa applied to the bounding (101 }planes, kinks were observed to drift with a viscous

drag law X=|o- b | #'fB, Although the two screw dislocations eventually annihilate under applied
stress, for a sufficiently wide and long supercell, the kinks drift independently for at least two supercell
lengths (~~600 A) before any influence of their mutual attraction can be detected.
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Results of kink drift simulations for k= 1/2[111] (right) kinks on 1/2(111}{101 ll'screw
dislocations. We see a temperature independent drift velocity vk=| o - b|/Bvk=|c-b|/B in very good
agreement with B determined from zero stress kink diffusion simulations (green lines). Inset: Results
from kink diffusion simulations. We see the diffusivity D=kT/BD=kT/B rises linearly with temperature,
meaning that B is independent of temperature.

The drift and diffusion simulations are fitted to the Einstein relation:

b= k]I-|.-:}.111I|11{J| |o - b

where upon it is seen that the viscous drag B is independent of temperature and shows little variation
between left and right kinks. The final mobility laws were determined to be vk=3.8 X 10-6 t vk=3.8 X 10-

6t for k=1/2[111] ( ‘right’ or ‘interstitial’ ) kinks and vk=4.0X10-6 t vk=4.0X10-6 t for
k=[010]1k=[010] ( ‘left’ or ‘vacancy’ ) kinks. These velocities are in m s—1 when the stress is in Pa.
Phonon scattering treatments ( Hirth and Lothe, 1991) predict that B should increase linearly with
temperature due to the increased phonon population, but the observed temperature independence of B
agrees with previous studies of kink diffusion ( Swinburne et al., 2013) and other nanoscale defects (
Dudarev, 2008).

Kinks are strongly coupled to thermal vibrations, so that over a time typically equal to the inverse of the
Debye frequency thermal vibrations dissipate any inertia possessed by a kink, causing kinks to exhibit
linear viscous motion. This is what justifies the assumption of constant kink velocity in our simulations.

Appendix B. Implementing non-Schmid effects in the kinetic Monte Carlo calculations

In the reference system used in Fig. 1, the MRSS is unequivocally defined as:

O MRSS = F-"(T_iz + 0,

with
.
Brss = arctan (— —”)
(T}rz
and

x =0 MRSS-0 x =0 MRSS-6

For the purpose of the implementation of non-Schmid effects, we express Eq. (2) in terms of the MRSS
by noting that, from Fig. 1, 0 RSS= 0 MRSScos x o RSS= o MRSScos x :



equation(B.1)

Onpss COS f

s() =

Schmid law states that the critical stress o c(x ) o c(x ) depends on x x as:

equation(B.2)

p
- cosy

Ol ¥)
which results in rewriting Eq. (2) as:

equation(B.3)

r"" "=
S0 =57

Proving that Egs. (2) and (B.3) are equivalent is straightforward:
Orss = Onmgss COS )
= Omrss COS( urss — )
= OMrss|SIN Oprss SIN A + €OS Birss COS ]
= OnRrss SIN Oygss SIN 6 + Gurss COS Oyrss COS A
= —0y SINH + Ty, COSH

From this, non-Schmid effects are introduced by substituting the following expression:

Ol 7] o
el )= COS ¥ + @, Cos (/3 + ¥)
into Eq. (B.3):
equation(B.4)
. Omgss  Owmrss(COS Y + a3 €0S (/3 + 1)
S(y) = —MRSS ks (COS § + @5 €05 (/3 + ¥))

oy a4, 0p

whence it is readily seen that Schmid behavior is recovered for al=1al=1 and a2=0a2=0. Fig. B.24
showcases the difference between s( x )s( x ) for Schmid and non-Schmid behavior as a function of 6 0 .



Non-Schmid ——
Schmid

1.5
1.0
05F
00F
-0.5
-1.0¢
-1.5

Oprss []
Fig. B.24.

Comparison between the normalized stress s under Schmid and non-Schmid conditions as a function of
0 6 and O MRSS 6 MRSS. Recall that x =60 MRSS-0 x =0 MRSS-0 .

Appendix C. Computational efficiency

The computational efficiency is assessed in the following manner. For the purposes of this paper, we
assume that the productivity of a kMC run is based on the distance traveled by a dislocation during a
fixed number of cycles, as a longer distance results in better converged velocity calculations and more
precise data. Our performance metric of choice is then to normalize the distance traveled in each case
by the CPU time invested in achieving it. Table C.3 gives the numerical values for this metric in A per
second of CPU time for various dislocation lengths and applied stresses. These data are the basis for
what is shown in Fig. 18.

Table C.3.

Numerical values in A per CPU second of the efficiency metric considered to evaluate the kMC code’ s
performance under different conditions.

L 100b100b 200b200b 500b500b 1000b1000b
t =400 MPa, T=900T=900 K, 2000 kMC steps
{110{110} MRSS plane 1180 634 267 113

{112}{112} MRSS plane 640 534 209 88

7 =800 t =800 MPa, T=900T=900 K, 2000 kMC steps



L 100b100b 200b200b 500b500b 1000b1000b
{110}{110} MRSS plane 921 219 20.0 2.7

{112}{112} MRSS plane 150 23.0 1.0 -

£ =1200 t =1200 MPa, T=900T=900 K, 2000 kMC steps
{110}{110} MRSS plane 267 34.7 2.0 0.21

{112}{112} MRSS plane 8.3 1.7 - -

As a point of comparison with ‘equivalent’ 6 MD simulations, we first resort to the data published by
Cereceda et al. (2013), where the nominal cost of one time step per atom is 1.5 X10-5~1.5 X 10-5 CPU
seconds for the interatomic potential employed here. For 750,000 atoms, that is 11.25 CPU s per time
step. Typical MD simulations involve 105105 steps of 1 fs each, which results in 1.12X1061.12 X 106
CPU seconds. Per the analysis by Cereceda et al. (2012), those simulations achieve displacements on the
order of 850 A, which results in 7.5 X 10-47.5 X 10-4 A per CPU second. This represents efficiencies of
three to seven orders of magnitude lower than our kMC simulations.
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1
Although it was first recognized as early as in the 1920s and 1930s.
2

Although nothing precludes the use of fixed end points, akin to pinning points in real microstructures.



3

We have found that the calculations are quite insensitive to the value of § xmax 6 xmax. By way of

example, a fourfold increase or decrease of the nominal value of 40b40b results in only changes of ~3%~
3% in the kink velocities.

4

Note that here we are using a coordinate system consistent with Fig. 1.

5

Profiling tests reveal that >92%>92% of the CPU time in any given kMC cycle is spent in this function.

6

In the sense that they are designed to measure similar properties



