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Abstract 

Thermally-activated 1/2〈111〉 screw dislocation motion is the controlling plastic mechanism at low 

temperatures in body-centered cubic (bcc) crystals. Dislocation motion proceeds by nucleation and 

propagation of atomic-sized kink pairs in close-packed planes. The atomistic character of kink pairs can 

be studied using techniques such as molecular dynamics (MD). However, MD’s natural inability to 

properly sample thermally-activated processes as well as to capture {110}{110} screw dislocation glide 

calls for the development of other methods capable of overcoming these limitations. Here we develop a 

kinetic Monte Carlo (kMC) approach to study single screw dislocation dynamics from room temperature 

to 0.5Tm and at stresses 0<σ<0.9σP, where Tm and σP are the melting point and the Peierls stress. The 

method is entirely parameterized with atomistic simulations using an embedded atom potential for 

tungsten. To increase the physical fidelity of our simulations, we calculate the deviations from Schmid’s 

law prescribed by the interatomic potential used and we study single dislocation kinetics using both 

projections. We calculate dislocation velocities as a function of stress, temperature, and dislocation line 

length. We find that considering non-Schmid effects has a strong influence on both the magnitude of the 

velocities and the trajectories followed by the dislocation. We finish by condensing all the calculated 

data into effective stress and temperature dependent mobilities to be used in more homogenized 

numerical methods. 

1. Introduction 



1/2〈111〉 screw dislocations are the main carriers of plasticity in body-centered cubic (bcc) single 

crystals. Experimentally, bcc slip is seen to occur on {110},{112}, and {123} planes, or any combination 

thereof. To determine the slip plane for a general stress state, Schmid’s law is used, which states that 

glide on a given slip system commences when the resolved shear stress on that system, the Schmid 

stress, reaches a critical value (Schmid and Boas, 1935). This law is known to break down in bcc metals, 

which has great implications on the overall plastic flow and deformation behavior in these systems. 

Experimentally, non-Schmid behavior is well documented in the literature going back several decades ( 

Sestak and Zarubova, 1965, Sherwood et al., 1967, Zwiesele and Diehle, 1979, Christian, 1983 and Pichl, 

2002), 1 and its reasons have been thoroughly investigated. First, as Vitek and co-workers have noted ( 

Duesbery and Vitek, 1998 and Ito and Vitek, 2001), slip planes in bcc crystals do not display mirror 

symmetry (a common characteristic of planes belonging to the 〈111〉 zone), and so the sign of the 

applied stress does matter to determine the critical stress. This is most often referred to as the 

twinning–antitwinning asymmetry . Second, studies using accurate atomistic methods (semi empirical 

interatomic potentials and density functional theory calculations) have shown that stress components 

that are not collinear with the Burgers vector bb couple with the core structure of screw dislocations 

resulting also in anomalous slip ( Bulatov et al., 1999, Woodward and Rao, 2001, Gröger and Vitek, 2005 

and Chaussidon et al., 2006). 

Although effective corrections that reflect deviations from Schmid law have been implemented in crystal 

plasticity models, and their effects assessed at the level of grain deformation (Dao et al., 1996, Vitek et 

al., 2004, Gröger and Vitek, 2005, Yalcinkaya et al., 2008, Wang and Beyerlein, 2011, Lim et al., 2013, 

Chen et al., 2013 and Soare, 2014), there is no model establishing the fundamental impact of non-

Schmid behavior on single screw dislocation motion. Molecular dynamics (MD) simulations naturally 

include non-Schmid effects as part of the simulated dynamics of screw dislocations (Gilbert et al., 2011 

and Cereceda et al., 2013). However, it is exceedingly difficult to separate these effects from the bundle 

of processes (and artifacts) brought about by size and time limitations inherent to MD simulations. In 

addition, screw dislocation motion proceeds by way of the nucleation and sideward relaxation of so-

called kink pairs in a broad stress and temperature range. Kink pair nucleation may be regarded as a rare 

event occurring on a periodic energy substrate known as the Peierls potential. MD’s inability to sample 

these events accurately often leads to overdriven dynamics and unrealistically high dislocation velocities 

( Cereceda et al., 2013). 

Here, we develop a kinetic Monte Carlo (kMC) model to study thermally activated screw dislocation 

motion in tungsten (W). Our approach – which builds on previous works on the same topic (Lin and 

Chrzan, 1999, Cai et al., 2001, Cai et al., 2002, Deo and Srolovitz, 2002, Scarle et al., 2004 and Ariza et al., 

2012) – is based on the stochastic sampling of kink pair nucleation coupled with kink motion. The entire 

model is parameterized using dedicated atomistic simulations using a state-of-the-art interatomic 

potential for W (Marinica et al., 2013). Non-Schmid effects are incorporated via a dimensionless 

representation of the resolved shear stress, which provides the deviation from standard behavior for all 

the different activated slip planes. We explore the impact of these deviations on single dislocation glide 

and compare the results to direct MD simulations. Another novel aspect of our simulations is the 



inclusion of stress-assisted kink drift and kink diffusion simultaneously in our model. This quantitatively 

reflects the dynamic behavior observed atomistically for an isolated screw dislocation. 

The paper is organized as follows. First we describe the kMC algorithm and the topological construct of 

screw dislocations and kink segments. We then provide a detailed account of the parameterization 

effort undertaken, beginning with single kink static and dynamic properties, and ending with the 

calculation of the non-Schmid law. In the Results section we report calculations of Schmid and non-

Schmid glide as a function of stress, temperature, dislocation length, and maximum resolved shear 

stress (MRSS) plane. We finish with a discussion of the results and the conclusions. 

2. Kinetic Monte Carlo model of thermally-activated screw dislocation motion 

2.1. Physical basis 

All that is required to initialize a kMC run are the total initial screw dislocation line length L , the 

temperature T , and the applied stress tensor σσ. In the kMC calculations, we choose a working 

representation of the stress tensor in its non-dimensional scalar form: 

 

where σRSS is the resolved shear stress (RSS) and σP is the Peierls stress. We consider two different 

contributions to σRSS: (i) from external sources – defined by an applied stress tensor σ – and (ii) from 

internal stresses originating from segment-segment elastic interactions. At a given dislocation segment i 

, the normalized resolved shear stress is: 

equation(1) 

 

Here, t and n are unit vectors representing the slip direction and the glide plane normal, and rij is the 

distance between dislocation segments i and j . The calculation of σij(rij) is discussed in Section 2.2 but 

note that this definition of σint introduces a certain locality in sisi, hence the subindex i. 

The projection of the total stress tensor on the RSS plane as in Eq. (1) is what is known as Schmid’s law . 

For a straight dislocation (no internal stresses) in the coordinate system depicted in Fig. 1, the RSS is: 

equation(2) 

σRSS=σext=t·σ·n=-σxzsinθ+σyzcosθσRSS=σext=t·σ·n=-σxzsinθ+σyzcosθ 

where the angle θ is measured from the positive x -axis to the glide plane defined by nn. Here, the only 

active components of the stress tensor that result in a resolved component of the Peach–Köhler force 

on the glide plane are σxz and σyz. In Section 3.4, we explain how to substitute Eq. (2) by a suitable 



projection law that reflects non-Schmid behavior. In what follows, for brevity, we use the shorthand 

notation s to denote the stress at any given segment, s≡sis≡si, and τ to refer to the resolved applied 

shear stress, τ≡σext. 

 

Fig. 1.  

Schematic view of the glide planes of the [1 1 1] zone. A generic MRSS plane is labeled in red, while, by 

way of example, the  is the glide plane. The suffixes ‘T’ and ‘AT’ refer to the twinning and 

antitwinning senses, respectively. 

In the same spirit as previous works on the topic, our approach is to generate kink-pair configurations by 

sampling the following general function representing the kink-pair nucleation probability per unit time: 

equation(3) 

 

where ωω is the attempt frequency, ΔH(s) is the kink-pair activation enthalpy, w(s)w(s) is the kink-

pair separation, k is Boltzmann’s constant, and T is the absolute temperature. The variable lili 

represents the length of a rectilinear screw segment i , with L=∑iliL=∑ili. Typically, a non screw 

segment – e.g. a kink – separates each segment i from one another. 

The expression above merits some discussion. The stress-dependent functions ΔH(s) and w(s)w(s) are 

of the following form: 



equation(4) 

ΔH(s)=ΔH01-spq 

equation(5) 

w(s)=w0(s-m+c)(1-s)-n 

where and n are all adjustable parameters. Eq. (4) represents the formation enthalpy 

of a kink pair at stress s and follows the standard Kocks–Argon–Ashby expression that equals the energy 

of a pair of isolated kinks at zero stress and vanishes at s=1s=1 (τ=σP) ( Kocks et al., 1975). For its part, 

Eq. (5) is a phenomenological expressions (no physical basis) that diverges for both limits s=0s=0 and 

s=1s=1. This is because the equilibrium kink separation distance is undefined at zero stress, while, at the 

Peierls stress, the notion of kink pair is itself ill-defined. A physical equation for w(s)w(s) could 

conceivably be obtained by, e.g. , generating kink pair configurations within a full elasticity model and 

measuring the force balance (elastic attraction vs. stress-induced repulsion) as a function of applied 

stress. However, as discussed below, kinks display a strong atomistic (inelastic) behavior at short 

distances and we prefer to obtain its atomistic dependence and fit to a function that captures the 

divergence for s=0s=0 and s=1s=1. 

The function f(s)f(s) represents the number of possible nucleation sites for a kink pair of width w on a 

segment i of available length lili. It is through this function that the well-known dependence of the screw 

dislocation velocity with its length at low stress is introduced. 

Kink motion is defined by thermal diffusion at zero stress, characterized by a diffusion coefficient DkDk, 

and a stress dependent drift characterized by the following viscous law 

equation(6) 

 

where vk is the kink drift velocity and B is a friction coefficient. Although phonon scattering treatments 

predict that B increases linearly with temperature, our MD calculations show B to be constant across all 

temperatures, in agreement with previous studies on kink motion ( Swinburne et al., 2013). The overall 

dynamic behavior of kinks must account for both contributions to the mobility, which can be done by 

treating kink diffusion as a Wiener process within the kMC model in the following fashion. Assuming that 

a time step δt has been selected within the kMC main loop, one can write the incremental position of 

the kink as: 

 

where the ±± sign reflects the random character of diffusion. The maximum kink flight time in the 

code is obtained by inverting the above expression and solving for the parameter δtmig with δx=δ

xmax, which is an input parameter to the kMC algorithm (cf. Section 2.2). 



2.2. Implementation details 

The dislocation is represented by a piecewise straight line extending a length L along the 

1/2[111]1/2111 Burgers vector direction, as depicted in Fig. 2. It consists of pure screw segments, which 

can be of any length, and pure edge segments (kinks), which all have the same length , the 

unit kink height. The direction of kink segments can be any one of six 1/3〈112〉1/3112 directions, 

corresponding to glide of the dislocation on the three {110}110planes of the [111]111 zone (cf. Fig. 1). 

Periodic boundary conditions are used in the direction parallel to the screw direction. 2 

 

Fig. 2.  

Schematic depiction of an arbitrarily kinked screw dislocation line showing kink-pairs on two different 

{110}{110} planes. The arrows indicate the direction of motion of kinks under an applied stress that 

creates a force on the dislocation in the  direction. The dashed line represents a cross-kink. 

Even though kinks are represented by pure edge segments in our model, we implicitly assume that kink 

pairs have a trapezoidal shape of a certain width a (this is discussed in Section 3.1.1). This is why the 

length of a screw segment, where new kink pairs can nucleate, is effectively reduced by one kink width a 

. Kink segments move parallel to the [111]111 screw direction and can recombine with other kinks of 

opposite sign. The local kink-pair nucleation rate (Eq. (3)) and the drift velocity of kink segments (Eq. (6)) 

depend on the local stress, which is the superposition of a fixed, externally applied stress tensor and 

varying internal stresses (cf. Eq. (1)). The internal contributions,σij, originating from mutual interactions 

between the piecewise straight dislocation segments, are computed using non-singular isotropic 

elasticity theory with a core width of 0.5b0.5b ( Cai et al., 2006). W is a perfectly isotropic elastic 

material and so using the theory by Cai et al. (2006) introduces no limitations in this regard. 



The local stress on a given segment i may not be spatially uniform. To resolve this spatial dependence, 

we sample the local nucleation rate at multiple random positions along lili. The simulation proceeds in 

discrete time steps of variable length according to the following algorithm: 

1. 

The current drift velocities of existing kinks are computed from the local stress at the center of each 

kink. 

2. 

Assuming constant kink velocities, a migration time δtmig is computed, which is the lowest time taken 

by any kink in the system to move a prescribed maximum distance δxmax=40bδxmax=40b, or before 

any kink–kink collision occurs.3 

3. 

A nucleation time δtnuc is randomly generated from the exponential distribution defined by the total 

nucleation rate, which is the sum of all kink-pair nucleation rates on all screw segments and for all kink 

directions. 

4. 

If δtmig<δtnuc, then all kinks move at their current velocities for a time period δtmig and the 

simulation time is incremented accordingly. Otherwise, the kinks move for a time period δtnuc, 

followed by a kink-pair nucleation on a screw segment. The nucleation site is chosen according to the 

local nucleation rates by a standard kMC algorithm, and the simulation time is incremented by the 

reciprocal of the total nucleation rate (Voter, 2007). 

5. 

Any kink–kink reactions occurring after the propagation of kinks are carried out and the topology of the 

line model is updated. Return to step 1. 

In the last step, kink–kink annihilation and debris dislocation loop formation is considered. As described 

by Cai et al., 2001 and Marian et al., 2004, two pile-ups of cross kinks can spontaneously reconnect to 

form a self-intersection of the dislocation line. At the self-intersection point, the connectivity of the line 

is broken into two independent parts: the infinite screw dislocation, which continues moving through 

the material, and a closed prismatic loop, which remains behind. 

Two kinks on the same screw segment, which have formed on different {110}110 planes, may collide 

and form a so-called cross kink if their relative velocity is negative. Because they are pushed toward one 

another by the local stress, the kinks are thus constrained to move together with a compound velocity 

equal to the arithmetic mean of their respective original velocities. 

3. Fitting the kMC model to atomistic calculations 



In a previous publication, we have conducted a detailed analysis of several W interatomic potentials for 

the purpose of screw dislocation calculations (Cereceda et al., 2013). On the basis of that analysis, an 

embedded-atom method (EAM) (Marinica et al., 2013) and a modified EAM (MEAM) potential (Park et 

al., 2012) were deemed as the most suitable for screw dislocation property calculations. For reasons of 

computational efficiency, in this work we choose to perform all supporting calculations for fitting the 

kMC model with the EAM potential. As a preliminary step, we calculate the Peierls potential on a 

{110}{110} and a {112}{112} plane to ascertain whether direct glide on {112}{112}-type planes is a 

feasible phenomenon. This is done using nudged-elastic band (NEB) calculations of a single screw 

dislocation in suitably constructed computational cells described below. The resulting functions 

represent the substrate potential UP(x)UP(x) as a function of the reaction coordinate x in each case. 

These are shown in Fig. 3, where it is shown that elementary glide on a {112}{112} plane is a composite 

of two elementary steps on alternate {110}{110} planes. Judging by these results, we conclude that glide 

on any given plane is achieved by way of sequential {110}{110} jumps. This is consistent with recent 

atomistic simulations ( Gilbert et al., 2011 and Hale et al., 2014) and forms the basis to simulate 

dislocation glide in the foregoing Sections. 

 

Fig. 3.  

Peierls potential for transitions from one equilibrium position to another on a generic {110} plane and 

on a {112}{112} plane, twinning sense. Each transition extends over the corresponding reaction 

coordinate, namely  and . The geometric decomposition of the {112} transition into two 

alternating {110}{110} steps is shown for reference. The two insets show differential displacement maps 

of the configurations at ‘0’ and ‘s’. 

3.1. Single kink calculations 

3.1.1. Kink energetics 

Analytical solutions for the kink-pair energy UkpUkp using elasticity models have been proposed by, 

among others, Dorn and Rajnak, 1964 and Seeger, 2002, and Suzuki and collaborators (Koizumi et al., 

1993, Suzuki et al., 1995 and Edagawa et al., 1997) assuming full elastic and line tension representations 

of kink-pair configurations and several functional forms for U(x)U(x). However, there is clear evidence in 



the literature that isolated kink segments display an asymmetry not present in continuum models 

(Mrovec et al., 2011 and Swinburne et al., 2013). This asymmetry emanates from crystallographic and 

energetic considerations of atomistic nature, and thus calculating kink energies necessitates special 

methods that capture these particularities. Ventelon et al. (2009) have devised a procedure to compute 

the energies of so-called ‘left’ and ‘right’ kinks, the values of which are given by Marinica et al. 

(2013) for the current potential: 

 

The energy of an infinitely separated kink pair is the sum of both energies above: Ukp(∞)=1.63eV. 

Additional useful information that can be extracted from these calculations is the width of an isolated 

kink, that is, the stretch along the [111][111] direction over which the kink extends. Fig. 4 shows the kink 

shape and its width obtained via Volterra analysis ( Ventelon et al., 2013 and Gilbert et al., 2013). The 

kink shape is fitted to a function of the form: 

 

where h is again the distance between Peierls valleys and ∊∊ is a fitting parameter. 4 The kink width a is 

measured as the distance over which x(z) varies from 0.05h0.05h to 0.95h0.95h, which is approximately 

3∊3∊. Fitting x(z) to the data points shown in Fig. 4 yields a value of ∊=8.4b∊=8.4b or 

a=3∊≈25ba=3∊≈25b. This is the value used in the kMC code to represent kinks as trapezoidal elastic 

segments. 

 

Fig. 4.  

Single kink shape as obtained with atomistic calculations. The width of the kink, a, is measured from by 

fitting the data points to a hyperbolic tangent function. 

3.1.2. Kink mobility 



As noted above, kinks can display both mechanically-driven (stress-dependent) and diffusive (stress-

independent) motion. Both of these must be characterized to define kink motion in the context of the 

kMC code. In bcc metals, including W, the energy barrier to kink motion on {110}{110} planes is 

negligible. This calls for a diffusion model of the following type: 

equation(7) 

 

whereγk is a temperature-independent friction coefficient. For its part, stress-driven drift motion is 

assumed to follow Eq. (6), which for practical reasons is expressed as: 

  

where . Atomistic simulations of suitable geometric setups can be performed to obtainγk by 

mapping Eq. (7) to the temperature dependence of the diffusivity, obtained as Dk=d〈Δz2〉/dtDk=d〈

Δz2〉/dt with 〈Δz2〉 the mean square displacement. In turn, B is calculated by obtaining the velocity–

stress curves at different temperatures and mapping to Eq. (6), with the two friction coefficients 

connected through Einstein’s relation B=hγk. The detailed calculations are provided in Appendix A and 

are summarized here as well as in Table 1. An effective diffusivity for left and right kinks is taken: 

Dk(T)=7.7×10-10TDk(T)=7.7×10-10T 

with the diffusivity in m2 s−1 and T in Kelvin. This corresponds to a friction coefficient of γk=7.0×10-5

γk=7.0×10-5 Pa s. For the drift velocity we obtain a stress dependence of: 

vk=3.8×10-6τvk=3.8×10-6τ 

where the velocity is in m s−1 when the stress is given in Pa. This results in a friction coefficient B=8.3×

10-5B=8.3×10-5 Pa s. 

Table 1.  

List of parameters and functional dependencies for fitting the kMC model. All of these parameters have 

been obtained using dedicated atomistic calculations. 

Parameter Value or function Units 

a0 3.143 Å 

h 
 

Å 

μ 161 GPa 



Parameter Value or function Units 

ν 0.28 – 

ω 9.1×1011 s−1 

σP 2.03 GPa 

a 25 b 

vk τb/B m s−1 

B 8.3×10-5 Pa s 

Dk kT/hγk m2 s−1 

γk 7.0×10-5 Pa s 

ΔH(s;T) ΔH0(1-sp)qΔH01-spq eV 

ΔH0 1.63 eV 

p 0.86 – 

q 1.69 – 

w(s) w0(s-m+c)(1-s)-n b 

w0 2.31 b 

c 2.02 – 

m 0.50 – 

n 0.15 – 

 

 

GPa 

a1 1.26 – 

a2 0.60 – 

3.2. Kink pair enthalpy 

As it was shown in the preceding section, kinks are short dislocation segments displaying a sign 

asymmetry that cannot be captured by using elasticity theory. To compute ΔHΔH, here we take a 



direct atomistic approach by treating kink pair configurations as activated states of long straight 

dislocation lines moving along the Peierls trajectory. In the same manner as a number of previous 

studies (Wen and Ngan, 2000, Rodney and Proville, 2009, Gordon et al., 2010 and Narayanan et al., 

2014), we perform nudged-elastic band (NEB) calculations of screw dislocation lines 100b100b in length 

going from one Peierls valley to the next as a function of stress. These calculations are periodic along the 

dislocation line but finite on {110}{110} surfaces parallel to the glide plane, where the external shear 

stress is applied. To break the translational symmetry along the [111][111] direction, we create 

intermediate replicas seeded with kink-pair configurations. We then calculate the maximum total energy 

along the NEB path and measure the kink separation at the activated state. An artifact of these 

calculations results from using periodic boundary conditions along the line direction for the zero stress 

case. In these conditions, a separation of exactly 50b is attained, which results in a small but non-

negligible elastic interaction energy. Thus, the following limiting values are directly assumed: 

 

Fig. 5 shows the NEB calculations of the Peierls transition pathway as a function of stress for the screw 

dislocation lines of length 100b100b. The unrelaxed NEB trajectory consists of straight dislocations as 

the initial and final states, separated by one Peierls valley. The intermediate states are obtained by 

introducing a kink pair at some arbitrary location along the line, separated by a distance varying linearly 

from 50b50b for the second replica to 5b5b for the penultimate one. We then relax the entire trajectory 

using the nudged elastic band procedure and measure the energy along the path. The final trajectory is 

obtained as the lowest-energy superposition between the NEB energy path and the Peierls energy for 

the straight screw dislocation. The activated state is chosen as the maximum energy point along the 

relaxed final path. 



 

Fig. 5.  

NEB transition pathway along the Peierls coordinate for screw dislocation segments of length 100b100b. 

The activated state is taken as the point of maximum enthalpy in each case, where the kink pair 

separation is measured. The insets correspond to kink pair configurations at several points along the 

NEB trajectory visualized using the centrosymmetry deviation parameter. 

Fig. 6a and b shows the extracted activation enthalpies and separation distances as a function of stress. 

Fits to Eqs. (4) and (5) result in the parameters given in Table 1, which are then used in Eq. (3) for the 

kMC simulations. 



 

Fig. 6.  

Kink pair activation enthalpy and separation as a function of stress. The data in each case are fitted to 

Eqs. (4) and (5), with the resulting fitting parameters shown in each case. 

3.3. Attempt frequency 

The attempt frequency ω is chosen to be the fundamental mode of the Granato–Lücke vibrating string 

model (Lin and Chrzan, 1999): 

equation(8) 

 

where Ct is the shear wave velocity and λ is a characteristic wavelength. For the purpose of this paper, 

Ct can be obtained as: 

 



where μμ is the shear modulus and ρρ is mass density of W. ρ can be trivially obtained from the 

inverse of the atomic volume . The parameterλ is the wavelength of the vibrating 

undulation, which in this case can be taken as λ=w+a. Using the parameter values listed in Table 1 and, 

from Fig. 6b, an effective kink pair separation of w=11b, we obtain ω=9.1×1011 s−1. 

3.4. Non-Schmid law from atomistic calculations 

Schmid’s law states that a slip system will become activated when shear stress, resolved on the slip 

plane and in the slip direction, reaches a certain critical value called critical resolved shear stress (CRSS). 

This implies (i) that the CRSS does not depend on the orientation of the load axis, and (ii) that the CRSS is 

independent of the sign of the loading direction (tension or compression). Many authors have now 

demonstrated, first, that in bcc crystals the loading symmetry is broken, and, second, that there is a 

coupling between CRSS and non-glide stress components, all resulting in a breakdown of Schmid’s law 

(Duesbery and Vitek, 1998, Ito and Vitek, 2001, Woodward and Rao, 2001, Gröger and Vitek, 2005, Chen 

et al., 2013 and Barvinschi et al., 2014). 

Here, our approach is to study deviations from Schmid behavior solely when pure shear stress is applied 

on different maximum resolved shear stress (MRSS) planes. We use the standard geometry of the 

[111][111] zone as shown in Fig. 1 to compute the CRSS using atomistic simulations. The CRSS is 

calculated as a function of the angle χ between the primary glide plane and the MRSS plane. For 

simplicity, in the atomistic calculations the primary glide plane is represented by θ=0 (cf. Fig. 1) and, 

then, by symmetry, only the angular interval  need be explored. 

The calculations are done by performing atomic relaxations of a single screw dislocations in crystals with 

periodic boundary conditions subjected to various levels of applied stress. The size of the simulation box 

is 1×21×241×21×24 multiples of the bcc lattice vectors  containing 

nominally 3024 atoms. This setup is essentially identical to that used in other atomistic studies. The 

dependence of the CRSS with χ for the EAM potential employed here is given in Fig. 7. The figure also 

shows a fit to the data according to the expression: 

  

which is customarily used to represent deviations from the Schmid law (Vitek et al., 2004 and 

Chaussidon et al., 2006). A least-squares fit to the data yields a1=1.26 and a2=0.60, which are added to 

Table 1. The details about the implementation of this equation into the kMC code for simulations of 

non-Schmid glide are given in Appendix B. 



 

Fig. 7.  

Dependence of the critical resolved shear stress with the angle between the MRSS plane and the 

primary glide plane. The standard Schmid law is shown as a vertical green-colored line. (For 

interpretation of the references to color in this figure legend, the reader is referred to the web version 

of this article.) 

4. Results 

In this section, we calculate the dislocation velocity for a number of different conditions. The velocity is 

obtained as the derivative of the average position of the dislocation projected on the MRSS plane with 

respect to time. We study loading on both {110}{110} and {112}{112} MRSS planes at different 

temperatures and stresses. We also investigate three different initial dislocation line lengths: 100b100b 

is near the maximum extent of what can be presently simulated in MD simulations; 1000b1000b is near 

the average dislocation segment length (  in well-annealed W single crystals (Lassner and 

Schubert, 1999), and 4000b4000b is approximately one micron in length. We study stresses from zero to 

just below the Peierls stress 0<σMRSS<0.9σP and temperatures from room temperature to 1800 K in 

300-K intervals. The stress interval ensures that thermal activation is the operating dynamic mechanism, 

while the temperature limits are roughly those where severe embrittlement and recrystallization are 

known to limit the usefulness of W as a structural material (Lassner and Schubert, 1999 and Rieth, 

2013). 

4.1. Numerical calculations 

Fig. 8 shows an example of the position vs. time curves for a dislocation of length 1000b1000b at 

different temperatures and an applied stress of 1000 MPa on a {110}{110} plane. Velocities are obtained 

from linear fits to the data. All simulations share the same qualitative features as those shown in the 

figure. This linear behavior has been confirmed at room temperature and low stresses in carefully-

performed experiments in Fe (Caillard, 2010 and Caillard, 2013). 



 

Fig. 8.  

Average dislocation position vs. time at different temperatures for L=1000b with a RSS of 1000 MPa on a 

{110}{110} plane. These simulations were carried out including non-Schmid effects. Due to differences in 

scale, the trajectory at 300 K is shown separately in the inset. 

In Fig. 9, Fig. 10 and Fig. 11 we provide detailed results as a function of τ and T for each value of L. Each 

panel includes velocities considering Schmid and non-Schmid effects. In advance of discussing these 

results and their implications in detail in the following section, we note the following features from the 

figures: 

1. 

When the MRSS is applied on {110}{110} planes, using Schmid’s law results in velocities that are larger 

than when considering non-Schmid effects. This difference is negligible at stresses below 600 MPa and 

gradually grows up to a factor of two in some cases. 

2. 

On {112}{112} planes, by contrast, this tendency is reversed, with the difference being noticeable 

already at low stresses. 

3. 

When including non-Schmid effects, dislocations move faster at lower temperatures than at higher ones 

at the highest stresses (>1400 MPa). We will show below that this is a consequence of self-pinning, 

which is favored in that regime. Using Schmid’s law, this tendency is observed in some selected cases, 

but not generally. 

4. 



At high stresses, there are no appreciable differences between the velocity response for 

, and L=4000b lines. A detailed investigation of the length dependence of the 

dislocation velocity will be conducted below. 

 

Fig. 9.  

Velocity–stress relations for L=100bL=100b for all temperatures, stresses, and including Schmid and non-

Schmid loading. 



 

Fig. 10.  

Velocity–stress relations for L=1000bL=1000b for all temperatures, stresses, and including Schmid and 

non-Schmid loading. 



 

Fig. 11.  

Velocity–stress relations for L=4000bL=4000b for all temperatures, stresses, and including Schmid and 

non-Schmid loading. 

4.2. Dislocation length dependence 

It has been traditionally assumed that screw dislocation velocity depends linearly on its length, a 

dependence introduced by construction in dislocation dynamics models (Tang et al., 1998 and Naamane 

et al., 2010) but also confirmed experimentally in some limited cases at room temperatures and low 

stresses (Caillard, 2010 and Caillard, 2013). Here we perform a systematic study of dislocation velocity as 

a function of L at several temperatures and stresses, and for Schmid and non-Schmid conditions. First 

we study nominally the same regime as in the experimental works by Caillard (2010), i.e. room 

temperature (300 K) and low stress (200 MPa). We present results for the two slip systems of interest in 

Fig. 12, where the linear dependency is clearly distinguished. This is a direct consequence of the form of 

Eq. (3), when nucleation is the rate-limiting step and the dynamics is governed by the existence of one 



single kink-pair on the line at a given time, i.e. l1+l2=Ll1+l2=L. This is the expected behavior at low strain 

rates or in quasistastic conditions. 

 

Fig. 12.  

Dependence of the dislocation velocity on its initial length for a resolved shear stress of 200 MPa at 300 

K and under Schmid and non-Schmid conditions. 

However, as the stress and/or the temperature increase, this trend becomes gradually weakened until it 

is lost altogether. Fig. 13 shows results for τ=1000 MPa at different temperatures. In this situation, 

multiple kink-pairs may coexist at once, giving rise to cross-kinks and other self-pinning features that 

remove the linear dependence on L. These are the conditions that are representative of high-strain rate 

situations. 



 

Fig. 13.  

Dependence of the dislocation velocity on its initial length for a resolved shear stress of 1000 MPa at 

high temperatures and under Schmid and non-Schmid conditions. 

4.3. Trajectory 

Next we analyze the impact of considering non-Schmid effects on the trajectory of a screw dislocation 

projected on the [1 1 1] plane. Fig. 14a shows an example at 300 K and 200 MPa where the MRSS is on 

the  plane (for this analysis we use the axes convention given in Fig. 1). As the figure shows, 

considering non-Schmid effects results only in a slight deviation from the MRSS plane, characterized by 

sporadic slip episodes on the  plane forming +60° with the MRSS plane. More revealing is 

perhaps the case of glide when the MRSS is resolved on a {112}{112} plane –  to be precise. In 

this case, Schmid behavior is generally recovered when Eq. (2) is used, as Fig. 14a illustrates. The 

trajectory in this case follows a zig-zag pattern, characteristic of wavy slip observed in bcc systems at low 



temperature (e.g. Franciosi (1983)). However, non-Schmid behavior results in effective glide on the 

 plane, forming +30°+30° with the MRSS plane. This behavior is not inconsistent with recent 

Laue diffraction experiments of slip in W ( Marichal et al., 2013) and with MD simulations performed 

with the same potential employed here by Cereceda et al. (2013). 

 

Fig. 14.  

Trajectory of a dislocation line of length L=4000b under Schmid and non-Schmid conditions. 

At higher stresses and temperatures (cf. Fig. 14b) the same general behavior can be observed, although 

the deviation from the MRSS plane for non-Schmid {110} loading is more notable than under low 

stress/temperature conditions. In all cases, deviations from the MRSS plane are reliably in a 

counterclockwise direction. This is a direct manifestation of the twinning–antitwinning asymmetry that 

biases kink-pair nucleation toward planes that are consistent with the critical stresses shown in Fig. 7. 

4.4. Dislocation self-pinning 

The reason for the loss of linearity in the v –L dependence at high temperature or stress ( Fig. 13a and b) 

is related to the increased probability of forming kink pairs on multiple glide planes simultaneously. 



According to Eq. (3), this probability increases with temperature, stress, and line length, consistent with 

the behavior discussed above. As alluded to in Section 2.2, in multislip conditions the interaction among 

kink pairs on different planes results in cross kinks. These defects essentially halt the progress of the 

dislocation by acting as pinning points that must be overcome before motion can resume. When this 

happens, debris loops are formed in the wake of the main dislocation. Fig. 15 shows the final 

configuration after 5000 kMC cycles for a screw dislocation of length L=1000bL=1000b under {112}{112}-

Schmid loading at 1000 MPa and a temperature of 1800 K. The figure clearly shows trailing chains of 

debris loops. The reader is referred to the work by Marian et al. (2004) for more details on the atomistic 

characteristics of this process. Here we quantify the formation of these loops and relate it to dislocation 

self-pinning and slowing down. 

 

Fig. 15.  

Final configuration after 5000 kMC cycles of a screw dislocation of length L=1000bL=1000b under 

{112}{112}-Schmid loading conditions at 1000 MPa and a temperature of 1800 K. Segments in dark blue 

belong to the main dislocation, while colored segments belong to detached loops. The depicted line 

configuration is scaled in the z direction to facilitate viewing. See the Supplementary animation of the 

time evolution of the dislocation. (For interpretation of the references to color in this figure legend, the 

reader is referred to the web version of this article.) 

 

From analysis of trajectories such as that shown in Fig. 15, the number of debris loops per unit time per 

unit length can be tallied as a function of τ,T,L, and MRSS plane. This debris loop generation rate – 

which we term  is shown in Fig. 16 for {112} non-Schmid loading for a dislocation with L=4000b. As 



expected,  increases with increasing temperature and stress. However, for a given temperature and 

glide condition, the loop generation rate per unit length is independent of L . This is illustrated in Fig. 17, 

where is shown as a function of stress for {112}{112} non-Schmid conditions and at 900 K for 

L=100L=100, 1000, and 4000b4000b. In other words, the debris loop generation rate only depends on 

temperature, stress, and the glide condition. The example shown here is representative of other 

temperatures and MRSS plane orientations. 

 

Fig. 16.  

Debris loop generation rate as a function of temperature and applied stress for {112}{112} non-Schmid 

conditions for a dislocation with L=4000bL=4000b. At 300 K there is zero loop generation. 

 

 

Fig. 17.  

Debris loop generation rate at 900 K during {112}{112} non-Schmid conditions for three different initial 

dislocation lengths. The apparent threshold above which self-pinning is seen to dominate the kinetics is 

marked with a dashed line. 



 

These results show that there may be a correlation between the degree of self-pinning in Fig. 9, Fig. 10 

and Fig. 11 and the value of  for each case. For the specific example shown in Fig. 17, Fig. 11b suggests 

that the dislocation velocity deviates from the nominal exponential behavior at a stress of ≈≈1500 MPa. 

This corresponds to a value of =1.5×108s-1b-1 (the approximate value of the 

three curves in Fig. 17 at 1500 MPa). This apparent threshold is of course temperature dependent and 

varies with loading orientation, although here we only consider the case showcased in Fig. 16 and Fig. 

17. 

4.5. Computational efficiency 

As discussed in the previous section, the compounded effect of stress, temperature, and initial screw 

dislocation length, as well as stress orientation, is to enhance the probability to nucleate kink-pairs in 

multiple slip planes. This increases the number of segments and may lead to a stalled kinetic evolution 

as a consequence of self-pinning. Both of these phenomena decrease the computational efficiency of 

the kMC code, interpreted as the utilization of CPU time to result in net dislocation motion. The number 

of segments increases the numerical workload of the O(N2)O(N2) segment-segment stress calculation 

function,5 while self-pinning arrests the dislocation progress resulting in slower net motion. To assess 

these overhead costs quantitatively, we plot in Fig. 18 the dependence of the computational efficiency 

η as a function of applied RSS and L . The calculations were performed for a fixed number of 2000 kMC 

cycles at 900 K. For clarity we display η in arbitrary units to showcase the effect of each parameter 

studied, with quantitative details about the numerical values in each case given in Appendix C. As shown 

in the figure, increasing the stress, the dislocation line length, and/or loading on {112}{112} planes, all 

contribute to efficiency losses. Stress and temperature are generally equivalent in their effect on η, and 

so here only the impact of τ is evaluated. 

 

Fig. 18.  



Computational efficiency η measured in arbitrary units as a function of L,τ, and MRSS plane for a 

number of simulations conducted at 900 K for a fixed duration of 2000 kMC cycles. 

 

5. Discussion 

Motivation for using kMC simulations – The motion of screw dislocations proceeds via the thermally-

activated nucleation of kink-pairs and kink propagation along the screw direction. Kinks are atomistic 

entities – as described in Fig. 4 – but also elastic ones. This means that their properties must be 

characterized at the atomistic scale, but their effects can be potentially long-ranged. Dynamically, by 

virtue of its rare-event nature, kink pair nucleation operates on time scales that are hardly accessible by 

atomistic methods. This precludes, in most cases the use of direct MD or other atomistic methods. 

However, dislocations containing kink pairs are subjected to long-range elastic self-forces, which have to 

be integrated along the dislocation in order to be evaluated and resolved spatially. As this is typically 

very numerically-intensive, we resort to discretization methods that treat dislocation lines as piece-wise 

entities in which all segments interact with all segments. This, for its part, precludes the use of effective-

medium methodologies such as the line-tension approximation or other techniques in which these 

O(N2)O(N2) interactions are not captured. KMC, in our mind, offers the ideal alternative to bridge these 

two limits. On the one hand, the dislocation is treated as a piece-wise object attached to an underlying 

lattice. This allows us to represent some of the most important atomistic features of the dislocation 

fairly accurately. At the same time, this piece-wise representation enables the calculation of all the 

elastic forces in an efficient manner. The result is a method that can access time scales long enough to 

statistically capture dislocation motion, yet it retains sufficient detail to accurately provide a clear 

connection to the underlying atomistic physical features. 

Comparison with MD results – One of the main motivations behind the development of our kMC model 

was MD’s inability to sample thermally activated motion within its space and time limitations. It is 

then useful to compare MD and kMC results of screw dislocation glide subjected to nominally identical 

boundary conditions. However, as discussed above, the overdriven nature of MD simulations causes the 

occurrence of cross-kinks and associated debris for line lengths for which the kMC simulations predict 

smooth glide. This is illustrated in Fig. 19, where a screw dislocation of length 100b100b is seen to leave 

vacancy clusters behind at 300 K and 1100 MPa of stress applied on a {112}{112} plane. For the current 

interatomic potential, the threshold length below which cross kinks are not seen to occur was estimated 

to be 25b25b ( Cereceda et al., 2013). This is below the length for which kMC simulations can support an 

elementary kink pair. Therefore, we are forced to make an imperfect comparison between the MD 

results with L=25bL=25b and the kMC results for L=75bL=75b, which is near the minimum length in kMC 

calculations to contain one kink-pair. 



 

Fig. 19.  

MD simulation of a screw dislocation under the following conditions: L=100b,T=300K, 

, MRSS plane ≡{112}≡{112}. After a few time steps, the dislocation starts 

producing debris in the form of vacancy and interstitial clusters. These are akin to small dislocation loops 

in the kMC simulations. 

 

Results from both approaches are shown in Fig. 20. The figure shows that the MD velocities are 

systematically higher than their kMC counterparts below 1500 MPa. Above this value, the kMC velocities 

at 300 and 600 K overtake the MD-calculated values. It is interesting to note that the qualitative shape 

of the MD curves coincides with those of the kMC curves at the highest temperatures of 1200 and 1800 

K. This is symptomatic of the limitations of MD, which even at low stresses and temperatures create 

simulation conditions that are representative of higher values. It must also be kept in mind that a 

sensitivity study has not been conducted on the kMC parameters, and thus the present comparison is 

only valid inasmuch as the current parameterization can be considered a sufficiently valid one for the 

method. In terms of computational overhead, MD simulations are approximately three to seven orders 

of magnitude costlier than their kMC counterparts on the basis of the metric employed in Table C.3. We 

refer the reader to Appendix C for more details. 



 

Fig. 20.  

Comparison of dislocation velocities from MD results (Cereceda et al., 2013) and kMC calculations. 

 

Dislocation self-pinning – Self-pinning occurs as a consequence of the formation of cross-kinks, which 

act as strong sessile junctions. Cross-kinks may be resolved topologically by complementary kink pairs, 

resulting in the closing of debris loops. The energy expended in producing debris loops is taken out of 

the total mechanical work available to make the dislocation glide, which results in an effective ‘

reduced’ stress and, therefore, lower velocities. Physically, self-pinning is seen to become important 

above a certain generation rate threshold, which correlates with a leveling-off of dislocation velocity 

curves as a function of stress. 

This notion of threshold generation rate originates in the creation of kink-pairs on multiple slip planes, 

whose effect in the kinetic behavior depends on the combined effects of cross-kink production and 

resolution. An enhanced probability of kink pair production (brought about by increasing temperature, 

stress, and/or multislip conditions) may facilitate the production of cross-kinks, leading to potentially 

higher self-pinning. At the same time, the probability for resolution of these is also intensified by the 

same processes. Resolution of cross kinks results in debris loop production. Beyond the apparent debris 

generation threshold, however, the production of cross-kinks overruns the likelihood of resolution, 

effectively arresting the dislocation progress and stagnating the velocity increase with temperature and 

stress. When this happens, debris production is simply a manifestation of self-pinning on the larger 

scale. This is one of the reasons leading to the length independent behavior observed at mid-to-high 

temperatures and stresses (cf. Fig. 13), and which may be behind the anomalous behavior of some 

dislocations observed experimentally ( Hsiung, 2007). 

Extraction of effective mobility laws – Ultimately, the data compiled in this work via extensive kMC 

calculations must be used to fit mobility functions suitable for, e.g. dislocation dynamics, phase field, or 

crystal plasticity simulations (see for example Tang and Marian (2014)). The deviations exposed by our 

calculations from the expected exponential behavior due to self-pinning call for a possible fitting 

function of the following type: 



equation(9) 

 

Where A’,B’,n’,p’, and q’ are all adjustable parameters and s is defined as in Eq. (2) or (B.4). The above 

expression captures the leveling-off displayed in the v –τ relations at high stress and temperature. By 

way of example, here we fit the results for L=4000bL=4000b. Table 2 gives the parameters under each 

specific glide condition. Fig. 21 shows the fit for non-Schmid conditions on a {112}{112} plane. The 

agreement between the fitting functions and the data is similar for other glide conditions and/or values 

of L. 

Table 2.  

Adjustable parameters for the fitting function given in Eq. (9). The units of A′A′ are such that 

v(s,T)v(s,T) is in m s−1, i.e. m s−1 MPa−n. All other parameters are non-dimensional. 

Temperature range (K) A′A′ n′n′ B′B′ p′p′ q′q′ 

{110}{110}Schmid loading 

All temperatures 3693.4 2.47 0.97 0.16 1.00 

{110}{110}Non-Schmid loading 

300 698.2 0.30 0.0 1.15 2.97 

>300>300 1444.2 1.78 0.72 0.26 1.40 

{112}{112}Schmid loading 

All temperatures 755.6 0.38 0.50 0.22 1.01 

{112}{112} Non-Schmid loading 

≤600≤600 2084.2 1.39 0.68 0.81 2.45 

>600>600 3416 2.72 0.89 0.19 1.32 

 

 

 



 

Fig. 21.  

Comparison between Eq. (9) (solid lines) parameterized for L=4000bL=4000b under non-Schmid 

{112}{112} glide conditions and the actual kMC data. 

 

Limitations of the method – We conclude this section discussing some of the limitations of our model. 

First, the sampling function (3) contains several parameters with exponential dependence that have 

been obtained via atomistic calculations using a recent interatomic potential. As such, they are 

subjected to errors associated with the atomistic technique used (NEB), the type of potential and its 

parameterization (EAM), and the least-squares fitting procedure. In a way, all these errors are 

unavoidable – in the sense that we have employed ‘state-of-the-art’ techniques and procedures – 

but their impact on the overall kinetics, although unassessed at the moment, might conceivably be 

notable in some cases. Next, the very physical foundation of the code – the Arrhenius expression for the 

thermally activated kink-pair nucleation rate – may be called into question under some of the conditions 

explored here. Indeed, at high stresses (and temperatures) the kinetics is better represented by 

generalized Arrhenius forms, e.g. the Jackson formula ( Swinburne, 2013), and this may affect the high 

stress/temperature tails of the velocity–stress relations given in Fig. 9, Fig. 10 and Fig. 11. The 

representation of dislocation segments may also be a source of errors in our setting. Kinks and screw 

segments are joined by sharp corners that give rise to stress singularities – these are avoided here by 

resorting to a screening distance within which the stress is not calculated – that are artifacts of our 

piecewise rectilinear representation of dislocation lines. Another physical phenomenon not captured in 

these simulations is the softening of the elastic constants and Peierls (critical) stress with temperature. 

In particular, today’s computational resources permit the direct calculation of the temperature 

dependence of the critical stress ( Gilbert et al., 2013). It is not clear at this point how significant this 

dependence is on the dislocation velocities calculated here. Finally, it is worth mentioning that the 

impact on dislocation motion of non-glide stresses – another source of non-Schmid effects – is not 

presently considered in this work, although its implementation is straightforward if the data were 

available. 



6. Summary 

We have developed a kinetic Monte Carlo model of thermally-activated screw dislocation motion in bcc 

crystals, with a current parameterization for W using a state-of-the-art interatomic potential. Our 

method includes all relevant physical processes attendant to screw dislocation motion, including – for 

the first time – kink diffusion and non-Schmid effects. 

With the versatility and efficiency afforded by our kMC algorithm, we have studied dislocation mobility 

as a function of stress, temperature, initial dislocation line length, and MRSS plane orientation. An 

attractive feature of the present calculations is that they allow us to separate important mobility 

dependencies and assess their impact on the kinetics individually. 

We find that non-Schmid effects have an important influence on the absolute value of the velocity as 

function of both stress and temperature, suggesting that they cannot be neglected in plasticity 

simulations. We also find that at sufficiently high stresses and temperatures, self-pinning processes 

control dislocation motion. Finally, some effective fitting functions are proposed that capture the 

essential features of dislocation motion to be used in more homogenized models of crystal deformation. 
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Appendix A. Computing diffusion and drift coefficients of isolated single kinks 

To generate isolated kinks in an MD supercell, we use especial boundary conditions that enforce a tilt 

equal to a lattice vector kk. Depending on the value of kk kinks of opposite signs – ‘right’ and ‘left

’, to employ the usual convention – are created in cells containing a balanced dislocation dipole. These 

configurations are then equilibrated at finite temperature and the simulation output is then time 

averaged and energy filtered in both zero and finite stress conditions to produce a series of kink 

positions x from which a kink drift and diffusivity can be statistically determined. This procedure is 

described in detail by Swinburne et al. (2013), and a typical simulation supercell (containing around 

106106 atoms) is depicted in Fig. A.22. 



 

Fig. A.22.  

Illustration of kink drift simulations. Kinks on a screw dislocation dipole, 

characterized by a lattice ‘kink’ vector kk, are subject to an applied stress on bounding  

planes. Under no applied stress with fully periodic boundary conditions the kinks diffuse freely. Inset: 

Cartoon of the supercell along , illustrating the relation of the kink vector to a kinked dislocation 

line. 

 

The results of these simulations are displayed in Fig. A.23. Kinks were observed to freely diffuse with a 

diffusivity D=kT/BD=kT/B under no applied stress with fully periodic boundary conditions, while, under 

stresses of 2–10 MPa applied to the bounding planes, kinks were observed to drift with a viscous 

drag law . Although the two screw dislocations eventually annihilate under applied 

stress, for a sufficiently wide and long supercell, the kinks drift independently for at least two supercell 

lengths (∼∼600 Å) before any influence of their mutual attraction can be detected. 

 

Fig. A.23.  



Results of kink drift simulations for  (right) kinks on screw 

dislocations. We see a temperature independent drift velocity vk=∣σ·b∣/Bvk=∣σ·b∣/B in very good 

agreement with B determined from zero stress kink diffusion simulations (green lines). Inset: Results 

from kink diffusion simulations. We see the diffusivity D=kT/BD=kT/B rises linearly with temperature, 

meaning that B is independent of temperature. 

 

The drift and diffusion simulations are fitted to the Einstein relation: 

 

where upon it is seen that the viscous drag B is independent of temperature and shows little variation 

between left and right kinks. The final mobility laws were determined to be vk=3.8×10-6τvk=3.8×10-

6τ for  (‘right’ or ‘interstitial’) kinks and vk=4.0×10-6τvk=4.0×10-6τ for 

k=[010]k=[010] (‘left’ or ‘vacancy’) kinks. These velocities are in m s−1 when the stress is in Pa. 

Phonon scattering treatments ( Hirth and Lothe, 1991) predict that B should increase linearly with 

temperature due to the increased phonon population, but the observed temperature independence of B 

agrees with previous studies of kink diffusion ( Swinburne et al., 2013) and other nanoscale defects ( 

Dudarev, 2008). 

Kinks are strongly coupled to thermal vibrations, so that over a time typically equal to the inverse of the 

Debye frequency thermal vibrations dissipate any inertia possessed by a kink, causing kinks to exhibit 

linear viscous motion. This is what justifies the assumption of constant kink velocity in our simulations. 

Appendix B. Implementing non-Schmid effects in the kinetic Monte Carlo calculations 

In the reference system used in Fig. 1, the MRSS is unequivocally defined as: 

  

with 

 

and 

χ=θMRSS-θχ=θMRSS-θ  

For the purpose of the implementation of non-Schmid effects, we express Eq. (2) in terms of the MRSS 

by noting that, from Fig. 1, σRSS=σMRSScosχσRSS=σMRSScosχ:  



equation(B.1) 

 

Schmid law states that the critical stress σc(χ)σc(χ) depends on χχ as: 

equation(B.2) 

 

which results in rewriting Eq. (2) as: 

equation(B.3) 

 

Proving that Eqs. (2) and (B.3) are equivalent is straightforward: 

 

From this, non-Schmid effects are introduced by substituting the following expression: 

 

into Eq. (B.3): 

equation(B.4) 

 

whence it is readily seen that Schmid behavior is recovered for a1=1a1=1 and a2=0a2=0. Fig. B.24 

showcases the difference between s(χ)s(χ) for Schmid and non-Schmid behavior as a function of θθ. 



 

Fig. B.24.  

Comparison between the normalized stress s under Schmid and non-Schmid conditions as a function of 

θθ and θMRSSθMRSS. Recall that χ=θMRSS-θχ=θMRSS-θ. 

 

Appendix C. Computational efficiency 

The computational efficiency is assessed in the following manner. For the purposes of this paper, we 

assume that the productivity of a kMC run is based on the distance traveled by a dislocation during a 

fixed number of cycles, as a longer distance results in better converged velocity calculations and more 

precise data. Our performance metric of choice is then to normalize the distance traveled in each case 

by the CPU time invested in achieving it. Table C.3 gives the numerical values for this metric in Å per 

second of CPU time for various dislocation lengths and applied stresses. These data are the basis for 

what is shown in Fig. 18. 

Table C.3.  

Numerical values in Å per CPU second of the efficiency metric considered to evaluate the kMC code’s 

performance under different conditions. 

L 100b100b 200b200b 500b500b 1000b1000b 

τ=400 MPa, T=900T=900 K, 2000 kMC steps 

{110}{110} MRSS plane 1180 634 267 113 

{112}{112} MRSS plane 640 534 209 88 

τ=800τ=800 MPa, T=900T=900 K, 2000 kMC steps 



L 100b100b 200b200b 500b500b 1000b1000b 

{110}{110} MRSS plane 921 219 20.0 2.7 

{112}{112} MRSS plane 150 23.0 1.0 - 

τ=1200τ=1200 MPa, T=900T=900 K, 2000 kMC steps 

{110}{110} MRSS plane 267 34.7 2.0 0.21 

{112}{112} MRSS plane 8.3 1.7 - - 

 

As a point of comparison with ‘equivalent’6 MD simulations, we first resort to the data published by 

Cereceda et al. (2013), where the nominal cost of one time step per atom is ≈1.5×10-5≈1.5×10-5 CPU 

seconds for the interatomic potential employed here. For 750,000 atoms, that is 11.25 CPU s per time 

step. Typical MD simulations involve 105105 steps of 1 fs each, which results in 1.12×1061.12×106 

CPU seconds. Per the analysis by Cereceda et al. (2012), those simulations achieve displacements on the 

order of 850 Å, which results in 7.5×10-47.5×10-4 Å per CPU second. This represents efficiencies of 

three to seven orders of magnitude lower than our kMC simulations. 
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1 

Although it was first recognized as early as in the 1920s and 1930s. 

2 

Although nothing precludes the use of fixed end points, akin to pinning points in real microstructures. 



3 

We have found that the calculations are quite insensitive to the value of δxmaxδxmax. By way of 

example, a fourfold increase or decrease of the nominal value of 40b40b results in only changes of ≈3%≈

3% in the kink velocities. 

4 

Note that here we are using a coordinate system consistent with Fig. 1. 

5 

Profiling tests reveal that >92%>92% of the CPU time in any given kMC cycle is spent in this function. 
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In the sense that they are designed to measure similar properties 

 


